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Hyyerfine-interaction constants of the 883/2 state in ' Rb using quantum-beat spectroscopy
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Quantum beats due to the hyperfine interaction were observed in the radiative decay of the 8D3/p
state in Rb. The data agree well with theory allowing determination of the magnetic-dipole
( ~

a
~

=0.879+0.008 MHz) and electric-quadrupole ( ~
b

~

=0.15+0.02 MHz) (a /b )0) hyperfine constants.
The resu1ts are consistent with those obtained for other D3/2 states in "Rb and ' Rb. The observed
magnetic-dipole constants for the nD3/2 n &7 states of "Rb are given to within 2% by the relation
a(MHz) =252/n * where n is the efFective principal quantum number.

PACS number(s): 35.10.Fk

I. INTR&DUCTION

The hyperfine interaction of excited alkali-metal states
tests our understanding of atomic structure [1,2].
Alkali-metal atoms can be simply modeled as consisting
of a single valence electron interacting with a central field
generated by the nucleus and core electrons. For excited
D states, it is well known that many-body refinements
such as polarization of the inner electron core, electron
correlation, and relativistic effects strongly perturb the
hyperfine interaction [3]. The hyperfine Hamiltonian
consists of the magnetic-dipole and electric-quadrupole
interactions between the valence electron and the nucleus
and is given below.

[3(I J) +—', l.J—(I.I)(J.J)]
H =ah I.J+bh 2I(2I —1)J(2J—1)

Here, h is Planck's constant, J is the angular momentum
of the valence electron, I is the nuclear spin, and a and b
are the magnetic-dipole and electric-quadrupole
coupling constants, respectively. As far as we know,
the magnetic-dipole coupling constant computed by
Lindgren and Morrison [1] for the lowest D3&z state in

Rb is the only one in close agreement with experiment.
In this brief report, measurements of the hyperfine cou-
pling constants for the 8D3/2 state in Rb are presented.
The results are shown to be consistent with those previ-
ously obtained for other D3/2 states in both Rb and

Rb.
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Io is a constant dependent on the light-detection
efBciency and ~ is the excited-state radiative lifetime.
The relative size of the beats is determined by K, which is
a function of the fluorescence polarization. The modula-
tion frequencies are listed in Table I.

The beat amplitudes are reduced by a magnetic field
that decouples the electronic and nuclear angular mo-
menta. The vapor cell is therefore located at the center
of three pairs of orthogonal Helmholtz coils that cancel

by a photomultiplier (Hamamatsu model R928). The in-

tensity of Auorescence polarized parallel to the laser po-
larization direction, is given by the expression [4—8]

I ( t) =Ice ' [1+ %(,"„"+ ", cosco4—,t + ,'cosco3—2t

II. EXPERIMENT

This experiment used quantum-beat spectroscopy [4,5]
to determine the hyperfine coupling constants. The same
apparatus was used previously [6,7] and is therefore only
briefly described. Rb atoms are contained in an evacu-
ated Pyrex cell. The atoms are excited by a tunable
pulsed dye laser from the 5S&/2 ground state to the 8D3/2
state via a two-photon excitation as shown in Fig. 1. This
excited state is a superposition of excited hyperfine states
since the laser line width (0.07 cm '

) exceeds the
hyperfine splitting. Fluorescence, produced by the radia-
tive decay of the 8D3/2 to the 5P, /2 state, was detected
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FIG. 1. Sample experimental data. A laser pulse of wave-

length 640.6 nm excites the 8D3/p state in "Rb via a two-photon
excitation of the ground state. The fluorescence produced by
the 8D3/2 ~5Pi/2 transition is detected by a photomultiplier us-

ing an interference filter transmitting at 536.4 nm. The dashed
curve is the best theoretical fit to the data points.
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TABLE I. Quantum-beat frequencies.

COFF~ /2'
4a+4b/5
7a+ b/S

3a —9b /20
5a —5b /4
2a —4b /5

s5

1.3482
5/2

states in Rb. The table includes data that were scaled
from measurements taken for Rb using the following:

agg

ag7 s7

2.7414
3/2

=0.295, (3)

the Earth's field. The residual field was measured using a
Hall-efFect gaussmeter to be less than 10 mG. Data re-
sulting from 1000 laser pulses were accumulated in a
transient digitizer (LeCroy Waveform Digitizer 6880A).
It has an analog bandwidth of 400 MHz and digitized the
signal every 742 psec. The data were then fitted to Eq. (2)
by a computer using a least-square algorithm.

A typical set of data is shown in Fig. I. The residual
discrepancy between the fitted curve and the data evident
at times less than 300 nsec corresponds to the laser-pulse
duration of about 7 nsec. The precise temporal profile of
the laser pulse is not known, and therefore the fitted
curve given by Eq. (2) assumes all atoms are excited at
the same time t =0. The resulting a and b values were
found to be independent of cell temperatures and laser-
pulse energies. The cell temperature was varied from
80 'C to 120 'C, corresponding to rubidium densities of
10' —10' atoms/cm [8]. Data were taken with laser-
pulse energies between 1 and 10 mJ. The quoted value of
the Rb 8D3/2 hyperfine coupling constants is the aver-
age value of nine separate runs. The error bars are equal
to one standard deviation of the best-fit parameters about
their mean values. The sign of the coupling constants
could not be found since Eq. (2) is unchanged if a and b
have opposite sign. The ratio a/b was found to be posi-
tive.

III. DISCUSSION

Table II lists values found for the magnetic-dipole and
electric-quadrupole coupling constants of the nD3/p

&ss

bs7

~85

&87

=2.00 . (4)

a n0

where A is a constant that depends on the nuclear charge
and various angular momenta, a0 is the Bohr radius, and
n* is the efFective principal quantum number. Figure 2

Here we have used values for the nuclear magnetic-dipole

p and electric-quadrupole Q moments found in Refs.
[9,10]. The magnetic-dipole hyperfine coupling constants
measured in Rb are consistent with data scaled from

Rb observations. This confirms the validity of the vari-
ous experimental methods, which include level crossing,
magnetic decoupling and quantum-beat spectroscopy.
The electric-quadrupole constants have substantially
larger uncertainties than the magnetic-dipole results be-
cause the hyperfine interaction is dominated by the
magnetic-dipole term. In principle, it is easier to deter-
mine the electric-quadrupole constant in Rb since its
quadrupole moment is twice as large as that for Rb.

The hyperfine interaction decreases rapidly for higher-
lying states. Kopfermann [11] showed that the
magnetic-dipole constant is proportional to the expecta-
tion value of r, where r is the distance between the nu-
cleus and valence electron. For highly excited electrons,
the valence electron is far from the core electrons and
( r ) is well approximated by the hydrogenic result

TABLE II. Hyperfine constants for "Rb nD3/2 states. a„,& and b„,&
are scaled from measurements

in Rb as is discussed in the text.

4
5
6
7
8
9

10
11
12

2.77
3.71
4.68
5.67
6.67
7.66
8.66
9.66

10.66

7.3+O.S'
4. 18+O.2Ob

2.32+0.06'
1.415+0.030'
0.879+0.008

a seal

7.41+0.27'
4.26+0.7
2.31+0 15
1.34+0.01

0.838+0.004
0.561+0.003
0.388+0.005g
0.282+0.003~
0.211+0.0035g

Ibl

1.62+0.06'
0.31+0.6'
0.15+0.02

Ib,.a I

1.06+0.12d

O. 52+O.O8'

0.34+0.04'
0.22+0.06
0.14+0.02g

0.098+0.012g
0.074+0.016g

'Reference [12].
bReference [13].
'Reference [6].
Reference [14].

'Reference [7].
"Reference [15].
sReference [16].
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verifies that for the nDs&z n =7—12 states, a =Cn*
where C is found using a least-squares fit to be 252. The
factor C increases less than 1% if data for the 7D3&z state
are excluded from the fit.

In conclusion, we have measured the magnetic-dipole
and electric-quadrupole constants for the Rb 8D3/p
state. The values are consistent with data measured
for other D3/p states in Rb and Rb. For the
nD 3/p n =7—12 states, the observed magnetic-dipole con-
stant values agree to better than 2% with those given by
a =252/n . This result provides information for high-
lying D3/p states not studied by experiment.
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