## Quiz 9

Name: \_\_\_\_\_ Student Number: \_\_\_\_\_

Electron Charge =  $-1.6 \times 10^{-19}$  Coulomb

Electron Mass =  $9.11 \times 10^{-31} \text{ kg}$ 

Proton Mass =  $1.67 \times 10^{-27} \text{ kg}$ 

Gravitational Constant  $G = 6.67 \times 10^{-11} \text{ Nt m}^2/\text{kg}^2$ 

Coulomb Constant  $k = 9 \times 10^9 \text{ Nt m}^2/\text{Coul}^2$ 

1. a) (2 marks) How many electrons comprise a negative 0.1 Coulomb charge?

# electrons = -0.1 Coulonb. -1.6 × 10 - 19 Coul. = 6.25 × 10

b) (2 marks) An object has 10<sup>6</sup> protons and 2 x 10<sup>6</sup> electrons. What is the net charge in Coulombs?

Net Charge =  $10^6 (1.6 \times 10^{-19} \text{Coul})$ +  $2 \times 10^6 (-1.6 \times 10^{-19} \text{Coul})$ =  $-1.6 \times 10^{-13} \text{Coulomb}$ .

- 2. (6 marks) A hydrogen atom consists of an electron and a proton separated by a distance of  $5 \times 10^{-11}$  m.
  - a) Is the Coulomb force between an electron and a proton attractive or repulsive?

b) Calculate the magnitude of the Coulomb force between the electron and the proton.

$$F_{coul} = \frac{k \, q_{prot} \, q_{elec}}{9 \times 10^{9} \times (1.6 \times 10^{-19})^{2}}$$

$$= \frac{9 \times 10^{9} \times (1.6 \times 10^{-19})^{2}}{(5 \times 10^{-11})^{2}}$$

$$= 9.2 \times 10^{8} \, \text{Nt}.$$

c) How does this force compare to the gravitational attraction between the electron and the proton?

$$\frac{F_{coul}}{F_{Grav}} = \frac{k q^{2}/r^{2}}{6 m p rot} \frac{M_{elec}/r^{2}}{M_{elec}/r^{2}}$$

$$= \frac{k q^{2}}{6 m p M_{e}}$$

$$= \frac{9 \times 10^{9} (1.6 \times 10^{-19})^{2}}{6.67 \times 10^{-11} \times 1.67 \times 10^{-27} \times 9.11 \times 10^{-31}}$$

$$= 2.27 \times 10^{9}$$
arks
$$= 2.27 \times 10^{9}$$

Total = 10 marks