1. Current
$$I = 10^{10}$$
 elect $\times 1.6 \times 10^{-19}$ C = 1.6 × 10 any.

- 2. A kettle draws 3 A of DC current when it is connected to a 10 V battery.
 - a) What is the kettle resistance?

Resistance
$$R = \frac{V}{T}$$

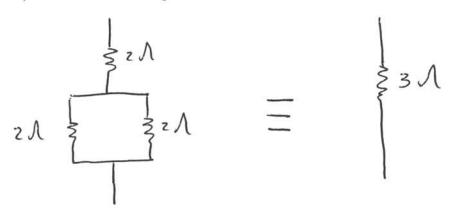
$$= \frac{10V}{3A}$$

$$= 3.33 \text{ ohm}.$$

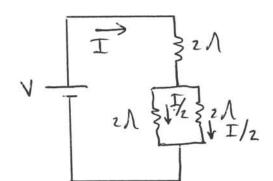
b) What power is supplied to the kettle?

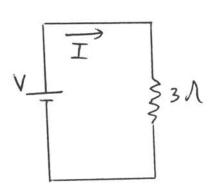
c) If the kettle has 1 liter of water initially at a temperature of 20 C, how long will it take for the water to be heated to 90C?

Energy Supplied = Energy Seat Il Hz O in time t dey (90-20)C


P+ = 1000 gm × 70 C × 1 colorie × 4.18 5 cal.

:, +2 9,75 ×10 sec.


This is far from acceptable. One then should go to Tim Horton!

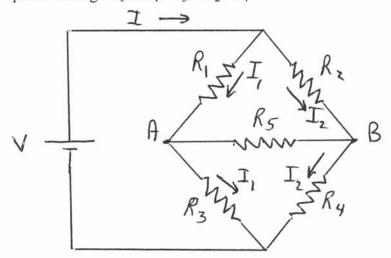

A laboratory only as 2 ohm resistors. 3

a) Draw the circuit required to create a 3 ohm resistance

b) Show that the total power dissipated in the above circuit is the same as when a single 3 ohm resistor is available.

In both circute $I = \frac{V}{2}$.

Circuit a Rower dissipation = I2R + (I)2Rx2


$$=\frac{3}{2}\left(\frac{V}{3}\right)^2\times 2$$

$$P_q = \frac{V^2}{3}$$

Circuit b Rower dissipation = $I^2 \times 3$ $P_0 = P_0$.

$$P_b = \frac{V^2}{3}$$

4 Consider the Wheatstone bridge circuit shown below. Show that no current passes through R_5 if $R_1 / R_3 = R_2 / R_4$

No current through $R_5 \Rightarrow V_{AB} = 0$. Lack across $R_1 = valtage$ across R_2 $I_1R_2 = I_2R_2$ (1)

Also voltage across $R_3 = voltage$ across R_4 $I_1R_3 = I_2R_4 \qquad (2)$

$$(1) \div (2) \Rightarrow \frac{R_1}{R_3} = \frac{R_2}{R_4}$$