Kinematics &
Dynamics
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Chapter 1

Some Basic Ideas

1-1 THE SCOPE OF NEWTONIAN
MECHANICS

Early in thesecond half of the twentieth
century, the space age began. Since 1950,
successes have been achieved in the field
of space travel that were only wild dreams
in 1900. We have now arrived at the stage
at which, by taking proper precautions,
men can travel in space for at least a

limited time. And it is quite possible that:

in the next 50 years men will completely
conguer space.

Many of the advances which have been
responsible for these achievements have
been technological advances. New metals
have been discovered which will stand
the extreme temperatures encountered,
particularly as a saftellite re-enters the
earth’s abmosphere. New communications
devices, particularly those involving
miniature components, havebeen devised.
New fuels for sateliite propulsion have
been found. Above all, large amounts of

money have been made available for
research and development,

Yet the basic laws governing the
motions of satellites have been known
for at least 250 years; they were first
enunciated by Sir Isaac Nowton in the
17th century. It is true that these laws
have to be modified slightly when we deal
with small particles iravelling at high
speeds, but it is equsally true that any
description of Physics as we know it
today cannot overlook the contributions
of Newtonian mechanics.

So this book deals with the laws de-
veloped by Newton and others, and
develops the ideas necessary to an under-
standing of the elements of space travel.
But the usefulness of Newtionian. me-
chanics does not stop there; the laws of
mechanics enable us to understand the
motions of objects which we encounter
from day to day. Moreover, they enable
us to analyse the motions of molecules
and atoms and sub-atomic particles,
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1-2 THE WORK OF THE
PHYSICIST

‘The physicist is concérned with the
discovery of fundamental facts and is not
necessarily concerned with applying these

facts directly for ‘the-service of mankind
. or for financial gain. Engineers and tech-
~ nologists apply the fundamental knowk-

edge gained by the physicist in building
bridges, .skyscrapers, automobiles, air-
craft, radios, television sets, earth satel-
lites, atomic bombs, ete. Engineers and
technologists frequently discover facts on

- their own, too, and feed these facts back

to the physieigt. In turn, the physicist
may suggest engineering or technological
changés. But the main concern of the
physicist is with the discoveiy of funda-
mental facts, and our concern in this book
will be with the discussion of such facts,
rather than with an extensive deseription
of their teehnological applications.

" The physicist designs experimental ap-
paratus, performs experiments, assesses
experimental data, formulates laws and
proposes theories, rach of these activities
is important and its role in the over-all

~ process should be undelstood

1- 3 THE ROLE OF THE
LABORATORY

When a physicist setsup an experiment,
he usually has a definite goal in mind,
and he designs apparatius whose function
it is to perform the operations he wishes
performed. In making experimental ob-
servations, he uses many instruments,
some of which are very complex. However,
regardless of its complexity, the purpose
of any instrument is to extend the experi-
menter's senses of sight, sound, and touch,
and to remove the unrveliability which
these senses often display. For in the
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gourse-of-the experiment, the physicist,
even though he has a goal in mind, must
not be influenced by what he hopes will
happen.

As a student of Physms you will use
the laboratory, and carry out Laboratory
Exereises similar to experiments that
physicists have done. You will not likely
have much part in the designing of the
apparatus, but youshould have some part

in deciding how the apparatus is to be’

used. You should have some goal or pur-
pose in mind. However, as you perform
the experiment, you should not be in-
fluenced by this purpose, but should
record the results honestly and objective-
ly. Remember, too, that the experiment
is not finished when you have recorded
the last observation. The data -which you
have collected must be analysed and
interpreted.

1-4 THE ROLE OF MATHEMATICS.

In relating, interpreting, and summar-
izing experimental data, the chief tool of
the physicist is mathematics, Physicsis a
quantitative science involving mensure-
ment and caleulation, rather than a purely
qualitative and deseriptive subject. The
need for quantitative treatment is very

-well summarized in the following stite-

ntent, It is attributed to Lord Kelvin
(1827-1907).

“T often say that when you can measure
what you are speaking about, and express
it in numbers, you know something about
it; but when you canhot measure it, when
you cannot express it in numbers, your
knowledge is of & meagre and unsatis-

factory kind; it may be the beginning of

knowledge, but you have scarcely, in your
thoughts, advanced to thestage of science,
whatever the matter may be.”
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The purpose of mathematies is not
simply to perform caleulations with the
numbers resulting from measurement, but

also to discover relationships among the

quantities involved. In order to interpret
the results of the Laboratory Exercises
which you will perform, you must be able
to recognize such relationships as direct
and inverse proportion, either from a table
of experimental dats, or from the cor-
responding graph. The physicist is con-
tinually searching for relationships such
as these, and often for much more com-
plicated relationships. When he finds a
relationship which is valid for many sets
of experimental data, he formulates alaw.

1-5 PHYSICAL LAWS

A physical law is not an instruction
that may be obeyed or ignored, as if it
were 3 federal statute. In fact, a physical
law ig not in any sense responsible for the
behaviour of physiceal objects; all it does
issummarize and deseribe that behaviour.
Perhaps we can make the distinction clear
by quoting an example,

In Chapter 4 we discuss Newton’s
second law. This law states, among other
things, that the acceleration of an object
is proportional to the net force acting on
the object. Newton’s second law applies
to automobiles, airplanes, toboggans,
baseballs, tennig balls, lawn mowers—to
all objects. But the objects do not behave
this way becsuse of the law; rather, ex-
periments have shown that these objects
behave in this manner, So thelaw issimply
a summary of experimental facts, a
generalization that was possible only after
a greab deal of experimentation,

We use laws in solving problems, con-
fidently assuming that the laws have been
derived from sufficient experimental evi-

dence to ensure their validity in the

. problem. But there is one danger, Most

laws, and the formulas which are the
mathematical expressions of these laws,
have certain restrictions placed upon
them, For example, the formula which
expresses Newton's second law is F = ma.
This formuls is easy to learn, but it can
be used incorrectly. In order to use it
correctly, you must not only know what
the symbols F, m, and ¢ stand for, but
you mush remember that the use of the
formula; is restrieted to cases where I/ is
the net force acting on an object. More-
over, it is valid only for certain units of
force, mass, and acceleration.

1—-6 UNITS OF MEASUREMENT

Newtonian mechanics has traditionally
required a multiplicity of fundamental
and derived units. In order to reduce the
number of units diseussed in this book,
we shall use the ML.K.S. system of measg-
urement almost exclusively. The M.K.8.

system uses the metre, kilogram, and .

second as units for the funddmental con-

cepts of length, mass, and time. The

student should be familiar with these
units already; for convenience they are
tabulated in the appendix.- '

The names of units in which derived
concepts are measured are combinations
of these fundamental units. If, for ex-
ample, in determining a speed, a distance
in metres is divided by a time in seconds,
metres
seconds’
monly written as metres per second or
m/sec. On the other hand, if a quantity
of work is caleulated by multiplying a
force in newtons by a displacement in
mefres, the work is measured in newtons
X metres, conunonly written as newton-

the speed is measured in com-

89




90

metres. Moreover, units may be “can-
celled” just as numbers are. If metres/sec
are multiplied by sec, the result is metres.
If newton-metres are divided by newtons,
the result is metres.

Some units which could very well be
namedin terms of fundamental units have
abbreviated names. For example, 1

" newton-metre is called 1 joule; 1 joule per

second is called 1 watt. These examples
and others will be discussed in their proper
confexts in later chapters,

1-7 HYPOTHESES AND THEORIES

Up to this point we have described the
mostfrequently used elements of seientific
procedure, However, there ean he useful
variations, and even reversals, of the
methods outlined.

In Bection 1-5 we described how a

.general law is derived from a large num-

ber of” expeument'al _observations, This
process is called inductive xeasonmg, it

proceeds from the particular to the

" general, On the other hand, the general

law—usually called a hypothesis until it

‘is tested—may be arrived at by what
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amounts to an intelligent guess. The
hypothesis is then tested in particular
cases, and if the hypothesis proves correct
in alarge number of cases, it may become
a law. This process of proceeding from
the general to the particular is called de-

ductivereasoning, Newton’s development
Quchy ] p

of the Jaw of universal gravitation, which
we shall diseuss in Chapter 6, is an ex-

cellent example of the use of deductive:

reasoning,.

At some stage in a series of experiments,
perhaps after the law has been enunciated,
an attempt. is made to explain the ob-

served facts and the genelal law ‘which

describes these facts. That is, a theory'

is proposed. There are few theories in
Mechanies, for the facts and laws secem
to be so fundamental as to defy explana-
tion, Thereis alaw of gravity, for example,
but no theory as yet to explain it. How-
ever, the lack of explanstions should not
cause us fo under-rate the importance of

Mechanics. Two all-embracing laws of |

mechanics—the law of conservation of
momentuwmn and the law of conservation
of energy—are of fundamental impor-
tance to the whole field of Physics.



Chapter 2

Straight Line Kinematics

2-1 INTRODUCTION

Mobility seems to be & prime require-
ment of twentieth century living. Auto-
mobiles travel our highways, airplanes
fly through the skies, ships sail the seas,
satellites travel through space, and the
wheels of industry turn continuaily, Those
who lived in former centuries were con-
cerried with motion too, with the motions
of stars and planets in the heavens, with
the motions of air masses over the surface
of the earth, and, more recently, with the
motions of molecules in gases and of
electrons in afoms, .

Because motion is such a common
phenomenon, it is one of the basic con-
cepts of Physies, However, the concept
of motion was poorly understood for many
cenfuries, and this lack of understanding
hampered the development of many
branches of seience. Sikce then, mainly
as the result of the work of Galileo Galilei
(1564-1642) and Sir Isasc Newton (1642-
1727), a system of studying motion has

been developed. This system divides the
subject into two parts—kinematics and
dynamies. Xinematics deals with motion
without considering its cause, and
dynamics considers both the motion and
the forces which affect the motion.

In this chapter we will begin to con-
sider kinematics, that is, a description-of
motion, We shall confine the discussion
to motion along a straight line path,

2-2 AVERAGE SPEED
The sverage speed for a trip is defined

as the total distance travelled divided by .

the time taken. Suppose that in travelling
from Toronto to Windsor the distance of
240 miles is covered in 6 hours. Then the
average speed for the entire trip is 40
miles per hour.

Suppose, in another case, that an suto-
mobile travelled at a speed of 40 mi/hr

far 11 hours and then reduced speed to-

30 mi/hr for the next hour. The distance
travelled during the first 1% hours is 60
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miles; the distance travelled during the
next hour is 30 miles, The total distance
travelled is 90 miles; the total time is
24 hours, The average speed is thus
90 + 2% mi/hy, or 36 mi/hr. Note that
the average speed is niot the arithmetic
average of the two speeds; it is the uni-
form or constant speed at which the given
total distance could be covered in the
given time interval,

2~3 MOTION AT CONSTANT
SPEED

- Automobiles travelling on a street are
eontinually starting, stopping, speeding
up, slowing down, ascending or descend-
ing hills, and changing direction, Motion
at constant (uniform) speed—the type of

‘motion which would oceur if the average

speed were maintained throughout the
trip—oceurs rarely but is basic to the
understanding of more complicated types
of motion, '
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If the speed of an object is uniform,
the object travels equal distances in equal
intervals of time, Suppose, for example,
that a ground radar station takes a series

-of readings of the horizontal distance from

the station to an aircraft which had pre-
viously pagsed over the station and
travelled in a straight line thereafter. The
readings might be tabulated as follows:

TIME (1) DISTANCE (s}
10.30 20 miles
10.32 256 miles
10.34 30 miles
10.36 35 miles
10.38 40 miles
10,40 45 miles
10.42 . 50 miles

Examination of these readingsindicates
that the speed of the aircraft relative to
the station is constant at 150 mi/hr. The
distance-time graph is shown in Figure
2.1. A study of this graph yields the
following information:
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Fig. 2.1, Distance-time graph for constant speed.
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Fig. 2.2, Speed-time graph for constant speéd.

(@) For uniform speed, the distance-
time graph is a straight line.

(b) The ratio BC : AC, where 4 and B
are any two points on the line and C is
the point of intersection of lines drawn
through 4 and B parallel fo the axes, is
the value of this uniform speed. Note
that.BC = as, AC = At, and the ratio,
%% = %%, the slope of the graph. In the
case shown, As = 20 mi, and Af = 8 min.
Therefore the speed is

%: = —2—89 mi/min = 150 mi/hr

(c) If the graph is produced to the left,
we find by extrapolation that the aireraft
passed over the radar station ab 10.22.
This conclusion is valid if the speed was
constant at 150 mi/hr between 10.22 and
10.30.

The speed-time graph is plofted in
Figure 2.2. Since the speed is constant,
this graph is a_ straight line parallel to

the time axis. If from any two points
4 and B on this line, perpendiculars are
drawn to the time axis, a rectangle ACDB
is formed. The area of this rectangle is
CD X BD, i.e., the time interval multi-
plied by the constant speed during that
interval. The value of this product is, of
course, the distance travelled during the
time interval. :

We will show later in this chapter that,
in general, the area under a speed-time

graph is the distance travelled during the

time interval. This fact provides a graphi-
cal method which is useful for computing
distance, particularly in cases in which

the speed is not uniform and the graph

is not a straight line.

2-4 MIEASUREMENT OF
UNIFORM SPEED

Motion at uniform speed may be
demonstrated in the laboratory with the
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Fletcher's trolley apparatus (Fig. 2.3).
It consists of a trolley car, about 75 em
long and 8 ecm wide, mounted on almost
frictionless whesls which run along metal
tracls on a rigid metal frame, A strip of
spring metal is mounted over the car, and
a fine brush is attached to the end of this
strip. A strip of paper is fastened on the
top of the car, and the brush is adjusted
just to touch the surface of the paper. If
the brush is inked and the metal strip
remains at rest, and if the ear is pushed
under the brush, the tracing on the paper
isastraightline. When thestripis vibrated
and the car is put in motion, the inked
brush traces a2 wavy line on the paper.
The length of the metal strip can be ad-
justed to provide different periods of
vibration for the brush.

To study uniform speed, one end of
the frack is raised slightly so that the
car will move at uniform speed if once
started, but it will not start of its own
accord. This adjustment is earried out to
make allowance for friction which is un-
avoidably present. The strip is vibrated,
and the car is given a quick push. The
tracing on the paper is a uniform wavy

KINEMATICS AND DYNAMICS

Fig. 2.3. Fletcher's trolley.

line as shown in Figure 2.4, The tracing
shows that, when the car moved through
a distance AB or BC, the brush made
one complete vibration, and that the
distances, A B, BC, etc., are approximately
equal,

The average distance covered during
one complete vibration of the brush was
7 ¢m, The brush vibrated 50 $imes in 10
seconds. Thus the car travelled 7 em in
£ sec, and its speed was approximately
constant at 38 em/sec.

2--5 WORKED EXAMPLES

ExamrLe 1

Figure 2.5 is a speed-fime graph for a
ear, showing its motion during 5 different
time intervals 4, B, C, D and E. (¢) De-
scribe the motion in words. (b) Calculate
the distance travelled during each time
interval, and the total distance. (¢) Is
such a graph Jikely in practice?
SovuTion

(@) The car travels for 0.10 hr at 15
mi/hr, then for 0.30 hr at 25 mi/br, for
0,10 hr at 12.5 mi/hr, for 0.50 hr at
30 mi/hr and finally for 0.10 hr at 12,5
mi/hr.

LN TN

AN N
c\_/ D

Fig. 2.4, A tracing from a Fletcher's trolley, illustrating uniform speed
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Fig. 2.5, Spead-time record (idealized) of a trip by car.

() The distance travelled during the
time interval 4 may be obtained by
multiplying the speed (15 mi/hr) by the
time {0.1 hrs) or by finding the area of
the shaded rectangle on the graph. (Note
that in finding the avea from the graph,
the length and width of the Trectangle
must be measured in the units marked on
the corresponding axes of the graph.) The
distances travelled during intervals 4,
B, C, D, B are 1.5 mi, 7.5 mi, 1.25 mi,
15 mi, and 1.25 mi respectively. The
total distance is 26.5 mi,

(¢} Such a graph is unlikely for two
reasons, () The speed is unlikely to re-
main absolutely uniform for any of the
time intervals. (#4) The speed cannot pos-
sibly change abruptly, for example, {rom
15 mi/hr to 256 mi/hr. The graph, then,

is an idealization of a real situation, Such

idealizations are often necessary and fre-
quently useful in physics; they allow us
to make a very useful approximation of
2 complicated real situation.

ExampLy 2 4
Tigure 2.6 shows, on the one sef of

axes, the distance-time graphs for two -

cars. (a) Interpret the graphs in words.
(b) At what time will car B be overtaken
by car A?
SoLuTIoN

(@) Since the graph for car B cuts the
distance axis 10 mi above the point where
the graph for car A cuts this axis, car B
is 10 mi ahecad of car A when the timing
begins. Since both graphs are straight
lines, both cars travel at constant speed.

However, since the slope of the graph for.

car 4 is greater than that for car B, car 4
travels faster than ear B and eventually
overtakes car B. (The actual speeds of

the cars can be found from the slopes of

the graph, if desired.)

(b) The graphs intersect at time 0.8
hr, This is the time at which car A catches
up to car B. At this time, car 4 has
travelled for 20 mi from the start and
car B for 10 mi.
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Fig. 2.6. Distance-time graphs for two cars.

26 ACCELERATION

Tt is almost impossible to drive an
automobile for a considerable length of
time at uniform speed. 1t is more likely,
particularly in ecity driving, that there
will be.quick changes in speed, or sudden
stops, or quick get-aways. Take, for

example, a car moving at a speed of 20

miles per hour; the driver steps on the

. accelerator and the speed is quickly-in-

creased to 30 miles per rour. The speed
of the car has been increased by 10 miles
per hour; the car has been accelerated.

. - Suppose that the speed of a car in-

creases from 10 miles per hour to 30 miles

per hour in 5 seconds. Assuming that this -

change takes place uniformly, there has
been an increase in speed of 4 miles per
hour each second, 1.e., the acceleration is
4 miles per hour per gecond.

Suppose that, in another case, an object
moves b feet during the first second of
its motion from rest, 10 feet during the

second second, and 15 'feet during the

third second of its motion, Ifs avei-age

speeds during these successive seconds -
are 5, 10, and 15 feet per second respec-

tively. In each second its speed increases
5 feet per second; its acceleration is 5 ft
per sec por sec. The first “per sec” is
assoctated with the 5 {t in expressing the
inerease in speed; the other “per sec”
indicates the time reguired for this in-
crease to take place. The expression ft
persecper secisfrequently written ft/sec?

In both of these examples, the acceler--

ation is constant or uniform, and the

motion is uniformly accelerated. On the

other hand, if a body moves 5 {t in the
first second of its motion from rest, 15 &
in the second second, and 30 £t in the third
second, the acceleration is variable.

For unidirectional motion, that is, for
motion along a straight line path, ac-
celeration may be defined as the rate of
change of speed. Acceleration is caleu-
lated by dividing the change in speed by

the time taken, that is, ¢ = -Aﬁ. If the -
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acceleration is uniform, the speed changes
by egual smounts in equal intervals of
time; otherwise the acceleration is
variabie. '

2-7 MEASUREMENT OF
ACCELERATION

The Fletcher's troliey apparatus may
heused tostudy and measure acceleration,
If one end of the track is raised a few
inches, the track becomes an inclined
plane, The trolley moving down the planc
passes under the inked brush, and if the
vibrator is put in motion at the same
time that the car is released, a tracing
such as is shown in Figure 2.7 results.
Examination of the tracing shows that
BC is greater than AB, D is greater
than, BC, ete. The car is acecelerating,

The perviod of vibration of the brush
is + second. The car moves through each
of the following distances 4B, BC, CD,
DE, eto., during equal, successive inter-
vals of time, that is during § second. The
distances 4B, BC, DC, DE, etc., are
measured and found to be 0.97 em, 1,78
cm, 2.54 cm, 3.28 em, ste., respectively.
When the car is moving from 4 to B,
its speed is increasing., Since it fravels
0.97 e in £ sec, its average speed in this
interval is 0.97 X b = 4.85 cm/sec. If
the speed is incressing uniformly, this
average speed will be the speed of the
trolley at point (1) between 4 and B.
Similarly, when the car is moving from
B to C, its speed is increasing. Since it
travels 1,78 cm in ¢ sec, its average speed
inthisintervalis1.78 X 5 = 8,90 em/sec.
Again, if the speed of the trolley is in-
creasing uniformly, this average speed
will bo its speed at point (2) between
B and C. Similarly, the speeds at points
(3), (4), (8), (6), (7}, (8), (9), (10}, and

1

(11) of the successive intervals are de-
termined, These speeds are listed in the
second coluran of Figure 2.7.

A study of the tracing and of the second
column shows that while the c¢ar has
moved from point (1) of the first interval
to point (2) of the second interval, its
speed has increased from 4,85 em/sec to
8.00 cm/sec. The increase in speed is
4.05 cm/sec, Similarly, the further in-
creases in speed are found to be 3.80,
3.70, 3.65, 3.55, 3.85, 3.80, 3.80, 3.85,
and 3.80 em/sec. These increases in speed
are the same {within the limits of experi-
mental error), and therefore the car is
moving with approximately uniform
acceleration.

The increase in speed between points
(1) and (2} is 4.05 cm/sec, and this in-
crease oceurs in ¢ second. Therefore, the
acceleration is 4.05 X 5 em/sec® or 20,25
em/sect.

Similarly, the acceleration for succes-
sive intervals from point (2} to (3), from-
(3) to (4), ete., is determined and found
to be 19.00 cm/see?, 18.50 cm/sec?,
18,25 om/sec?, ete. (Tig. 2.7, last column).
The average of these values for the ten
intervals shown on the tracing is 18.9
em/sec?, Hence, from the experiment it
is concluded that the trolley was moving
with approximately uniform acceleration

- andthattheaccelerationwas 18.9 em/sec?.

2-8 DISTANCE-TIME GRAPH FOR
UNIFORM ACCELERATION

For the trolley tracing shown in Figure
2.7, the graph of distances from A plotted
against the corresponding time intervals
is shown in Figure 2.8, Information ob-
tained from a study of this graph is
summarized below.

97




As

cm
] e s A 0.97
-8 178
,.,.3—~—<> 2.54
YD

3.28

_'__EA
D 40

4.72

>

——G .
> , 5.49
6.25

D
_—
' > 7.01.
10“ > - 778

| 11—<> 8.564 4270

AS AV
At AV At
cm/sec cm/sec cmyjsec/sec
3-35 4.05 20.25
90 3.80 19.00
12.70
3.70 18.50
16.40
3.65 18.25
20.05 .
3.55 1775
23.60
 3.85 19.25
27.45
3.80 19.00
31.25
3.80 19.00
35.05
3.85 19.25
. 38.90
3.80 19.00

| - Average acceleration=18.9 cmysec?
<L . interval time =15 sec

Fig. 2.7, A trolley tracing, illustrating uniform acceleration.
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(@) The distance-time graph for uni-
form acceleration is curved. The graph is
a portion of a curve called a parabola.

() The slope of the ehord joining any
two points P and Q on the curve is the
average speed for the time interval
involved. . ,

{(¢) If the point @ is not close to P,
the average speed between P and @ differs
considerably from the speed at P. How-
ever, if the point @ is close to P, the
average speed between P and @ is very
nearly equal to the speed at P.

2.9 INSTANTANEOUS SPEED

Instantaneous speed, or speed at s
point, may be defined as the average speed
over g very short distance which includes
the point. In other words, the speed at a

point is the value of %? when Al is very

small,1.e., the limit of ‘%5; as Al approaches

ze1o, In symbols

As @ approaches P (Tig. 2.8), Al ap-
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Fig.2.9. Speed-time graph for unifonnly acceler-

. ated motion, .
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proaches zero and the slope of the chord
approaches the slope of the tangent at P,
(You may verily this fact by drawing a
small section of the curve near P on a
Inrge-scale graph.) Thus the speed at P
may be found by drawing the tangent at

P, and caleulating its slope. In general,.

an instantaneous speed may be deter-
mined from a distance-time graph by
drawing the tangent at the appropriate
point on the graph. The slope of the tan-
gent is the speed at the point.

Note that uniform speed may now be
defined more satisfactorily than was done
formerly; speed is uniform if it is the
same ab all points,

2-10 SPEED-TIME GRAPH FOR
UNIFORM ACCELERATION

‘By drawing a series of tangents at
points on the distance-time graph (Fig.
2.8) or by arithmetical calculation similar
to that shown in Figure 2,7, a number of
instantaneous speeds of the trolley may
be determined. The resulting speed-time
graph is shown in Figure 2.9, This graph
indicates that:
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At
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'T'lME —p

Fig. 2,10, The area of the rectangles in this dig-
gram Is slightly less than the area under the graph.

(a) "I'he speed-time graph for uniform-
ly accelerated motion is a straight line.
(b) The acceleration is obtained by
caleulating the slope of the graph, In the
case shown, the slope of the segment
v BC _ 30.7 om/sec
AB =5 = " 1,64 sec
{Note also that the slope of the speed-
time graph shown in Figure 2.2 is zero,
‘because the acceleration is zero.)

(¢c) The area under the speed-time
graph is the distance travelled during the
time interval involved. For example, the
ares of the figure ADEB is the distance

" travelled in time DE. If the initial and

final speeds AD and BE are represented
by the symbols 4 and v respectively, if
‘the time DF is represented by ¢ -and if
the distance travelled is represented by
s, then

= 18.7 cm/sec?.

KINEMATICS AND DYNAMICS
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SPEED -~

TIME ——>

Fig. 2.11. The area of the rectangles in this dia-
gramis slightly more than the area under the graph.

area of ADEB — s = ("igl-i’)z

This fact may not be as obvious for
Figure 2.9 as it was for the constant speed
graph in Figure 2.2, We may clarify the
situation by dividing the area into a series
of narrow rectangles and triangles (Fig.
2.10}. Suppose that these rectangles are.

of uniform width Af. The smallest of these

rectangles is labelled ABCD; the corre-
sponding triangle is labelled ADE. We
agree that the area of rectangle ABCD
is the distance that the object would have
travelled if its speed had been equal to
its instantaneous speed at A. However,
the speed increased and the area of rec-
tangle ABCD is less than the actual
distance travelled during the time At
Suppose, then, that wedraw ourrectangles
and trisngles as shown in Figure 2.11.
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The area of rectangle FBCE is the dis-
tance the object would have travelled if
its speed had been equal to its instan-
taneous speed at E. Thus the area of
rectangle PBCE is greater than the actual
distance travelled during the time At
As At approaches zero, rectangle ABCD
and rectangle FECE become more nearly
equal in area, and triangles ADE and
AFE become less and less significant, The
sum of the areas of the rectangles in either

case approaches the area under the graph. .

Since the distance travelled during
time ¢ is the product of the average speed
and the time, then the equation s =

(u + v)t indicates that the averago speed

2
U+

2
arithmetical average of the initial and
final speeds. This is true only for uni-
formly sceelerated motion.

Purther consideration will show that
this average speed occurs at the mid-
point of the time interval, but not at the
mid-point of the distance travelled.

during the time interval is , 1.6., bhe

2-11 LABORATORY EXERCISES:
CONSTANT SPEED AND
CONSTANT ACCELERATION

The Fletcher's trolley, though con-
venient and accurabe, is expensive for
student use, and therefore is frequently
replaced by less expensive apparatus. A
“dynamics cart’” with roiler skate wheels
{Fig. 2.12) replaces the car. A paper tape
is attached to the cart, and, as the cart
moves, it pulls the tape through a re-
cording timer (Fig. 2.13). The clapper of
the timer vibrates, striking a piece of
carbon paper above the tape. The result-
ing series of dots on the tape constitutes
a record of the motion of the cart.

15

Fig. 2.12. A dynamics cart.

A sheet of 4 inch plywood, 6 to 8 feet
in length and 1% to 2 feet wide, forms a
guitable track on which to run the cart.
The complete arrangement is shown in
Figure 2.14. The track shown in this
photograph has plywood sides, the pur-

- pose of which is to make the track less

flexible and less likely to warp.

(@) Blevate the end of the track to
which the timer is attached, so that the
cart, once started, will run at what you.
judge to be constant speed. Thread the

‘tape through the timer and atfach the

end of the tape to the cart. Start the
timer, and give the cart a push. Stop the

Fig. 2.13. A recording timer.
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timer when the eart reaches the end of

the track. Examine the tape. Does the
positioning of the dotd on the tape indi-
cate that the speed was constant 7 Check

by measuring the distances between sue-

cessive dots over the full length of the

“tape. You may find these distances un-

equal, because the frequency of the timer

‘may not have been constant. The error

due to variation of timer frequency may
be reduced as follows. Measure the dis-
tances in five-interval groups, i.e., from
the first dot to the sixth dof; from the

- sixth dot to the eleventh, ete. Are these

larger distances equal? Was the speed
constant ? ‘

In order to calculate the speed, you
need to settle on a time unit to use. This
time unit need not be one second,; it can

“be the period of the timer (1 tick) or the

fime assoeiated with each of the larger
distances méntioned above, We will eall

this larger time unit 1 tock. Obviously, .

1 tock = B ticks.
Plot the distance-time graph and the
speed-time graph for this motion. You

" may get the required data by measure-

ment and caleulation from the tape, or
you may cut the tape up into “one-tock
intervals”, These smaller pieces of tape

KINEMATICS AND DYNAMICS

Fig. 2.14. This arrangement of
apparatus may he used to record
the motion of the cart.

are then glued on a graph as shown in
Figure 2.15(a) and (b). You should satisfy
yourself that the methods shown are cor-
rect. Note that the area under the speed-
time graph in Figure 2.15(b) is the

complete length of the tape, i.e., the dis-

tance travelled by the cart,

(h) Elevate the end of the track still
further, and repeat the procedure out-
lined in (@) above. Let the cart accelerate
from rest, Caleulate the acceleration from
a table similar to that in Figure 2.7. Is
the acceleration uniform? What is the
average acceleration? Plot the distance-
time and speed-timé graphs. From the
speed-time graph, what values do you
obtain for the acceleration, and for the
distance travelled?

2-12 EQUATIONS INVOLVING
SPEED, ACCELERATION,
TIME AND DISTANCE

Consider an object which accelerates
from an initial speed u to a final speed v

‘in time ¢. Since the acceleration ¢ is' com-~

puted by dividing the change in speed by

" the time, then

a ]

A
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Fig. 2.15{a). Distance-time graph constructed from recarding timer tape.
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TIME (TOCKS) ——=

Fig. 2.15(b}. Speed-time graph constructed from recording timer 1épe. The graph is shown as a
straight line, on the assumption that the timer frequency was not constant.

If the objeet is inifially at rest fu = 0),
then » = ai.
The formula

§ = (%"giﬂ)t ...... {(2)

was developed from the graph in Figure

2.9,

{2):

If the value for v in equation (lj be
subsitituted in equation (2),
6 = (u 4 u -+ at P

2
s =ut+ Latt. . .... 3
From equation (1)
V= u
b —
a

and substituting this value in equation

- (1))
2 o
= w4+ 2as...... (4)
_ Elimination of % from equations (1)

“and (2) yields the formula

§ =t 2a...... (5)

The five equations enumerated above
are very useful in solving problems in-

volving speed, acceleration, time, and’

distance, and they should be memorized.
The following restrictions on their use
should be kept in mind. The valie of g
obtained by substituting values of », ,
and ¢in (1) is the uniform acceleration if
the motion is uniformly accelerated, and
the average accelerationif the acceleration

- i
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i not uniform, Thus equation (1} may
be used whether the acceleration is uni-
form or not. However, equation (2) is
valid only if the acceleration is uniform,
and therefore equation (2) and equations
13), (4), and (5), which are derived from
it, may, be used only in cases of uniformiy
accelerated motion,

Some examples of problems that can
be solved using these equations follow.

2-13 WORKED EXAMPLES
ExsmpiE 1

An objeet moving with uniform ac-
celeration changes its speed from 5 em
per sec to 50 cm per sec in 5 seconds.
Find fhe acceleration.

SonuTioN
u = b em/sec
v = 50 cm/see
i = bsec
a=7?

The only equation involving u, v, ¢, and
ais '

=4+ af
Substituting: 50 = 5 4+ a X b
SLa=9

The acceleration is 9 cm per sec per sec.

ExampeLe 2

An objeet travelling with a speed of
50 em per sec is moving with a negative
acceleration of 10 em per sec per sec.
{a) When will it come to rest? (6) Where
will it come to rest?

SoLuTION

At the beginning of the interval the
speed iz 50 em per sec, and ay the end

19

of this interval the object is at rest,

therefore:
(&) u = 50 cm/sec
v = 0 em/sec
a = —10 cm/sec?
t=1
Equation (1) is selected.
v=u+ al
0 =50+ (—10 X 1)
Lt =5

It will come to rest in 5 seconds.
() u = 50 em/sec

v = {) cm/sec
a = —10 cm/sec?
s =7

Hquation (4) is selected.
o= ut+ 2as
0 = 2500 — 20s
&5 = 125 :
Therefore the object will travel 1256 cm
before coming to rest.

KxaMrLE 3

A car is moving with a uniform ac-
celeration of 6 ft per sec per sec. How
long, after attaining a speed of 42-ft per
see, will it take to travel 1440 feet?

SOLUTION
u = 42 ft/sec
a = 6 ft/sec?
g = 1440 ft
t =7
Equation (3) is selected.
: s = ul + Sap

| 1

1440 = 42¢ - 382
82 - 421 — 1440 = 0
£ 414 — 480 = 0
{t+30)¢ —16) =0
Ht=160rt = —30
It will take 16 seconds to travel 1440 feet.
The value { = —30 is inadmissible.
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2-14 PROBLEMS

3

30}

=)
&=

-t
N

1. A car is driven at a speed of 72 km/hr for 0.50 hr, 80 km/hr for 0.25 hr,

and 58 km/hr for 0.50 hr. (@) Caleulate its average speed for the trip.
(b) Draw the distance-time graph and the speed-time graph for the trip.
(¢) Draw the distance-time and speed-time graphs for a trip of the same
duration, at the average speed caleulated in (a).

. Tigure 2,16 is an idealized speed-time graph for a hitchhiker’s trip along a

country road. He travelled first on foot, then by car, then by tractor, and
then in another car. (a) Caleulate (4) the total distance travelled, (é) the
average speed for the trip. (b) Draw the distance-time graph for the trip.

. The period of vibration of the brush on a Fletcher's trolley is 0.22 sec.

Successive wave lengths on a {racing measured 4.6, 4.6, 4.5, 4.4, 4.5, and
4.6 om. {a) Is the speed of the trolley uniform? (b) Caleulate the average
speed in each 0.22 second interval and the average speed for the 6 intervals,
{¢) Plot the distance-time graph and from the graph determine the average

“speed, {d) Plot the speed-time graph.
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Fig. 2.16. For problem 2. Fig. 217. For problem 4.
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. Figure 2.17 shows the distance-time graph for two cars. (a) ab is the

speed of (¢} car 4, (&) car B? (b) When is car 4 (¢) 10 milé¥ behind B,
(41) 10 mile§Thead of B? (c) When does 4 overtake B? (d) What distance
does (¢) 4, (#) B, travel in 2.0 hr? (¢) Draw the corresponding speed-tiine
graphs,

. For each of the 2 graphs in Figure 2.18, (4) calcula.te the distance travelled

between ¢ = 3 sec and £ = 7 sec, (i7) calculate the average speed between
¢ = 3 sec and ¢ = 7 sec, (¢4) draw the corresponding distance-time graphs.

. Assume that the speed of hght in airig 3.0 X 108 m/sec, and fhat the index

of refraction for light passing from air to glass is 1.5 Draw (¢) the distance-
time graph, (b) the speed-time graph, for light traversing a path consisting
of 60 cm of air followed by 30 em of glass.

. A ball rolling down an incline travels 6 cm in the first 0.25 sec and 24 cm

in the first 0,50 see. Find its average speed in each quarter-second interval,

91 -

and its acceielatlon “?
10 40
8 t 8
.6 ’g 6
' £
a
4 woog
[+
wy
2 2
0 2 4 6 8 0. 2 4 6 8
TIME t(soc) —m——m— TIME t{(S8C) s

(a) _ ' | {b)
' Fig. 2.18. For problem B.
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. An aireraft, on take-off, starts from rest. Its speed at ten-second intervals

TS

12,

thereafter is 10 kin/hr, 25 km/hy, 45 km/hr, 70 km/hr, 100 km/hy, and
135 km/hr. (¢) Caleulate, in km/hr/sec, its average acceleration in each ten-
second interval. (b) Draw the speed-time graph. From the graph, estimate
its acceleration at ¢t = 25 sec. .

A ball rolling down a ramp travels 1 metre in the first second, 3 metres in
the second second, b meires in the third second, and 7 metres in the fourth
second. (a) Calculate its acceleration. (b) Plot the distance-time and speed-
time graphs for its motion. Check the accuracy of your graphs by deter-
mining from them (7) the total distance travelled, and {(i7} the acceleration.

A tracing from a Fletcher trolley experiment revealed the following infor-
mation. FFrom a position 4 the trolley moved to B, a distance of 2.1 em;
this distance was fraversed during one vibration of the brush, During
successive vibrations it moved to €, D, E, and F where AC = 7.1 om,
AD =15.2 em, AE = 26.4 cmo, and AF = 40.5 em. The brush completed
20 vibrations in 4 seconds. With the aid of a table in which the columns
bear proper headings, determine, ecorrect to one place of declmals, the

- average acceleration of the trolley in cm/sec?

Using the data given in Question 10, draw both the distance-time graph and

thespeed-timegraph. From thelatter graph caleulate the average acceleration.

A tracing from a Fletcher troHey revealed the following information, From
a position 4 the trolley moved to B a distance of 2.0 ¢m; during one vibration

. of the brush. During successive vibrations it moved-to ¢, D, E, F, and @

13.

14,

15.

where AC = 7.1 cm, AD = 15.3 em, AL = 26.7 cm, AF = 41.3 em, and
AG = 58.9 em. The period of vibration of the brush was # of a second.
(@) Draw a graph illustrating the motion, plotting distance against time.
State the kind of motion represented by the given data. (b) From the graph
determine the approximate speed of the trolley at the time when the trolley
is 35.0 cm beyond A. (¢) With the aid of a table in which $he columns bear
proper headings, determine, corvect to one place of demmals, the average
acceleration of the trolley in cm/sec?

An object 1n1|:1ally movmg at 10 m/sco accelerates uniformly. In the next
three one-second intervals it travels 12, 16, and 20 m, respectively. Draw

the speed-time graph and determine the acceleratlon of the object.

Tor the speed-time graph shown in Figure 2.19, ealculate the distance
travelled in 2,0 sec.

(@) From the distance-time graph in I'igure 2,20, determine (4} the average
speed in each of the four seconds, (¥%) the acceleration, (¢4%) the speed at

= 2.5 sec. (b) Draw the speed-time graph and determine from it the
distance travelled in 4 sec. Check your answer by referring to Figure 2.20.

Douf
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Fig. 2.19. For problem 14, Fig. 2.20. For problem 16.

Consider the relationship Ay = a At. What is the effect on Av of () doubling
Aty (B) tripling a?

Iror the relationship s = $af?, what is the effect on s of (a) changing { by a
factor of 3, (b) changing a by a factor of 0.77

Consider the relationship » = 2as. What is the effect on v of (¢) changing s
by a factor of 4, (b) changing a by a factor of 3?

What is the average acceleration of a baseball which, starting from rest,

rolls 50 m down a hill in 10 sec? Find its speed at the end of the 10th sec.

A yard engine shunts a freight car along a level siding. If the car stops in
50 seconds, 250 m from the point where it was released, calculate the speed
of the engine at the instant the car was released.

An object moves for 3 sec with constant acceleration, during which time it
travels 81 m. The acceleration then ceases and during the next 3 seconds it
travels 72 m. Find its initial speed and its acceleration.
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22, An object has an initial speed of 4 m/sec and a uniform acceleration of
2 m/sec. How far does it travel in 10 sec?

23. A skier starts down a slope 0.5 km long at a speed of 4 m/sec. If he acceler-
ates at a constant rate of 2 m/sec?, find his speed at the bottom of the slope.

24. A cyeclist moving with a uniform speed of 6 m/sec passes a motor car that is
just starting. If the motor car has a uniform acceleration of 2 m/sec?, when
and where will the car overtake the eyclist? Check your algebraic soluiion

by means of a graphical solutlon

25. A car moving with uniform aceeleration tz avels 65 m in the tenth second
of observation and 95 m in the fifteenth second. Caleulate the acccleratmn

and the initial speed.

~15 SUMMARY

T. Average speed

total distance travelled
elapsed time -

2. If speed is uniform,

(e} equal distances are travelled in
equal intervals of time,

(b) the distance-time graph is a
straight line,

(c) theslopeof the distance-timegraph
is equal to the constant speed,

(d) the speed-time graph is a straight

- line parallel to the time-axis,

(¢) the area under the speed-time
graph is equal to the distance
travelled.

3. Forunidirectional motion, acceleration

~ change in speed . Av
T Teolapsed time A

. Por uniformly accelerated motion,

{a) equal changes in speed occur in
equal time-intervals,

(b) the distance-time graph is para-
-bolie,

(¢) theslope of a chord of the distance-"

time graph is equal to the average
speed for the time-interval,

(d) the slope of the tangent at a point

on the distance-time graphis equal

to the instantaneous speed at that
time,

(¢) the speed-time graph is a straight
line,

(f) the siope of the speed-time graph
is equal to the acceleration,

(g) the area under the speed-time
graph is equal to the distance
travelled,

(h) thefollowing formulae may be used
to solve problems, if and only if the
motion is uniformly accelerated:

P = u - af
_futw
sw( 5 )t
¥? = u? 4+ 2as
s=w!—l~'~%at2
s = of — Zaf?



Chapter 3

Vectors and Vector

Kinematics

3-1 INTRODUCTION

In Chapter 2 we considered the motions
of several different objects each of which
moved along a straight line path, We did
not at any time mention the position of
that path relative to other objects, or the
direciion of that path. Frequently, how-
ever, the position and direction of a path
are important, For example, suppose that
a plane is to make a trip of 200 miles,
The position of the path ig certainly im-
portant; it is hardly likely that the pilot
will choose a path 6 inches above the
ground. And the direetion is important
too, if the pilot hopes to arrive ab the
proper destination. When we take these
factors into consideration, we are led to
adiscussion of relative motion and vectors.

3-2 RELATIVE MOTION

Suppose that a traveller, before leaving
home, puts his suitcase in the trunk of
his car, He travels 100 miles, stops, opens

25

the trunk, and finds the suitcasestill there.
Has the suitease moved ? With respect to
the floor of the trunk it has moved very
little, if at all; with respect fo the owner's
home, it has moved 100 miles.

This example illustrates the principle .

that the position of an object and the
motion of that object are, consciously or
unconseiously, considered with reference
to the position of some other object. In
goneral, one poing is said to be in motion
with iespect to another point when the
line joining the two points changes in
length or direetion, Thus, a passenger
seated in a moving train is not moving
with respect to his seat, However, he is
moving with respect to the ground, for

the line joining him to a point on the-

ground is changing in length. Two children
on a moving merry-go-round are moving
relative to each other, because the line
joining them is changing in direction.
Similarly, points on opposite wing tips of
an aireraft ave moving with respect fo
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" one another when the aircraft turns or

is tilted, beecause the line joining them is
changing in direction, -

3-3 DISPLACEMENT AND
DISTANCE TRAVELLED

Although & trip in an automobile by
road from Meaford to Midland covers a
distance of about 70 miles, the actual
distance in a straight line across country
is only about 36 miles. Seventy miles is
the distance traveiled by the automobile.
Thirty-six miles is the magnitude of the
displacement of {he sutomobile. The
direction of displacement is from Meaford
to Midland. :

Displacement, rather than distance
travelled, is the important factor in most
cases of motion. Digtance travelled, or
path length, is an example of a scalar
quantity —a quantity having magnitude
only. Displacement, -on the other hand,
is an example of a vector quantity—a
quantity having direction as well as mag-
nitude. Further examples of scalar and
vector quantities will be discussed in this
and later chapters.

A digplacement may be represented by

a directed line segment. The length of

the line indicates the magnitude of the
displacement; the direction in which the
line is drawn is the direction from the
initial to the final position of the object,
and is indicated by an arrowhead on the
line segment,

3-4 RESULTANT DISPLACEMENT

Suppose that at a given instant an
object is at position B (Fig. 3.1) and that
later it moves to position C. The object

-has -been displaced, and the amount of

the displacement and the direction of the
displacement are represented by the

KINEMATICS AND DYNAMICS

B

- ‘_-’ _‘) N
Fig. 3.1. BC gnd CD represent successive dis-
placements; BL is their resultant,

directed iine segment B_‘(f’, which is called
g displacement veetor. The arrow above
the letters BC indicates that we are deal-
ing with a vecfor, rather than with a
sealar quantity, Later the object moves
from ' to D, so that the directed line
segment C'D represents a further displace-
ment. In each case, the length of the line
from the initial point to the arrowhead
represents the magnitude of the displace-
ment, and the direetion of the line on
the paper represents the direetion of the
displacement, _

Now join BD to complete the triangle

- BCD in Tigure 3.1. The net effect or

resultant of the two displacements of the
object is represented in magnitude by the
line BD, and in direction by the arrow-
head on BD pointing toward D. That is,

- BD is the resultant of BC and €D. This
construction for finding the resultant of

two vectors is called the vector triangle.

The resultant of two displacements can
befound in another way. The two vectors,
for example BC and BE in Tigure 3.2, are
drawn from a common point B. A paral-
lelogram is then drawn with these vectors
a8 s}%es. The diagonal BD is the resultant
of BU and BE. This method for finding

the resultant of two vectors is called the

vector parallelogram,
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o/
B ‘ c

—3
Fig. 3.2. The paralielogram _%f displacements, BD
8 the resultant of B8C and BE.

The resultant of morve than two dis-
slacements is found by the mefhod shown
- Figure 3.3. AB, BC, CD, and DI are
vectors representing successive displace-
=ments of an object. Thevector A—Z“, formed
Wy joining the foot of the first vector to
she hend of the last vector, represents the
=:agnitude and direction of the resultant.
This construction for finding the resultant
of more than two yectors is called the
wegtor polygon. AF iz the resultant of
AB, BC, CD, and DE..

3-5 ADDITION OF VECTORS

Finding the resultant of several vectors
s called vector addition. In spite of its
name, vector addition may differ radically
from ordinary addition. Let us consider
=everal cases: i

(e) If an object undergoes successive
displacements of 3 ft, 7 {t, 6 ft, and 4 ft,
all in the same direction, the resultant is
ohviously a displacement of 20 ft in tha
direction. Thus the resultant of displace-
ments in the same direetion is obtained
by simple addition; in this case vector
addition is the same as arithmetic
addition,

{b) If an. object undergoes successive
displacements of 3 ft east, 7 £t west, 6 {6
east and 4 ft west, the resultant is ob-
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A

Fig. 3.3. The polygon of disp!acements.?is the
resultant of four successive displacements.

viously a dispiacement of 2 {t west. If we
assign a plus sign to vectors directed east,
and a minus sign to veetors divected west,
the resultant is the sum of +3 ft, —7 {t;
46 ft, and —4 ft, that is, —2 %, or
2 {4 west, Apparently, then, the resultant
of several vectors, some of which have
one direction and others of which have
exactly the opposite direction, can be
found by algebraic addition ag for positive
and negative numbers, after assigning a

positive sign to one of the directions, and

a negative sign {o the other,
(¢) In all other cases, vector addition

 differs completely from addition of num-

bers, since plus and minus signs can be
applied only to directions which are exact-
ly opposite. The triangle, parallelogram

‘or polygon method for finding the result-

ant may be used. In certain cases the
magnitude and direction of the resultant
can be calculated mathematically; these
ealeulations will be discussed after we
congider subtraction of vestors.

3.6 SUBTRACTION OF VECTORS

In order to subtract 3 from 7, we ask
oursclves the question: What number
must be added to 3 to give 77 That is,
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ol

P,

P | a . Q

—p
Fig. 3.4, Vector subtraction. }3’3 ='E’2’ - PR,

to evaluate the difference 7 — 3, we de-
termine what number must be added to
the second number (3) to give the first
numhber (7). We may follow the same
M . — =3
procedure in finding the value of ¢ — b,
the difference between two vectors @ and
P. Place the feet of the two veetors to-
gether (Fig. 3.4), thus forming two sides
PQ and PR of the triangle PQR. The
veotor which must be added to PR in
order to produce a resultant PQ is ob-
viously B@. That is, R =*c?_:~"5) Similar
reagoning shows that QR = b — A

3-7 CALCULATION OF
RESULTANTS

‘The method of calgulating the resultant
of displacement vectors in two special
cases is outlined below.

- (@) Suppose that we wish to ealculate
the resultant of displacements of 3 it east
and 4 ft north {Fig. 3.5). Since B is a
right angle,

AC? = AB*+ BC* =9 + 16 = 25

AC = 5 ft,

Also, Z A is such that tan A = % = 1,33
o A = 53.1° approximately.
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Thus the resulfant A_C" is 5 ft in the
direction 53.1° north of east.

(b) Suppose that we wish to calculate
the resultant of displacements of 6 ft cast

“and 5 £t northwest. We begin by sketch-

ing a diagram like the accurate diagram
drawn in Figure 3.6. The magnitude r of

‘the resultant may be caleulated from the

trigonometrie relationship
1% =p*+ ¢* — 2pg cos R

‘Here,p = 6,¢ = 5, B = 45° and cos B
. = 0.71. Hence r = 4.2 approximstely.

If R is obtuse, its cosine is negative and
equal in magnitude to cos (180° — R),
Angle ) may be calculated from the
trigonometric velationship
sinQ _sin R
g  r
_gsin B
==
_ b sin 45°
T 4.9
b X 0.71
4.2
- =0.845
. 2@ = 57.7° approximately,

Lostn

41t N

[
A 3f E B

Fig. 3.5, AC = AB + BC.
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Thus the resultant Q}S = 4,2 ft in the
direction 57.7° north of east.

3-8 COMPONENTS OF A VECTOR

Two specific vectors can have only one
resultant, but any vector may be the
resultant of any pair of an infinite number
of pairs of vectors. Frach member of each
pair is called & component of the original
vector. If both the magnitude and direc-
tion of one component are given, the
magnitude and direction of the other
component may befound; if the directions
of both components are given, the magni-
tudes of both components may be found.
(You should verify these facts by experi-
menting with a vector parallelogram or
trinngle.)

The most useful and most often used
components of a vector are those which
are perpendicular to each other. Suppose,
for cxample, that we wish to find the
horizontal and vertical components of a

<l
ol

ﬂ ]

-

A '1_'_!' B

Fig. 3.7. M and V are the honzonta!l and vertical
components, respectively, of /.

20

vector B divected at an angle of # to the
horizontal, We may resolve this vector
ij_:}to horigontal and vertical eomponents

and V (Fig. 3.7) by drawing on R a
rectangle ABCD having horizontal and
vertical sides. Noting that CB = AD,
three facts are at once apparent:

(1) R =H*4 V*

o= OB
2) smemAC,

WV = Rsind

_ 4B

(3) cosﬂmAC
o H = Rcost

Note also that if 8 = 90°, sin 8 = 1 and
cos § = 0, and as a result H = 0 and
V = R. In general, a vector has its full
effect in its own direction, and no effect
or component in a divection at right angles
to itself.

3-9 VELOCITY

Often, when there is occasion to con-
sider the vector displacement of an object,
there is also occasion to consider the
length of time during which this displace-
ment takes place, The quotient obfained
by dividing the displagement by the time
taken is called the velocity of the object.
Like displacement, velocity is a vector
quantity.
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The average velocity for a trip is defined
as the resultant (net) displacement

" divided by the time taken, Suppose an
- automobile sets out from poini A and

travels by a circuitous route to a point B,
30 miles north of 4. If the trip takes
5 hours, the average velocity for the trip
is 6 mi/hr north. The average velocity is

the uniform or eonstant velocity at which -

the given displacement would ocour in
the given time interval,
The facts that have been discussed so

" far in this chapter concerning displace-

ment vectorsapply equally well to veloci-

.ty veetors. This fact is obvious when we

realize that, to obtain a veloeity vector,

we simply divide a displacement vector

by a time, Perhaps the best known appli-
cation of vector methods to velocity
vectors i in connection with aerial

. navigation,

3-10 THE NAVIGATOR'S
PROBLEM

Before takeoff, the navigator of a plane
has available to him the following infor-
mation: (@) the-speed, relative to the air,
at which the pilot intends to fly the plane;
(b) an estimated wind speed and direction,
supplied by a meteorolegist; (¢) the
direction on the ground from the airport
from which he takes off to the one at
which he intends to land. However, if he
lets the pilot point the planc in this latter
direction, the wind will blow the plane
“off course” and the plane will not arrive
at its intended destination. Therefore the
navigator must calculate (a) in what
direction to have the pilot point the plane,
and (b) the speed of the plane relative to
the ground. He can accomplish both of
these ealeulations by means of a vector
triangle such ds that shown in Figure 3.8,
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Trom any point O he draws a line v, of
indefinite length, in the direction in which
the plane must travel relative to the
ground. Also from O he draws a vector
OP, representing the velocity v, of the
wind relative to the ground, With centre
P and radius equal to the intended speed
of the plane relative to the air, he draws
an are cutting #, at . The length of 0Q
is the speed of the plane relative {o the
ground; fhe direetion of PQ is the direction .
in which the pilot must point the plane.
That is, if all goes according to plan,
But flights seldom go according to plan,
because (among other things) v, rarely
turns out to be as the meteorologist pre-
dicted. After a few minutes in flight, the
navigator finds that his position relative
to the ground is not what he expected.
I'rom his observed position he can caleu-
late both the magnitude and direction
of v,. The pilot can tell him (presumably)
what the magnitude and direction of 7.
have been, and the navigator draws an-
other vector diagram to find what v,
actually is. Then he draws a diagram
such as Iigure 3.8 again. The procedure
is repeated at regular intervals through-
out the trip. Nowadays electronic devices
do most of these operations automatically,

Fig. 3.8. The navigator's vector triangle.
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3—11 MULTIPLYING VECTORS BY
NUMBERS AND BY- '
SCALARS

The usual meaning of 5 X 3 is that
three 5's are to be added together. Fol-
lowing the same reasoning, we conclude
that, when a displacement of 5 ft north
is multiplied by 3, the product is a dis-
placement of 15 f6 north. That is, when
a vector is multiplied by a number, the
magnitude of the vector is multiplied by
that number, and the direction of the
veetor and its units remain unchanged.

When a vector such as 40 mi/hr east
is multiplied by a scalar guantity such
as 5 hr, the above rules apply with the
one exception that the units change. The
magnibude of the product is obviously
200; the direction is east; but the units
of the result, obtained by muliplying
mi/hr by hr, are mi. The product is 200
mi eagt,

3~12 VECTOR ACCELERATION

In Chapter 2, we defined the aceeler-
ation of an object travelling along a
straight line path as the rate of change
of its speed with time. This definition
serves very well when the direetion of the
path does not change. However, consider
such cases as these: a ball is thrown
straight up and then returns to earth;
a car coasts part way up a hill, comes to
rest, and then coasts back down again;
a stone rotates in a cirele on the end of &
string. In order to deal with these motions
we must consider aceeleration as a vector
quantity. Acceleration is then defined as
rate of change of veloeity, and is caleu-
lated by dividing the change in velocity
by the time. ‘

In cases where part of the motion of
an object is in one direction and part is
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in exactly the opposite direction, the
motion formulas derived in Chapter 2
may be used, provided s, w, » and ¢ are
treated as veector quantities. It is par-
ticularly important to remember that s
must be treated as a displacement rather
than as the total path length or distance
travelled.

3-13 WORKED EXAMPLE

A boy, gliding on skates in a given

direction at a speced of 6 m/see, suddenly
encounters a headwind which causes him
to slow down at a constant rate of 1.5
m/sec? (a) When and where will he come
{0 rest ? (b)) What will be his velocity and
position ¢ seconds after he encounters
the wind ?
SouurTon

Constder the direction of the boy’s
original motion as the positive vector
direction,

() =7

W = 6 m/sec
7 =0
@ = —1.5 m/sect
t=7

Using the formula 7 = ¥ -+ ai
0 =206 —1.5¢
{ = 4: —‘)

Using the formula ¥ = @ —;— Y

?m9§9x4=m

The boy comes to rest in 4 se¢, 12 m from
the position where he first encountered
the wind,

(b} The solution which follows is valid
only if the boy’s acceleration is the same
after he eomes to rest as before. The
vector values given below apply from the
time when he first encountered the wind.
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T=7

% = 6 m/sec
V=7

74

= ~1.5 m/sec
{ = 6 sec
Using the formula? = @ -+ d¢
T=6-—1.5X86
T = —3
Using the formula 3 = %t + 1ap
T=86X6-3X1.5X36
= 36 — 27
= 0
Thus at the end of 6 seconds he will be

- 9mfrom hisstarting poini, in the divection

of the original motion, but he will be
moving backward with a speed of 3 m/sec.

3-14 LABORATORY EXERCISES:
ACCELERATED MOTION

1. Attach & tape from a recording timey
to one end of a dynamics cart, and a
rubber band to the other end (¥Fig. 3.9).
Hold the cart stationary with one hand,
and stretch the rubber band with the
other hand, as shown in the photograph.
Have your partner start the {imer, then
release the cart. Try not to move the
hand holding the rubber band; simply let
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Fig. 3.9. When the cart is re-
feased, it will move with varying
speed.

the band go slack as the cart moves along
the track past your hand.

Use the tape to plot both the distance-
time graph and the speed-time graph for
the motion of the cart. Try to relate each
part of each graph to what you saw
happening to the oart. '

2. Atfach the tape from a recording
timer fo & block of wood (Iig. 3.10). Start
the timer, then allow the block to fall
freely. Make the necessary measurements
on the tape, and caleulate the acceleration
of the block as it fell.

3-156 FREE FALL

The second laboratory exercise in
Section 3-14 suggests a method for find-
ing the acceleration of a falling object.
Since this acceleration is caused by the
force of gravity, 1t is called the acceler-
ation due to gravity and is given the
symbol 7 In a4 vacuum, the magnitude
of 7'is the same for all objects, and is
approximately 32 ft/sec?, 9.8 m/sec? or
980 cm/sec The direction of g is down,
whether the object is moving up or down.

Where an object falls through the air,
the resistance of the air reduces the magni-
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wude of the acceleration. The effect of air
resistance depends on the shape of the
object, on its volume, density and surface
area, and on its speed. In many oages, the
effect of aix resistance is negligible, and
wewill consider this to be the case through
the remainder of this book, unless we
explicitly state otherwise.

The analysis of the vertical motion of
an object under the influence of gravity
provides a good example of the use of
vectors in motion problems.

3-16 WORKED EXAMPLES

Examers 1

Trom = point 70 m above the ground
an objest is projected vertically upward
with a velocity of 25 m/sec. Assuming
that g = 10 m/sec?, caleulate how long
it will take to reach the ground.

SorurioN

Step 1. Consider the upward portion of
the {rip, and consider vectors directed
upward as positive.

T =U+at
=25 — 104
{=2.5

Thatis, the objectascends for 2. 5seconds.
Also, 2as = v* — u?
—20s = 0 — 2b*
s = 31.25
That is, the object rises to a height of
31,26 m 4+ 70 m = 101,25 m.
Step 2. Consider the fall from this
101.25 m level, and consider vectors
directed downward as positive.

3 =W+ Y
101.25 = 0 -+ 562
L= 4.5

That is, the object falls 101.256 m in 4.5
sec. Thus the total time of flight is 2.5
see + 4.5 see, or 7.0 sec.
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Fig. 3.10. A recording timer may be used to de-
termine the acceleration of a falling object.

The problem may be solved in one step.
Consider the whole flight, and consider
vectors divected downward as positive.

§ =t -+ Lae
70 = —2bt 4 5t
B2 — 250 — 70 = 0
#r—5—-14 =90
(¢ —Mit+2)y=20
t=Tort=—2 L
Thus, the time of flight is 7 see. (The
negative root is inadmissible in this case).

ExamrLn 2
Anobjectisprojected vertieally upward

e

with an initial speed of 128 ft/sec. When

will it reach a height of 240 feet above
the ground?

SovurIoN ,

Note that the object may reach the
240 ft level on the way up and again on
the way down. However, in either case its
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.displacement from its initial position is

240 {t up.
s = —240 ft
% = —128 ft/sec
q =g = 32 ft/sec
=7

Using the formulad = 7t + $a?
—240 = —128¢ - 168
#—8—~15=0
(t—=3)(¢—5) =0
t=3ort =298

The object is at the 240 ft Ievel on the

way up 3 sec after projection, and on the
way down b sec after projection,

3-17 THE PATH OF A PROJECTILE

Vector methods are particularly useful
in analysing the motion of an object, say
a thrown hall, which moves horizontally
at the same time as it falis (or rises)
vertically. The photograph in Figure 3.11
compares the motions of two balls, The
ball on the left was dropped at the same
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time as the ball on the right was pro-
jected horizontally, The vertical com-
ponent of the initial velocity of each ball
was zero. Examination of the photograph
vields the following information.

(¢) For any given time interval, the
vertical components of the displacements
of the two balls are equal,

() In equal time intervals, the right
hand ball undergoes equal horizontal dis-
placements.

Though these facts may seom startling
at first glance, they are nevertheless true.
In Chapter 5 we will discuss the reasons
for them; for the present we will simply
take them for granted as a result of
Figure 3.11. What they mean is this:

{a) For a projectile whose motion has
both horizontal and vertical components,
the two components may be considered
separately, each as if the other did not
exist.

(b} The horizontal component of the
projectile’s velocity remains constant.

Physics Department,
Universily of Weslern Ontario

Fig. 3.11. The bal! on the left
was dropped at the samg time as
the ball on the nght was projected
horizontally Ateachflashthetwo
balls are at the same level.
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3-18 WORKED EXAMPLES
ExamrLe 1

A bomb is dropped from an aircraft
flying horizontally at aspeed of 600 km/hr
at a height of 490 m. When and where
does thebomb strike the ground ? (Neglect
air resistance).

SorurioN

Consider first the vertical components
of the vectors and consider vectors
directed downward as positive.

3 =7+ Lo
490 = 0 - 4.9
t =10
That is, the time of fall of the bomb is
10 see.

Next, consider the horizontal motion.
The horizontal speed remains constant at
600 km/hr during the 10 sec (zdg, hr)
while the bomb falls. Therefore the hori-
zontal distance travelled = §8§ km =
1.7 km, The bomb strikes the ground
1.7 km from the point on the ground
directly below the point of release.

ExampLn 2

A helicopter is rising vertically at a
uniform speed of 48 {t per sec. When it is
640 1 from the ground, a ball is projected
horizontally with a speed of 30 {t per sec.
Calculate (¢) when the ball will reach
the ground, (b) where it will reach the
ground, (c) the magnitude of its resultant
velocity when it strikes the ground.

SOLUTION

Consider first the vertical component
of the motion of the ball, sand consider
vectors directed downward as positive.

(a) # = —48 {t/sec
@ = 32 ft/zec
F = 640 ft

3b

3 =t 4 dd
6540 ~48¢ 4 16
1642 — 48 — 640 = 0
B — 3t 40 =0
(t—8)t+ 5 =0
L=8o0rl=—5
The negative root is inadmissible.
. the time taken to reach the ground is
8 sec,

() The horizontal component of the
velocity is constant; the horizontal dis-
tance covered = 8 X 30 = 240 ft.

(¢) The vertical component of the
veloaity at ground is given by 7= & -+ dt.
S 7 = —48 + (32 X 8) = 208 ft/sec.
The horizontal component is 30 ft/sec.
The resultant velocity 7 is obtamed by
applying the parallelogram of velocities
(Fig. 3.12). The magnitude of the result-
ant veloeity == /30 4 208 = 210
{4/sec.

Trurther caleulations show that the ball
projected from the helicopter reaches a

Il
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Fig. 3.12. The resultant velocity 15 found by
means of the paralielogram of velocities,
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Fig. 3.13. A graph showing the path of a pro-
jectile, projected honzontally with a speed of 30
ft per sec, from a helicopter which 15 using verti-
cally at 48 {t per sec.

height of 876 ft and then loses altitude
until it reaches the ground 8 seconds after
projeetion. Other altitudes and times are
shown in the following table.

TIME (ssc) ALTITUDE (ft)

640
672
676
672
640
b76
480
352
212

0

ool

COICH QU QO — = O
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This information is summarized in
Figure 3.13. In addition, the velocity
vectors 7; and vp ab times 2.0 sec and
6.0 see are shown, They were ealeulated
as was the resultant veloeity at the ground
in the worked example above. The first
velocity is 84 ft/sec in a direction making
an angle of approximately 28° with the
horizontal, and the second is approxi-
mately 147 ft/sec in a direction making
an angle of approximately 78° with the
horizontal, These two vectors are shown
ag AB and AC in Figure 3.14. BC then
is v — 7, that is As. Measured on the
scale to which velocities were drawn, A7
seems to be approximately 128 ft/seo,
and is directed down. The corresponding
time interval Al is 4 sec. Therefore the

A HORIZONTAL
% o
78° B
\72 -V
Vg = A;’
c

Fig. 3.14, Vector triangle for the velocily vectors
from Figure 3.13.
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acceleration, %, is 32 ft/sec?® down. We

knew this in the beginning of course, but
our caleulations have made two facts
plain. (@) The accelemtmn vector & has
the same direction as Av, and this direc-
tion is not necessarily the same ag the
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direetion of either %1 or 7;. (b) The above
i8 a valid method for calculating the ac-
celeration of an object which follows a
curved path, We will find it useful in
Chapter 5 when we analyse circular
motion,

3-19 PROBLEMS

10.

11.

12.

Use g = 9.8 m/sec® unless otherwise instructed.

. At a particular instant, car 4, with a uniform speed of 45 mi/hr, is 0.5

miles behind car B, which has s uniform speed of 30 mi/hr. What is the
speed of 4 relative to B, and how long will A require to overtake B?

A stone is dropped from a point on the ceiling to the floor of a railway ear
which is travelling with constant velocity on a level track, At what poiné
will the stone strike the floor of the ear? Give a reasor for your answer.

Why do aircraft take off and land into the wind? 7

. In order to take off successfully from an aireraft carrier, a certain type of

aircraft must attain an air speed of 90 mi/hy, but can attain a speed of only
60 mi/hr relative to the deck. What steps can be taken to attain the necessary
air speed ? Under what ciroumstances would a take-off be inadvisable?

The hour hand of a kitchen clock is 6.0 em long. {e) Calculate the distance
its tip travels () between 12:00 noon and 3:00 P.M., (¢) between 12:00 noon
and 6:00 P.M., (4¢z) between 12:00 noon and 12:00 midnight. (b) Calculate
its displacement in each of the time intervals mentioned in (o).

A man walks 2 miles east, stops, turns through 120° to his left, and walks 4
miles in this new dircetion. What is the resultant of the two displacements?

. Compare the resultant of displacements of 5§ km north and 6 km east with

the resultant of displacements of 6 km east and 5 km north,

. Compare the resultant of displacement of 10 metres east, 6 metres north-

west and 5 metres west, with the resultant of dlsplacements of 100 metres
east, 60 metres nmth~wost and 50 metres west.

Use diagrams to show that (@) @+5 = Bt d, (b) na 4+ nb-+né = n(@+b +73)

P represents a displacement of 10 m east and 7 a dlsplacement of 15m north«
east. Use trigonometric tables to calculate (&) 7 + 7, )7 — ¢, ()¢ — 7.

A snail travels 2.0 metres north, turns 40° left, and proceeds 3.0 metres
further before stopping to rest. Caleulate the resultant displacement.

Evaluate @ — b for _cach of the following pairs of displacement vectors:
()@ 4= 5 ft east, b = 3 [i east,
(i) & a = = 5 km east, b = 7 km cast,

(#1) @ = 4 m north, ¥ = 3 m west.
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13.

14.

15,

16.

17.

18,

19.

20.

21.

22,

23.
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A fireeracker explodes, breaking into two unequal pieces. The larger part
undergoes a displacement of 30 m north-west. The smaller part lands 80 m
south-east of the larger part, What was the displacement of the smaller
part?

If you travel 200 metres south-east, what are the southerly and easterly
components of your motion?

An aircraft, with a ground speed of 500 mi/hr, is climbing steadily at
700 ft/min. What are the horizontal and vertical components (a) of its
velocity, (b) of its displacement during 0,2 hr?

A car is driven at a velocity of 72 km/hr east for 0.50 hr, 48 km/hr north
for 0.25 hr, and 62 km/hr west for 0,50 hr. Calculate (@) the magnitude of
its displacemens, (D) the magnitude of its average velocity.

The second hand on a classroom clock is 15 em long. (@) Calculate the speed
of its tip as it rotates. (b) State the veloeity of the tip at 15 sec and at
30 sec, (¢) Caleulate the change in its velocity between 15 sec and 30 sec.

Using vector diagrams, find the magnifude of the resultant of two simul-
taneous velocities of 30 em/sec and 50 em/sec (@) at an angle of 90°,
(b) at an angle of 45° to each other.

What is the air speed of a plane which takes 12 hrs to travel the 630 mi
between two citics when it has a 70 mi/hr tail wind?

A ship is moving east at 5.5 m/sec. A passenger strolls on the deck at a
rate of 1.5 m/sec. Tind the magnitude of the velocity of the passenger
relative to the earth (a) when he walks toward the hoi, (b) when he walks
toward the stern, (¢) when he walks across the deck.

A passenger in a boat finds that the speed of the boat relative to the water
is 5 mi/hr, and that the boat is pointing north-east. The water is flowing
north at 10 mi/hr, Find the veloeity of the boai relative to the ground.

The pilot of an airplane wishes to travel west with a ground speed of
800 km/hr, He knows that the wind is blowing from the north at 60 km/hr,
In what direction should he pomt the airplane, and what airspeed should
he maintain?

For the displacement-time graph shown in Iligure 3.15, (@) caleulate the
average velocity during the first 4 seconds, (b) calculate the instanfaneous
velocity at ¢ = 4 gee, (¢) draw the corresponding velocity-time graph,

. Base your answers o this question on the graph shown in Figure 3.16. This

graph shows the veloeity of an object travelling along a straight line,
(@) Which portion of the graph represents a constant positive acceleration?
(b) Which portion of the graph represents zero acceleration? (¢) During
which portion of the motion was the displacement decreasing? (d) At what
point was the displacement a maximum? (¢) Sketch (1) the correspondmng
displacement-time graph, (2) the corresponding acceleration-time graph.

[
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! DISPLACEMENT (m)
o A b b Lo a0
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25,

2.
27.

28.

30.

31.
to the left of its star tmg point?

Fig. 3.16. For problem 23, Fig. 3.16. For problem 24,

The second hand on a watch is 1.5 em long. {a) Calculate the speed of its
tip as it rotates. (b) State the velocity of the tip at 30 sec and at 45 sec.
{¢) Caleunlate the change in its velocity between 30 sec and 45 sec. (d) Cal-

_culate its average acceleration between 30 sec and 45 sec.

The velocity of a ear ¢hanges from 30 mi/hr north to 40 mi/hr east in 20 sec.
Calculate its average veetor acceleration.

An airplane flying at a constant speed of 1000 km/hr executes a slow turn

which changes its direction of travel from east to west. If the turn takes

80 seconds, calculate its average vector acceleration,

Describe qualitatively the motion represented by the acceleration-time
graph in Figure 3.17. Sketeh the corresponding velocity-time graph.

For the acceleration-time graph shown in Figure 3.18, determine the rate of
change of acceleration at { = 3 sec and { = 5 sec.

The initial speed of an object is 16 m/sec to the right. It has a constant
acceleration of 4 m/sec? to the.left, At what times is it at a position 30 m to
the right of its starting point? Interpret the two answers. Check by drawing

‘the velocity-time graph,

In question 30, how long would it take the object to reach a posxtmn 30m .
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Fig. 3.17. For problem 28, Fig. 3.18. For problem 29.

During the first quarter of the journey from a station 4 to a station B a
train ig uniformly accelerated and during the last quarter it is uniformly
decelerated. During the middle half of the journey the speed is uniform.
Show that the avorage speed of the train is  of the maximum speed. '

A train starts from rest, accelerates uniformly for 18 sec, travels for 0.5 min

. at constant speed, and decelerates uniformly to rest in 10 sec. The total

34,

35.

38,
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distance travelled is 880 m, (a) Calculate the maximum speed attained.
(b) Plot the speed-time graph.

A car is observed to cross a street in 4.0 sec. The street }s‘ 120 f+ wide, and
the ear is accelerating at 4.0 ft/sec? Caleulate its speed when it is half-way
across the street. :

Caleulate the displacement of a ball during the fourth second of its fall
from rest.

A stone is thrown vertically upward with an initial speed of 24.5 m/sec.
() Find (4) its veloeity, and (42) its displacement, after 1, 2, 3, 4 and 5 sce.
(b} Plot the displacement-time gra,ph the velocity- tlme graph and the

acceleration~-time graph.
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3-
1,

37.

- 38.

39,

40.

A rifle is fired horizontally from a point 2.0 metres above the ground. The
muzzle velocity of the bullet is 300 m/sec. Calculate its time of flight, and
the horizontal component of itg displacement.

A baseball thrown from shortstop to first base travels 30 m horizontally and
vises and falls 5.0 m. Find the horizontal and vertical components of the
initial velocity of the ball. (Use ¢ = 10 m/sect)

An object projected with a horizontal veloexty of 30 m/see takes 4.0 sec fo
reach the ground. Assuming that air resistance is negligible, and that
g = 10 m/sec?, caleulate (a) the height. from which the object was projected,
(b) the magnitude of the object's resultant velocity just before the object
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strikes the ground, (¢) the horizontal component of the object’s displacement, -

An airplane, executing a shallow dive, releases a bomb, At the time of
releage, the bomb has velocity components of 160 m/sec horizontally and

" 40 m/sec vertically. (a) If the height of release is 4.8 km, and if air resistance

reduces the vertical acceleration to an effective value of 8.0 m/sec?, caleulate
the time of fall. (b) If air resistance reduces the horizontal velocity at the
rate of 0.5 m/sec?, calculate the horizontal displacement of the bomb during

1ts fall.

20 SUMMARY

One point is in motion with respect to
another if the line joining them is
changing in length or direction.

A sealar quantity has magnitude only;
a veetor quantity has magnitude and
direction. Distance, speed, and the
acceleration associated with unidirec-

~ tional motion are scalar quantities.

Displacement, velocity, and the ac-
celeration defined as rate of change of
velocity, are vector quantities.

To find the sum (resultant) of 2 vectors,
place the foot of the second vector on
the head of the first. The resultant is
the line segment from the foot of the
first vector to the head of the second.

To find the difference between two

“vectors, place their feet together, Their

difference is the line segment joining

the head of the second vector to the
head of the first.

. 'The product of a vector and a number

is a vector having the same direction
and units as the original vector. The
product of a vector and a scalar is a
vector having the same direction as the
original veetor, but different units.

. The components of a vector are two

vectors (usually mutually perpendiou-
lar), whose resultant is the original
vector.

. The horizontal and vertical eompo-

nents of the motion of a projectile may
be considered separately.

. If the motion of an object is not uni-

directional, but if the veetor acceler-
ation is constant, the formulae
developed in Chapter 2 may be used,

‘provided that s, u, ¢, and a are treated

as veclors,
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Chapter 4

Newton’s Laws of Motion

4-1 INTRODUCTION

In Chapters 2 and 3 we have discussed
only the description, or the kinematies,
of motion. We have made no attempt to
answer such reasonable and vital ques-
tions about motion as the following. Why
does an objeet start to move ? Under what
circumstances is its velocity constant?
What factors affect its acceleration? The
first clear answers to these questions were
stated by Sir Isaac Newton, and they
involve dynamics rather than kinematics.
Before we consider Newton’s confri-
butions, we shall consider some pre-
Newtonian ideas about the causes of
motion.

4-2 EARLY IDEAS ABOUT
MOTION

The eariy philosophers’ ideas abou$ the
causes of motion were much like our own
ideas when we first started thinking about
the subject. In many cases we would agree
quite readily that, in order to cause an
object tostart moving, stop moving, speed
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up, slow down, or change direction, some-
thing clse must push or pull on the object.
In other words, an objest will not ac-
celerate unless an external foree is exerted
on it, But in certain situations we might
have some reservations about this general
statement—probably fewer reservations
than the early philosophers would have
had, for we bave been conditioned to
recognize forces which they did not know
existed,

Horizontal motion on a rough surface
presented eonsiderable difficulty. It was
known that an object rolling or sliding
along such a surface eventually comes
to rest without the application of any
obvious external force; indeed a constant
applied force is necessary to cause the
object to move with constant velocity.
Aristotle (384-322 B.C.) therefore con-
cluded that a constant foree was neces-
sary to maintain constant velocity, and
that, if a force did not act on a moving
objeet, that objeet would come to rest.
Since Aristotle’s time we have learned to
recognize the existence of aforce of friction
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exerted by the surface on the object roll-
ing or sliding on i, The moving objeet,
then, comes to rest under the retarding
action of the force of friction. Moreover,
if the object is to move at constant
velociby, we must apply a force sufficient
to balance the force of friction. The resul-
tant or net force acting on the object is
then zero, and the object’s veloeity re-
mains constant.

The ancients were puzzled also by the
faet that an object accelerates as it falls.
‘Apparently they did not recognize the

existence of the force of gravity. They -

were puzzled too by the motions of the
sun, the moon, and the stars in paths that
were not straight lines, apparently with
no force acting. Thanks to Newton, we
now explain celestial motion in terms of
gravitational force, Before Newton’s time
it was common practice to explain the
acceleration of a falling object by saying
that it was part of “the internal urge of
bodies to seek the place proper to their
- scheme of things,” and to explain celestial
motion by attributing to ‘‘celestial
matter’’ properties not possessed by
earthly matter. This explanation ob-
viously would not be accepted today when
earthly matter is projected regularly into
space and behaves predictably there. But
this explanation was questioned long
before the twentieth century; one of the
most noteworthy of the questioners was
Galileo Galilel (1564-1642),

4-3 NEWTON’S FIRST LAW

Galileo reasoned that, since a ball roll-
ing uphill slows down and a ball rolling
downhill speeds up, then a ball rolling on
& horizontal frietionless surface should
continue to move with constant velocity
indefinitely. Sir Isaac Newton, who was
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born in the same year that Galileo died,

recognized the truth of Galileo’s.assump-
tion and included it in his famous book,
Philosophiae Naburalis Principia Mathe-
matica, published in 1687. [t is known
now as Newton's First Law of Motion,
and is stated as follows: :

Every body continues in its state of
rest or of motion at uniform speed in a

" straight line, unless an unbalanced force

acts upon it. _

This law'is & purely negative statement
that the body will undergo no acceleration
unless an unbalanced force acts upon it
Itisimpossible of proof and did not readily
gain general acceptance by many con-
temporaries of Galileo and Newton.
However, indirect evidence, similar to the
following, seems to indicate its validity.

(a) As has already been nofed, no
stationary object begins to move of its
own accord. Indeed, in eases where
magicians seem to demonstrate otherwise,

the sceptical observer immediately begins

tosearch for hidden wires or other devices
which exert the necessary forces, .
(b) A hockey player, particularly a
goal-tender, knows that a force is required
to stop or even to slow down a fagt-
moving puck. Although he has never ob-
served a puck which was subject to no
forces whatsoever, he does know that if
theiceissmooth the puck will slide farther
than if the ice is rough. The thoughtful
goalie may suspect that if the jce were
perfectly smooth, i.e., if there were no
friction, the puck would continue at con-
stant speed in g straight line indefinitely.
(¢} In baseball, a batter vealizes that o
force is necessary to change the direction
of motion of the ball thrown by the
pitcher, and that the greater the change
in divection (a well hit ball as compared
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first law.
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to a foul tip) the greater is the force
required. If a ground ball takes a “crazy
hop,” fielders know that some object or
irregularity on the ground exerted a force
to produce the change in direction. More-
over, the usual explanation for the fact
that a baseball can be made to curve is
simply an explanation of the fact that an
unbalanced force is acting on the ball. In
all cases, the players assume that if no
unbalanced force acts on the ball, its
direction of motion will not change. -

4-4 INERTIA :
Newton’s first law implies that any

- object resists a change in its velocity.

This resistance to acceleration is called
inertia. Many simple experiments may
boe performed to illustrate the existence of
inertia, and hence, to illustrate Newton’s

If & tablecloth is spread on a table and
1 book is placed upon it, the cloth may
be removed by a rapid jerk without mov-
ing the book. Indeed, an expert at this
trick can pull & silk cloth from under a
full set of dishes,

‘When a steady pull is exerted on a cord
attached to a heavy weight that is resting
on the fioor, the ‘weight may be lifted.
On the other hand, a quick jerk may
break the cord.

A sixteen-pound shot with serew eyes
attached on opposite sides is suspended
by a loop of stout string; a similar loop
hangs below the shot (Fig. 4.1), When a
rod is placed within the lower loop and
steady pressure is exerted on the rod, the
gtring will break above the ball. If the
rod is raised a few inches within the loop
and brought down with a quick jerk, the
lower string will break.

KINEMATICS AND DYNAMICS

Many everyday experiences demon-
strate the inertia of stationary or moving
objects. A person shovelling snow can
stop the shovel suddenly but the snow,
because of its inertia, continues forward.
Passengers standing on a bus brace them-
selves or grasp a firm support to avoid
being “thrown” forwards or backwards
as the bus stops or starts suddenly. When
the vehicle turns sharply, the passengers
tend to continue in a straight line with
the result that they seem to be “thrown”
to one side. -

4-5 FORCE—A VECTOR
QUANTITY

The word “force’’ was used repeatedly
in the discussion above, even though it
had not been previously defined. Nor will
it be defined here. In a sense Newton’s
first law defines force as that which is
necessary to aceclerate an object.

Fig. 4.1. ltustrating theinertia of an object at rest.
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N (exerted by table)

\ F; (exerted by earth)

Fig. 4.2, Forces acting on a block at rest on a
table,

Forces may vary in magnitude and act
in different divections. Hence, force is a
vector quantity and the method for find-
ing the resultant of several forces is the
spme a5 has besn described in Chapter 3
for displacement and velocity vectors.
The resultant of several forces acting on
an object may very well be zero, in which
case the acceleration of the objeck will be
zero. Such is the case for a block at rest

AN
2N
PL‘M-H - F

(©) M

Fig. 4.3. Forc% acting on a cat moving_at con-
stant velocity, P ig the propelling force, F is the
force of fnction, Vis the verilcal force exerted by
the road, and Fg is the force of gravity.
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on a table (Fig. 4.2) and for a car travelling
ab constant speed on a straight and level
road (Ifig. 4.3).

In predicting the motion of an object,
we frequently draw what is called a force
diagram for the object. In drawing such
diagrams, we must remember that only
those forces which act on the object can
have any effect on the motion of the
objeet, and these are the only foreesshown
on the force diagram. These forces are
applied by some agent outside the object,
and are therefore called external forces.
Moreover, the force which determines the
motion of the object is the net force—the
resultant of all of the forces shown in the
force diagram.

4-6 SOME COMMON FORCES

The forces which act on objects to cause
them to accelerate may be of many types,
including a physieal push or pull. One of
the most common forees is the force of
frietion, a force which always acts so as
to retard motion and which is rarely
absent from any system of objects in
motion,

The cause of friction between two solid
surfaces sliding over one another is evi-
dent from a study of Figure 4.4. A surface
may appear to be perfectly smooth to the
unaided eye, but even the smoothest sur-
face whon examined under a microscope

Fig. 4.4. When two surfaces are in contact, their
small projections interlock,
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shows little projections with hollows be-
tween them. When two plane surfaces are
in contact some of the projections of each

- surface fit into the hollows in the other

surface. Before sliding can take place,
the projections must be broken off or
forced clear of the hollows. Thus, when
a force is applied to make one surface
stide over another, there is a resistance
(force of friction) which opposes the ap-
plied force. This force of friction is less

if the projections ere small, i.e., if the

surfaces are smooth. -

/‘\

Flg. 4.5. llustrating the cause of rolling friction,

The eause of friction in the case of a
solid object rolling on a solid surface is
shown in Figure 4.5. If a heavy ball rests
on g surface, it makes a depression in the

surface. In addition, the portion of the

ball which touches the surface is flattened
to some extent. Before rolling can take
place, the ball must either be forced out
of the depression, or the bulge of the sur-
face in front of the ball must be forced
oub of the way. Thus, there is again a
foree of frietion which opposes the applied
forge. This force of friction is less if the
surfaces are hard.

Other forces which frequently have to
be considered are magnetic and electric
forces. A magnetized or electrified object
can produce an effect on another object

KINEMATICS AND DYNAMICS:

even though there is no physieal con-
nection befween them,

The most common force producing
effects at a distance is the foree of gravity.,
This force is discussed fully in Chapter 6,
However, some facts concerning the force

of gravify must be discussed here.

4-7 GRAVITATIONAL FORCE AND
GRAVITATIONAL MASS

All of the objects whose motions we
will consider are composed of matter in
one of its three forms: solid, Hquid or gas.
You are no doubt familiar with the word
mass, used rather vaguely to measure the
quantity of matter which an object con-
tains. You will be familiar too with the
use of a pan balance of some sort to
measure the mass of an object. Tiquilib-
rium is attained when the earth exerts
equal gravitational forces on the masses
on each of the two pans, When the balance
“balances’” we say that the mass of the
object being “weighed” is equal to the
mass of the “standard masses’” placed on
the other pan of the balance, The mass
obtained in this way is called the gravi-
tational mass of the object. Several facts
concerning gravitational mass should be
noted. (a) Gravitational mass is inde-
pendent of the object’s position, If the
balance “balances” at one place, it will
balance at any and all positions in the
universe. (b) For a given type of material,
gravitational mass varies divectly as the
volume of the objeet. The constant ratio
of mass to volume is called the iiensity
of the material. (¢) The weight & of an
object is the gravitational force which
the earth exerts on it. The magnitude of
17";, is directly proportional to the mass
of the object (sce Chapter 5). (d) An
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Fig. 4.6. The trofiey {mass 1800
gm) and the suspended welghts
{mass 200 gm) are accelerated by
a force equal to the weight of
200 gm,

object’s inertia depends on its gravita~
tional masgs. You may verify this fact by
finding the gravitational mass of a cannon
ball and of a balloon, and by kicking each
in turn. The greater the mass, the greater
is the resistance to acceleration,

4-8 ACCELERATION AND
NET FORCE ‘

Newton's first law is & negative state-
ment to the offect that, if the resultant
foree acting on'an object is zero, the ac-
celeration is also zero. This law implies
that if the resultant foree is other than
zero the object will undergo acceleration.
Newton’s second law outlines the factors
upon which this acceleration depends and
the quantitative relationships between
each of these factors and the acceleration.

Tiveryday experience indicates that
(a) the greater the net force applied to an
object, the greater is the acceleration of
that object, and (b) the greater the mass
of an object, the smaller is the acceleration.
produced by the action of a given un-
‘balanced force. Moreover, the acceler-
ation seems to depend only on these two
factors, inass and unbalanced force. The
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guantitative nature of these relationships
will now be diseussed.

A Tletcher's trolley may be used to
sbudy the relationship between force and
aceeleration, The mass of the trolley car
can bealtered by adding additional masses
to specially-built receptacles in the body
of the car. To cancel the effect of {riction,
one end of the traclk is raised slightly, so
that the car will not start of itself yet will

‘continue moving if onee started. A string

isnow attached to the trolley and is passed

over a pulley; on the end of the string a

mass M is attached (Ifig. 4.6).

If M consists of two 100-gram masses,
then the force which sets the car in motion
is the attraction of the earth on the 200-
gram mass. Both the car and the 200-gram
mass are accelerated by this force. A
tracing (Ifig. 4.7) is made in the manner
described in Section 2.4, and the acceler-
ation is found to be 98 cm/sec?. A 100-
gram mass is now removed from M and
placed in a slot in the car, Thus the force
produeing the acceleration has one-half
its former value, but the total mass ac-
celerated is the same as in the first case.
The acceleration is now found to be 49
em/see?, one-half of its former value,
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Fig. 4.7. The force which produced the trace {a) was double that in {5). The total mass accelerated

was the same in both cases.

Further experiments with the trolley
confirm tha$ the acceleration a of an ob-
ject of mass m is directly proportional
to the net force F acting on the object,
that is

o « Fif m is constant.

4--9 ACCELERATION AND MASS

The way in which acceleration varies
with mass for a constant applied force
may be demonstrated with Fletcher's
trolley. The mass may be varied by plac-
ing additional masses in the slots in the
trolley. The accelerating force is the
weight of the masses attached to the end
of the string (Fig. 4.6), and is kept con-
gtant. The acceleration is found to be
inversely proportional to the mass if the
net foree is constant. That is

1, .
a4 o« o if 7 is constant,

4--10 LABORATORY EXERCISES:
ACCELERATION, FORCE,
AND MASS

A dynamics cart, of the type used in
the Laboratory Exercises in Sections 2-11
and 3-14, may be used to investigate the
relationships among acceleration, force

and mass. Elastic bands ave used to pro-
vide the accelerating forces; a recording
timer is used to record the motion; and
the accelerated mass may be varied by
placing bricks on the cart. The masses of
the eart and bricks may be obtained by
weighing them; it is convenient to use
bricks each of which weighs twice as much
as the eart. Sand in plastic bags may be
used in place of the bricks. The most
convenient umt of mass to use is “one
cart.”

1. Attach atape from arecording timer
to one end of the cart, and an elastic band
to the ofher end (Fig. 4.8), Have your
partner hold the cart in position. Use a
metre stick to streteh the elastic band to
& total length of about 70 em., as shown
in the photograph. If this exfension of
the band is maintained, the band will
exerb a constant foree on the eart as the
cart moves down the track, sfter your
pariner releases the eart. Your job is to
move along with the eart and to maintain
this constant extension of the hand
throughout the motion. When you are
ready, signal to your partner to start the
timer and release the cart, Maintain the
extension of the elastic band until the
cart nears the end of the track,
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When you are satisfied that you have
earried out the above instructions reason-
ably well, repeat the procedure using two
clastic bands in parallel, rather than one,
Do not change the accelerated mass, and
use the same extension of the.elastic bands
as in the first case. Then repeat the pro-
cedure using three elastie bands, and four
elastic bands.

From cach tape, calculate the acceler-
ation of the cart, Then, assuming that
the foree exerted on the cart by the
stretched bands is proportional to the
number of bands, draw a graph of force
(in bands) plotted against acceleration
(prabably in em/tock?). What is the re-
{ationship between acceleration and
force? Is the force exerted by the bands
the only force acting on the cart? Is the
assumption that the force exerted by the
bands is proportional to the number of
bands, a valid assumption?

2, Use the procedure outlined in 1.
above, but this time keep the force (num-
ber of elastic bands) constant, and vary
the accelerated mass by placing bricks or
bags of sand on the cart. Calculate the
acceleration from the tapes for at least
four different masses. Plot aceeleration
against mass, Replot the information in
an attempt to obtain astraight-line graph,
‘What is the relationship between acceler-
ation and mass?

Fig. 4.8. if the rubber band is
kept extended a copstantamotint,
it applies a constant force 1o the
cart,
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4-11 NEWTON'S SECOND LAW

Both the acceleration and the foree are
vectors, and they have a common direc-
tion, That is, the acceleration vector has
the same direction as the force vector.
Also,

singe ¢ « F when m is constgnf,

1 .
and.¢ « po” when F is constant,

then g « % when both F and m vary.

This relationship is Newton’s second law:
When an unbalanced {net) force acts on
an object, the resulting acceleration is
divectly proportional to the net force and

. is inversely proportional to the mass of

the object.
412 INERTIAL MASS

1} f -’
The ratio % & constant for any given.

object, is frequently called the inertial
mass of that objeet. Since the ratio %

varies from objeet (o object, different
objects have different inertial masses.
Suppose that a certain force causes object
4 to acecelerate at 0.5 m/sec® whereas the
same force causes chject B o accelerate
at 1.0 m/sect. Then the inertial mass of
A is double that of B. But, since the
acceleration of an object varies inversely
as the object’s gravitational mass, the
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MASS m,
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MASS m,

1

‘Fig. 4.9. A horizontal force is applied to the first of two blocks, and both blocks move with the

same acceleration.

= 0. Moreover, the second law may be
used to develop the third law, which is

not so much a law of motion as a law

deseribing the forees of interaction of ob-
jects. SBuppose, for example, that you are
standing in a very crowded street car.
You may justly claim that your neigh-
hour is pushing you, but he may claim,

' . equally correctly, that you are pushing

him. Bach of you is in fact pushing the
other; each is pushing and being pushed.

The relationship between these forces of

interaction may be discovered as follows.

Suppase a horizontal force ?pushes an
object of mass m;, which in turn pushes
a second object of mass my, all on a hori-
zontal frictionless surface (Fig. 4.9). Both
masses move with the same scceleration,
which we inay calculate by using the

MASS m,

Far | 3

‘Fig. 4.10, Force diagram for the block whose
mass is m1. .

formula ¥ = wa for the whole system.
(We shall ignore any vertieal forces,
because they balance each other, and as a,
result there is no vertical a,cceleia.tkon)

Thus

-

-3 P

e = my -+ g (1)
Now consider the force diagram for the
block of mass m,; (Pig. 4.10). The hori-

-zontal force P oxerted on thig block is

halanced in part by the foree 'Ipf’;yl'exerted
—X the_ﬁ;second block, The net force ig
P+ Fp . (The plus sign mdlcates a
veetor sum, )

g + ??(.1 =M ad

7. Ltha @ .

my
For the block of mass m,; (Fig. 4.11), the
only force acting is the forge Fi_, exerted
by the first block, Using F = ma in this
case we obtaln '
I’l,_.g = Mm@

and @ = -?-;-f% 3
' 2
Equatmg the r:ght sides of (1) and (2)
PP+,
My + mg = mi

P'm1 + ?mz 4 ‘z_a my gy mg = ﬁ‘nl
Fz...; (m1 -+ '1?_3) ~P1m

F 2—1 = (4)

m; + M
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Tquating the right sides of (1) and (3)
A
o+ My ma

3
ﬁhz - Py
my - me

Comparing (zJi)_) and (5)

* Fyy = —Ih
Thus the forces which m; and m, exert
on each other are equal in magnitude but
opposite in sign,

(5)

Equal and opposite pairs of forees oceur |

whenever two objects interact, even
though the objects are not in contact

with one another; the forces may be mag- i

netic, electric or gravitational. There can
be no force unless two objects are in-
volved; each exerts a force on the other.
In general, for every force exerted by one
object on a second object, there is an
equal and opposite force exerted by the
second object on the first. Thisis Newton's
third law.

One of the forces is commonly called
an action force and the other a resction
force and Newton’s third law is some-
times stated: reaction is always equal and
opposite to action. This statement omits
one important point: the action and re-
action forces are exorted on and by
different objects. The reaction to theforce

MASS m,

wp
Fiz
e

Fig. 4.11. Force diagram for the block whose
mass is ma.
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exerted by. 4 on B is the foree exerted
by B on 4.

4-18 EXAMPLES OF
ACTIGN-REACTION PAIRS

The list of examples of Newton’s third
law 1s endless, for the law applies to any
sttuation, A few everyday examples
follow. '

When a bat strikes a ball, the bat exerts
a force on the ball and the ball exerts an
equal and opposite force on the bat.

If a finger is pressed against the surface
of a table, the table exerts on the finger
an equal force in the opposite direction.

- The reaction to the weight of an object
{the gravitational force which the earth
exerts on the object) is the force with
which the object attracts the earth, If
the object is free to move, it will be ac-
celerated towards the earth, and at the
same time the earth will be aceelerated
towards the object. However, because of
the great mass of the carth, its acceler-
ation is too small to be observed.

When a person steps ashore from a
small boat, the boat moves away from
shore. The force exerted by the pérson on
the boat causes the boat's acceleration
away from shore; the force exerted by the
hoat on the person causes hig acceleration
towards the shore. If the boat is large, it
will experience little acceleration.

- Consider the forces acting on a bloek
Rl)aced on a table (Fig. 4.2), The weight
Fgof the book acts vertically downwards;

a force NV exerted by the table acts verti-

cally upwards. These forces are equal and
opposite, not because they constitute an
action-reaction pair, but because the ac-

_celeration of the book, and hence the

resultant force acting on the book, is zero.
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The reaction to f‘"; is the gravitational The reaction force never acts on the
force excrted by the book on the earth, same object as the action force; hence,
and the reaction to F is the force exerted  an action-reaction pair of forees never
-by the book on the table.. ~cancel one another. -

4-19 PRO'BLEIVIS

1. If an object is subject to no forees whatsoever, its Veleclty will remain
constant, Is the converse necessarily true?

2. Draw the force diagram for a block of wood floating on water.

3. Why does a solid immersed in liquid appear to lose weight ? Draw the force
diagram for a stone suspended undcerwater from o string,

4, An airceraft is flying at a uniform speed of 600 km/hr relative to the air.
- Draw the force diagram for the aireraft.

&

A brick is pushed along a rough floor. What forces are exerted by the brick
on the floor? What forces are exerted by the floor on the briek ? '

6.: Calculate the magnitude of the resultant of forces of 10 newtons north and
"20 newtons east. Use a graphical method to find the divection of the resultant.

7. A force of 100 newtons north and a foree of 100 newtons west act on an
object. What is their resultant? :

8, The same net force F' imparts an acceleration of 6 m/sec? to 8 4-kg object
and an acceleration of 2.4 m/sec? to a second object. What is the mass of
the seeond objeet? What is the value of FF?

-9. A net force of 0.6 newtons gives a mass m an aceeleration of 0,18 m/sec?,
and another net force F¥ gives the same mass an acceleration of 0.45 m/sec?
Caleulate F' and m.

10, A net force of 20 newtons acts on an object whose mass is 4 kg. What is
the object’s acceleration ?

11, What force will give a mass of 10 kg an aceeleration of 50 cni/secz?

12. Calculate the forco 1equ11ed to give a 0.49-kg mass an acceleration of

10 em/sec?, .
13. What wili be the aceeleration of a 150-kg motorcycle if the net force acting
- onitis (@) 756 newtons, (b) 225 newtons, (¢) 22.5 newtons? In what dlrectmn

does the acceleration take place in each case?

14. A net force of 0,6 newtons causes an ob;;ect to accelerate at a rate of
0.8 m/sec’. What is the object’s mass?

15. A horizontal force F is applied to a 2-kg block at rest on a table. When F |
is % of the weight of the block, the block moves at constant speed. Caleulate
the value of I' required to accelerate the block from rest to a speed of
3 m/sec in 4.0 see. '
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A shell of mass 1 kg is discharged with s speed of 4.5 X 10% m/sec from a
gun having a barrel of length 2.0 m. Caleulate the average force exerted on
the shell while it is in the barrel. ‘

For each of the two graphs in Figure 4.12, caleulate (a) the impulse of the
foree between ¢ = 1 sec and £ = 3 sec, (D) the change in the momentum of
the object on which the force acts, between ¢ = 0 and { = 4 sec.

What is the magnitude of the impulse imparted to an object by a force of
7.0 newtons acting for 5.0 sec? By how much will the momentum of the

“ object change during these 5.0 sce?

Caleulate the maguitude of the impulse which causes the velocity of a
6.0-kg mass to change by 50 em/see.

Suppose that an impulse of 5.0 newton-sec is abplied to an object. By
how much does the velocity of the object change if its mass is (@) 5.0 kg,
(b) 2.5 kg, (¢) 2.0 kg?
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21,

.
. the impulse imparted to the ball, (b) If the club is in contaet with the ball for

KINEMATICS AND DYNAMICS

A constant force is applied to a 3.0-kg object initially at rest. The object
moves 25 m during the first 5,0 sec. Caleulate the impulse of the force,

A 50-gm golf ball is hit by a club and given a speed of 40 m/sec. () Caleulate

0.10 sec, caleulate the magnitude of the average force exerted by the club

- on the ball. (¢) What is the magnitude of the average force cxerted by the

23.

24,

ball on the club? :

For each of the following cases, specify the reaction to the force mentioned,
making clear what the reaction is exerted by, and what it acts on: (a) the
foree exerted by a bat striking a baseball; (b) the force exerted by the earth
on a freely falling body; (¢) the force exerted by the earth on. the moon.

Refute the following argument: o
No object can ever accelerate, for each of the forees acting on it is balanced
by the corresponding reaction force,

inertial mass of an object is propor-
tional to its gravitational mass.

4-20 SUMMARY 6. The formula F = Mm@ expresses
) A
1. Newton’s First Law: An object will Newton's Sefzond Law matllt?mat}
ot cally. It applies, for example, if F is
not accelerate unless an external, un- . { i Iilogr dai
balanced force acts upon it in newtons, m in kilograms and g in
‘ , ' nmetres/sec?,
2. Aforceis a push or a pull; its effect is 1 newton = 1 kg-m/sec?
to cause any object on which it acts 7, The impulse of a foree is the product
to ac'celerate. Force is. a vector of the force and its time of action.
~ quantity. . "~ Impulse units are newton-sec.
3. The inertia of an object is its resist- 8. The momentum of an object is’ the
ance to acceleration. product of its mass and its velocity.
. Momentum units are kg-m/sec.
4. I\ifzwto;ffs Se(;)('?;ldt Pa;: :, Tge aceelsa:- 1 kg-m/seo = 1 ncfvtm/l e
- abion ol an object Is directly propor- 9. Newton’s Second Law: The rate of
tional to the net force acting on the - X
. . : change of an object’s momentum is
object and inversely proportional to oporbional to the net for lied
the gravitational mass of the object, fmg(-: lg. 2 ; OIt ¢ bome 25 pn“?n
The acceleration takes place in the t;.l fl ,O Joch, 2% hay be written ¥
direction of the net foree. ¢ iorm 3 i
5. The inertial mass of an object is the C =M AL
force .. . . 10. Newton's Third Law: For each force
&ccelerationlamo for that object. The exerted by an object 4 on another

object B, there is an equal and op-
posite force exerted by B on 4,



Chapter b

Motion Near the Surface of

the Earth

5—1 INTRODUCTION

The force of gravity is perhaps the
" commonest force which we know, and as
a result the acceleration of a falling object
is perhaps the most readily observable
acceleration, In Chapter 3 we gave this
acceleration the symbol Fand stated that
7 was the same for all obJects In Chapter
4 we defined the weight I‘G of an object
ag the gravitational force which the earth
exerts on, it and stated $hat the magni-
tude of I I‘a i directly proportional to the
mass i of the object. For the present we
shall continue to assume the truth of this
last statement, and use it to investigate
the factors affecting the value of 3.

52 FACTORS AFFECTING THE
ACCELERATION OF A
FALLING OBJECT

For an object falling in a vacuum, the
only fmce acting oh the object is its
weight I’G aeling down, and the down-
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ward acceleration is 7. g. The formula .

¥ ma, a,pphcd in this case, becomes
Ty = mg, or f = P— But the statement

that Fgis directly pr opm tional to m means

that -I;—: is constant. Therefore §'is con-

stant; all objects, regardless of mass, fall
with the same acceleration in a vacuum.

Historically, the order of the reasoning
in the above paragraph was reversed.
Galileo is said to have dropped two melal
balls, the mass of one being ten times
that of the other, from the top of the

-leaning tower of Pisa, He found that they

struck the ground simultaneously.
Newton released a guinea and a feather
simultaneously at the top of along vacuum
tube, and found that the coin and the
feather reached the bottom of the tube
at the same time. Thus, in cases where
air resistance is negligible or non-existent,
¢ is independent of m. Note that this
experimental result, coupled with
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Newton’s second law, indicates that Fy
is directly proportional to m, a conclusion
which is by no means intuitively obvious,

Prior to Galileo’s time it had been
assumed that the acceleration of a falling
object was dependent on the mass of the
object. This is o natural enough assump-

“tion, for when objects fall in air the foree .

of gravity is balanced in part by air re-
sistance. This air resistance is propor-
tionally much greater for an object such
as a feather than for a coin or a heavy
metal ball. However the aceeleration ob-
served in air cannot properly be called
anr acceleration due to gravity, since it is
due to the resultant of gravity and air
resistance.

The term “accelerasion due to gravity’’
should be reserved, therefore, for cases in
which air resistance is negligible. Though

3 .
Fig. 5.1. A newton balance records the welght of
a one-kltogram mass to be about 9.8 newtons.

KINEMATICS AND DYNAMICS

the magnitude of 7is independent of mass,
it is dependent on the object’s elevation
—its digtance from the centre of the earth.
The greater the clevation, the less the
weight of the object and therefore the
less the aceceleration due to gravity
becomes. Conversely, as an object falls,
its elevation continually decreases, its
weight continuslly increases, and there-
fore ifs acceleration due to gravity con-
tinually increases.. However, in the case
of objects falling near the earth’s surface,
the vortical displacement is so small in
comparisor with the radius of the earth
that the variation in g ig negligible,

Values of ¢ have been determined in
many localities throughout the world. At
sealevel on the equator, g = 9.781 m/sec?;
at the poles 9.831 m/sec?, and at Toronto
9,806 m/sec®. In the problems in this
chapter, as in Chapter .3, we shall use
g = 9.8 m/sec? or 32 ft/sec?, and assume
in all cases that the effect of air resistance
is negligible.

5-3 THE EARTH’S
GRAVITATIONAL FIELD

For an object falling in a vacuum, we
have already noted that the equation
I = md becomes F-’: = mg, Thus at a
location where g = 9.8 m/sec?, the weight
of a one-kilogram mass is 9.8 newtons,
Figure 5.1 shows this fact recorded by a
newton balance—a spring balance cali-
brated in newtons. The weight vector, of
course, is directed down toward the centre
of the earth, as is the acceleration vector.
At places where the magnitude of 7 is
9.7 m/sec?, the magnitude of Iy for a
one-kilogram mass is 9.7 newtons, The
gravitational force per unit mass is then
9.7 newtons per kilogram, The vectors

+
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drawn in Tigure 5.2 show, to scale, the
gravitational force per unit mass at dis-
tances r, 1.5r and 2¢ from the centre of
the earsh, r being the radius of the earth.
Figure 5.2 then shows a part of the gravi-
tational feld of the earth; the magnitude
and direction of each field veetor depends
on its position in the field.

Fig. 5.2, A portion of the gravitational fleid of
the earth, ‘

5-4 THE PATH OF A PROJECTILE

In Chapter 3 we concluded, after
examining Figure 3.11, that (¢) for a pro-
jectile whose motion has both horizontal
and vertical components, the two com-
ponents may be considered separately,
and (D) the heorizontal component of the
projectile’s velocity remains constant,

We may now use Newton’s second law
to verify these conclusions. In the absence
of air resistance, the only force acting is
the foree of gravity. Since fhis force ncts
down, it has no horizontal component
and therefore the acceleration vector has
no horizontal compounent. As a result the
horizontul velocity remains constant.
Moreover, the downward foree is thesame

as if the projectile were falling vertically;
therefore the vertical aceeleration is the
same as for a vertical fall. Thus the verti-
cal acceleration i3 independent of the
horizontal motion; the two compeonents
may be considered separately.

The equation of the path of a projectile
projected horizontally may be determined
from Figure 5.3. Suppose that the con-
stant hovizontal speed is v, and that the
projectile is at a point Pz, y) at & time
¢ sec after projection.

Then x = ol )
andy = —4gtf  (2)
From (1), { = E '
Substituting in (2)
, &
= —ul,
2.
or gt = 2y
This equation is of the form &* = —4py,

HORIZONTAL DISPLACEMENT x

S e T
ol Y
N

X

VERTICAL DISPLACEMENT ¥ merm———

_Fig. 5.3. The path of a projectile.
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National Research Council, Space Fascilities Branch

Fig. 5.4. A Canadian Black Brant 11l rocket is fired from a special launch site at Resolute on
Comwallis Island in the Canadian Arctic, The nose cone carried a special detector system for

measuring cosmic X-rays.

and is a portion of a parabola having its
vertex at the .point of projection, and
which is symmetrical about the vertical
line threugh this point.

The exercise for this chapter contains
further problems on projectile motion,
problems of a type first encountered in

Chapter 8. The basic methods outlined

in Chapter 3 still apply of course, and,
in addition, Newton’s second law has to
be used in some cases. These problems
are of a type basic to short range artillery
work, But nowadays rockets (Fig. 5.4}
and earth satellites have much greater
range, and the dynamical problems in-

volved are much more complicated.

Before we can begin to consider this latter
type of problem, we must become familiar
with cireular motion,

60

5—5 CIRCULAR MOTION

- Acceleration has been defined as rate
of change of velocity, velocity being a
vector quaniity and therefore having both
magnitude and direction, Most of the
instances of acceleration discussed carlier
involved changes in the magnitude of the
velocity vector, However, we have seen
that acceleration may result from a change
in the direction of the velocity vector.

Consider a stone attached to a string
aiid swung about the hand, so that it
travels in a circle with constant speed.
Although the speed of the stone remains
constant, the direction of motion is con-
tinually changing and therefore the stone
is boing accelerated, The force necessary
to cause this acceleration is obviously
exerted on the stone by the string.
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5-6 CENTRIPETAL FORCE

Figure 5.5 represents ah object of mass
M moving with uniform speed in a circle
whose centre is 0. In the position shown,
the instantaneous direction of motion of
M is along the tangent M A. Therefore
M A represents the direction of the ob-
ject’s velocity vector af this instant. If,
while in this position, the string were cut,
M would move off along the line M A.
However, if the string remains intact it
exerts a forece on M which causes A to
move out of this straight path and travel
the curved path. This force, because if
appears to cause M to ‘‘seek the centre,”
is known as the centripetal force {cen-
trum, centre; petere, to seek).

Fig. 5.5. Uniform circutar motion, The instan-
tanecus velocity vector Is tangent to the circle,

Centripetal force is the force which
must be exerted on an objeet to cause it
tofollow a circular path. It may beexerted
as & tension in a string, as a gravitational,
magnetic, or electric force, by means of
friction, or in other ways. Centripetal
force acts towards the centre of rotation,
and henco at right angles to the direction
of motion, For, if it did not, it would have
a component in the direction of motion
and the speed of the objeet would change.

Centripetal force is therefore called a
central force. Since the acceleration vector
has the same direction as the foree vector
(Newton’s Second Law}, the acceleration
produced by the centripetal force is
directed to the centre of the circle. 1t is
called the centripetal or central acceler-
ation. Its effect is not to cause the radius
of rotation to decrease, but to cause the
object to move closer to the centre than
it would if the force were not acting.

5-7 MAGNITUDE OF
CENTRIPETAL FORCE

The magnitude of the centripetal force
required depends on threo factors: the
mass of the object, its speed, and its radius
of rotation. The greater the mass, the
faster the movement, or the smaller the
radius of rotation, the greater will be the
centripetal foree required. It can beshown
mathematically that the centripetal force
pecessary 0 cause an objeck of mass m
to rotate at a constant speed » in 4 circle
of radius 7 is given by the formula

m?
F, = T

If m is in kilograms, » in m/sec, and # in
m, then I, is in newtons.

The mathematical development of this
relationship follows. P, and P, (Fig. 5.6a)
are two positions on the circular path of
the rotating object; 31 and 7 are the
velocity vectors at Py and P respectively.
The vectors 7, and 7 are equal in magni-
tude but differ in direction; they are
perpendicular to the corresponding radii
0P, and OP,, Let angle P,OP, = ¢, chord
PP, = z and arc P1P: = s

In Figure 5.6 the vectors 71 and 73 are
drawn in their proper directions, origi-
nating from s common point 4.

Then BC = Av
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(b) -

Fig. 5.6, (3) The velocity vectors at two points

on a circular orbit. {6} Construction for deter-
mining the change in velocity.

Bince each of the velocity vectors is per-
pendicular to the corresponding vadius,
the angle between the vectors is equal to
the angle between the radii, i.e,, ZBAC

=4,

Since OP; = OPs; and AB = AC
AOPP, ||| AABC

. OP,_ PPy

" AB ~ BC

LT _ B

Yy Av
where 7 is the radius of the cirele and »
is the constant magnitude of the velocity
veetor. - '
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H
Ap = — o g
r

and the magnitude of the average ac-
eeleration is

M v, 3

At r At
Now if P, — Py, & — s, and the magni-
tude of the instantaneous sceeleration at
Py is given by the relationship
v s
r

a': I—A—t-

But Ait is the magnitude v of the constant
velocity.
v v

SG= ey s —

P r
vt .
The formula ¢ = ;- ooy be written in

other forms. If T is the period of rotation
and f is the frequency of rotation,

P o= %5%?: = 27r7‘f.
. 2o
and @ = %%{a?— = 4g%f2

Note also that as P, — Py, 8 — 0, and
that BC (Fig. 5.6b) is essentially perpen-
dicular to AB. Therefore the vector Ap,
and hence the acceleration vector o are
dirested toward the centre of the circle.

Let us now assume that Newton's
Second Law, which we developed for
straight line motion, holds also for eircular
motion. You will test the validity of this
agsumption in the Laboratory Exercise
deseribed in Section 5-8. I we use the
Sccotd Law formula, F = ma, for civeular
motion, we find that the magnitude of
the centripetal foree necessary to preduce

. ST L
a centripetal acceleration s given by

- mp?
the formula F, = - The force vector,

like the acceleration vector, is directed
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toward the centre of rotation,

1t should be realized that the actual
force applied may not be equal to the
centripetal force required to mainfain
cireular motion. Under these ecircum-
stanees, uniform cireular motion does not
oceur, Two examples follow:

{¢) Mud is thrown from a rotating
bieyele wheel when the foreos of adhesion
of the mud to the tire is less than the
centripetal force required to cause the
mud to follow the same circalar path as
the tire.

(b) For & space satellite cirching the
earth, the only foree acting on the satel-
lite is the gravitational force exerted by
the earth, For & stable civeular orbit, this
gravitational force must be equal to the
centripetal force required for that orbit.

5-8 LABORATORY EXERCISE:
CENTRIPETAL FORCE

If Newton's second law holds for eircu-
lar motion, then F, == E?-z = daimrf?,
where m is the mass in kg of the rofating
object, ¢ is the radius of rotation in metres,
f is the frequency of rofation in revolu-
tions per sec, and F, is the centripetal
foreeinnewtons, Youmay test the validity
of this formula with the apparatus shown
in Figure 5.7.

The apparatus consists of a metal rod
about one metre long, to which » spring
balance calibrated in newtons is attached.
One end of a nylon eord is attached to
the balance. The cord passes through a
polished glass tubing at the upper end
of the rod, and the other end of the cord
is attached to a rubber ball, The length
of the cord between the glass tubing and
the ball should be from 0.5 metre fo

. 1.0 metre,

Hold the rod vertically, using both
hands as shown. Practise whirling the
ball in a horizontal circle with eonstant
speed, so that the spring balanece registers
a constant force. When you have had
sufficient practice, proceed to take meas-
urements as follows.

Whirl the ball at constant speed and
note the reading of the spring balance.
Have your partner determine the time
required for the ball o make 50 revolu-
tions. At the same time you should note
the position of the point of the balance
hook with respect to the circular gradu-
ations on the rod. When your partner
has finished timing the 50 revolutions,
you may cease the whirling,

Fig. 5.7. Apparatus for measuring centripetal
force.
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The mass m of the ball may be deter-

"mined by weighing the ball, The radius »

of rotation of the ball is the distance from
the glass tube to the centre of the ball,
when the hook of the balance is in the
position which you noted as the ball was

‘being whirled. Measure this distance.

Caldulate the frequency f from the data

which your partner recorded.

Compare the value of the product
4r*mzrf? with the value of F, which you
read from the spring balance. Repeat the

_procedure several times. You may vary

m by using balls {or rubber stoppers) of
different sizes. You may vary » by ad-
justing the position of the balance on the

.mefal rod. You may vary the frequency

of rotation by whuhng the ball at dif-
ferent speeds,

Within the limits of experimental error,
is I, = 4n*mrf?? Does Newton’s second
law hold for circular motion?

5--9 EARTH SATELLITES
The successful launching of an earth

. satellite is achieved by the use of multi-

stage rockets. The prediction of the effeet

" of the first stages must take into ascount
~ the fact that the acceleration due to

gravity changes signifieantly during the
satellite’s climb. The final stage is fired
horizontally when the satellite reaches
the desired height, and is designed to
impart to the satellite the speed neces-
sary ‘to set it in a cureglar orblt about

“the earth.

Suppose we 1ep1esent the satellite’s

orbital speed by », and the radius of its .
orbit by B. Then the central acceleration

is %, and this aceeleration, if the orbit is

to be circular, must be equal to g, the

KINEMATICS AND DYNAMICS

acceleration due to gravity at that alti- -

tude, That is,

v

B=4
The radius of the earth is sbout 6.4 X
10® m; therefore, at a height of 500 km,
B = 6.9 X} 10° m. At thizs height ¢ = 8.4
m/sec? approximately. Then » = /gR
= 7.6 X 10° m/sec. Under these con-
ditions, then, the speed that must be
imparted to the satellite by the rocket’s
final stage is about 18000 mi/hr.

We may caleulate also the time re-
quired for the satellite to orbit the earth
once. The distance travelled is the eir-
cumference 27 R of the orbit, approxi-
mafely 43.3 X 10¢ m. The speed v we
calculafed as 7.6 X 10° m/sec. Therefore
the time required is

43.3 X 10! m
7.6 X 10° m/sec
= 5.7 X 10% sec = 95 min,
In practice, the correct combination of »
and R is seldom achieved, and the orbit
is elliptical rather than eireular,

We rieed to be elear about one further
phenomenon in conneetion with earth
satellites. An astronaut in an orbiting
space capsule is commonly said to be
weightless, or to experience weightless-
ness. These terms do not mean that the
foree of gravity acting on him is zero;
indeed it is the force of gravity which
causes him to be eentrally accelerated.
If it were not for this force acting on him
and on the capsule, both would travel in
a straight line far out into space, Actually,
as we saw in the calculations above, the
acceleration due to gravity is about 8.4
m/sec?, and therefore his weight is about
8.4 -+ 9.8, or about 0.86 of his weight
or. the surface of the earth.
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The situation is that both the astronaut
and the capsule are equally centrally
accelerated and therefore the astronaut
exerts no force on the materials upon
which he is sitting or standing, and they
exert no forces on him, Since we usually
judge our weight by the magnitude of
these forces, we say we are weightless if
these forces are absent. Moreover, even
though the astronaut may be moving
through space at about 18000 mi/hr, he
is not aware of this faet for he is not
moving relative to the capsule. We con-
sidered relative motion briefly in Chapter
3; let us look more closely at it now.

5~10 FRAMES OF REFERENCE

Consider the sensations experienced by
an astronaut in a space capsule during
re-entry into the earth’s atmosphere,
during which time the capsule slows down
rather quickly. If he tries to apply

Newton’s second law, he notes that with .

respect to, or in the frame of reference of,
the capsule, he is not moving, but he feels
a force acting on him. In the frame of
reference of the capsule, then, Newton’s
sccond law does not apply. The reason
is that the capsule is accelerating;
Newton's second law does not hold in an
accelerated frame of reference.

You may have noted a similar effect
if you have ridden in a closed truck as it
rounds a curve on & highway. Loose ob-
jects on the floor of the truck slide or roll
across the floor; they are in motion rela-
tive to the truck with no force acting on
them. If you wish to make their motion
accord with Newton’s second law, you
must invent a force which you say is
acting on them—a fictitious force. How-

ever, in an unaccelerated frame of
reference, these fictitious forces are: not
necessary. Again, Newton's second law

does not apply in an accelerated frame -

of reference,

You may wonder, then, if we should
apply Newton’ssecondlaw to the motions
of objects on the surface of the earth.
Surely the earth itself is rotating on its
axis, and therefore constitutes an accel-
erated frame of reference in which
Newton's second law is at least slightly
invalid, and therefore requires a small
fietitious foree to restore its validity.

The classic experiment which indicates
that the earth is indeed rotating wai first
performed by the French physicist
TFoucault. This experiment is performed
with a pendulum consisting of a very
heavy bob suspended by a wire 10 metres
or more in length. If this pendulum is set
vibrating, its inertia is great enough that
it will continue to vibrate for several
hours, As it vibrates, its plane of vibration
continually rotates. The situation is most
veadily understood for a Foucault pen-
dulum vibrating at the earth’s geographie
north or south pole, Here the plane of its
vibration rotates 360° every 24 hours;
perhaps it would be more reasonable to
say that the plane of vibration remains
fixed in space and that the earth rotates
beneath it

Foueault’s experment indicates that
the earth does rotate, and that frames of
reference attached to the earth are really
accelerated frames in which Newton's
laws are not valid. However, the effects
of the earth’s rotation are so small that

they may be ignored except in the most

precise experiments,
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PROBLEMS .

Assume, where necessary; that
g = 9.8 m/sec?
= 0.8 newtons/kg
at or near the surface of the earth.

« What is the weight, at the surface of the earth, of (a) a ball of mass 0.05 kg,

(b) a man of mass 100 kg, (¢) a truck of mass 3.0 X 10* kg?

. The weight of a boy at the surface of the earth is 588 newtons, (¢} What is

his mass? (b)) What would be his weight at an elevation where the gravita-
tional field was 8.0 newtons/kg ? (¢) What would his mass be, at the clovation

- given in (B)? :

. A wooden block, sliding along a horizontal floor, is acted upon by a force

of frietion equal to 109, of the weight of the block. The block comes to rest
from a speed of & m/sec, in 4 see. Find «. -

. An_elevator having a mass of 1400 kg ascends with an acceleration of

0.50 m/sec’. What is the tension in the eable supporting the elevator?

An 8-kilogram mass and a 12-kg mass are suspended from opposite ends of
a string which passes over a pulley. What will be the acceleration of the
masses when the system is released ? What assumptions did you make in
solving this problem? - ' : '

3

. Consider the relationship s = §9#. (¢) What is the effect on s of changing ¢

by a factor of 4? (b) By what factor must { change if s is to change by a
factor of 37 {¢) If s is plotted versus ¢, what sort of graph results? (d) How

_ could you obtain a straight line graph from’this relationship ? Try to do so,

10.

11,

assuming, for the sake of simplicity, that g = 10 m/sec?.

. Suppose that the net force applied to an object is equal to the weight of

the object. What will be the object’s acceleration?

. A stone falls freely from rest. Using ¢ = 10 m/sec?, find (a) its speed at the
‘end of each of the first five seconds, (b) its average speed during each of the

first, five seconds; (¢) the distance it falls during each second, (d) its distance
from the starting point after 1, 2, 3, 4, and 5 sec. '

. A stone which is dvopped from a cliff strikes the ground in § seconds,

With what spéeed does it strike the ground ? How high is the cliff?

A stone.dropped from the top of a tower hits the ground with a speed of
60 m/sec, Find the height of the tower and the time required for the stone
to reach the ground. C

A 45.0-gm golf ball is dropped from a height of 160 cm to a level solid
conerete floor. It rebounds to a height of 90.0 em. Calculate {a) the impulse

- given to the ball by its own weight, during its fall, and (b) the impulse given

12,

13,

-$0.the ball by the floor. State in each case the direction of the impulse.

After having fallen from rest for 2 seconds, & 2-kg mass strikes a pile of

sand and penetrates it to a depth of 10 em. Tind the average force exerted

by the sand on the mass.

A body of mass 2 kg falls freely from rest. Calculate the rate of chahge of
its momentum. '




MOTION NEAR THE SURFACE OF THE EARTH

14,

15,

16.

17,

18.

19,

20,

21,
22,

23.

24,

25,

A mass of 300 gm rests on a smooth table. From it two horizontal light
“strings run in opposite directions. Each string runs over a smooth pulley,
and to the end of one string is attached a mass of 90 gm. To the end of the
other string is sttached s mass of 100 gm. How far will the masses move in
2 sec after being released ?

From the top of a cliff 90 m above a lake, a stone of mass 1.5 kg is thrown
horizontally with a speed of 10 m/sec. Alr resistance in both the horizontal
and vertical planes has the effect of a retarding foree equal to 1%, of the
weight of the stone. When and where will the stone strike the water?
From a window 44.1 metres above ground level, a ball is thrown with a
horizontal veloeity of 5 metres per second. What time is required for its

. descent to the ground? How far Horizontally does it go? Make a sketch

showing its path. Caleulate its resultant speed at the time of impact with
the ground.
An object follows a cireular path with a constant speed of 8.0 m/sec. It
changes divection by 180° in 2.0 sec. Calculate (¢) the magnitude of its
change in veloeity, (b) the magnitude of its average acceleration during
the 2.0 see.

- Assume that, under the attractive force of the earth, the moon revoives
about it in & eircular path with constant speed. () Is the moon accelerated

toward the earth? (b) If your answer in {a) is yes, accoun$ for the fact that
the speed remains constant. (¢} Why does the force exerted on the moon by
the earth not eause the moon to move closer to the earth?

(@) A train goes round an unbanked railway curve; (b) an automobile goes
round an unbanked highway curve; (¢) a boy stands on a moving swing,
In each of these three cases, state: upon what body, upon what part of the
body, and in what direction the centripetal force acts.

A circular ring with a groove on the inside rests in a vertical position. A
marbie rolls in the groove at high speed so that it does not leave the groove.
Show, in a diagram, the vertical forces which act on the marble when it is
() at the lowest point in its path, (3) at the highest point. Label the
forces, indieating what they are exerted by.

2
Show that the expression f,—has the units of acceleration.

X 2
Consider the relationship F; = ”—?—. What is the effect on F, of (¢) ehanging
m by a factor of 3, (b) changing » by a factor of %, (¢} changing r by a

factor of 47 Interpret ench of the changes in terms of vehicles rounding.

curves in o road.

A car of mass 1.5 X 10® kg travels around a cireular curve at a speed of
25 m/sec. If the radius of the curve is 75 m, caleulate the centripetal force
acting on the car. What exerts this centripetal force?

A 1500-kg mass rotates ab a constant speed of 12 m/sec in & circle of radius
200 m, Caloulate the magnitude of the centripetal force acting on the mass,
A one-kilogram stone is whirled in a vertical circle at the end of a string
1.5 m long. The constant speed of the stone is 5 m/sec. What is the tension
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in the string, (¢) when the string is horizontal, (b) when the stone is at the
top of the cirele, (¢} when the stone js at the bottom of the eircle?

26. The moon is an earth satellite with a period of about 27% days. Its radius
of rotation (the distance from the earth to the moon) is 3.8 X 105 km.
(¢} Calculate the magnitude of the moon’s centripetal acceleration. (L) State
the direction of the acceleration. (¢) What force causes this acceleration ?
(d) How does this force compare with the similar force at the earth’s surface?

_5-12 SUMMARY

The magnitude of §, the acceleration
due to gravity, is independent, of mass
but is dependent on elevation,

. The gravitational foree (weight) per

unit mass is g newtons/kg. That is,
' Fo = my

. For a projectile,

(@) the path is parabolie, .

(b) the horizontal and vertical com-
ponents of motion may be con-
sidered separately.

. Circular motion, even at constant

speed, is aceelerated motion, beeause

- the direction of the velocity vector is
+ eontinually changing,

The following formulas apply for cir-
cular motion at constant speed.
02
r
my?
o=
Both the centripetal acceleration and
centripetal force are direeted to the

L ==

‘centre of the circle, }
. For an earth satellite in a stable cip-

cular orbit,

v = VR
p_ 2R
#

Newton’s Second Law is not valid in
accelerated frames of reference. In
order to make the second law seem to

8.

apply in aceelerated frames of refer-

- ence, we invent fietitious forces.

The wide applicability of Newton's
Second Law in unaceelerated frames
of reference should now be evident.
The cases we have investigated are
summarized below.

{a) 1f the force vector and the veloeity '

vector have the same direction,
the effect &f the force is to increase
the magnitude of the velocity vec-
tor, without changing its direction,

{b) If the force and velocity vectors
have opposite directions, the effect
of the force is to decrease the mag-
nitude of the velocity vector,
without changing its direction,

(¢) If the force veetor is perpendicular
to the velocity vector, the effect of
the foree is to change the direction
of thé velocity vector without
changing its magnitude. Circular
motion results,

(d) In all other cases, the effect of the
force is to change both the direc-
tion and magnitude of the velocity
vector. This is the case for pro-
jectile motion. In these cases, the
motion is most readily analysed
by considering componentsparallel
to, and perpendicular to, the force

" vector, : i

In all cases, the vector law F = md

apples,




'Chapter 6

Universal Gravitation

6—1 INTRODUCTION

We noted in Chapter 4 that the orbital
motion of the planets, apparently in the
absence of any force acting on them,
puzzled the early philosophers, We noted,
too, their unusual explanation that celes-
tial matter possessed properties which
terrestrial matter lacked. It was not until
the seventeenth and eighteenth centuries
that the problems of celestial motion were
solved in terms acceptable to us today.
The names of two of the men involved—
Galileo and Newton —are already familiar
to ug, but there were many more who
contributed agreat deal. Who these others
were, what their contributions were, how
they arrived not only at & kinematic
deseription but at a dynamie solution for
celestial motion is a very interesting and
ingtructive story. As we shall see in this
chapter, they eventually discovered that
aforee is responsible for planetary motion.
They described in mathematical terms
the magnitude of that force, and they
put an end to the theory that celestial
and terrestrial mechanics differ. Only a

69

very brief oufline of this story can be
given here. ’

6-2 EARLY IDEAS ABOUT
THE UNIVERSE

More than twenty cenburies ago scien-

tists had assembled considerable infor-
mation concerning astronomy. They
observed that the so-called fixed .stars
seemed to move on spherical shells with
the earth at their common centre (see
Fig. 6.1), But seven celestial bodies—the
sun, the moon, Mars, Mercury, Venus,
Jupiter and Saturn appeared to move
among the stars. Moreover, the motion
of the laiter five seemed erratic, and the
name planet (wanderer, in Greek) was
applied o all seven, How could their
motions be explained ? ' _
Barly explanations made two basic

assumptions, both of which seemed .

reasonable at the time—and for many
yeaxs later, The first assumption was that
the universe was geocentric (earth-
centred); that the earth was stationary
at the eentre of the universe. The second
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Fig. 8.11. For problem 14. Fig. 8.12. For problem 15.

An object of mass 1.0 kg and speed 0,40 m/sec collides with a 3.0-kg
object which is initially at rest. The forces of interaction depend only on
the separation of the two objects. Calculaie the velocity of each after the
collision.

A neutron of mass 1.67 X 10-2" kg, travelling at a speed of 10® m/sec,
collides with a stationary deuferon whose mass is 3.34 X 107*" kg. The coi-
lision is elastic, and the particles do not stick together. Caleulate the speed
of each affer collision.

Two spheres, 4 and B, are involved in a perfectly elastic, head-on,
collision, The speed of A before collision is 10 m/sec; B is at rest. After
collision B acquires a velocity of 16 m/sec. The mass of A is four times
that of B. (&) What is the speed of A after impaet? (b} What percentage of
A’s kinetic energy is transferred to B?

In Section 8-10, the following equation (equation 6) was developed:

_ My — s

U= e »

(a) What is true of oy if () my > ma, (80) my = me, (581) my < -me? (b) Check
your mathematical predictions experimentally.

(223
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KINEMATICS AND DYNAMICS

(a) Consider a head-on collision between & moving ball 4 and a stationary
ball B of equal mass. Prove that, if the collision is elastic, 4 stops and B
acquires a speed equal to the initial speed of A.

(b) Consider a glancing collision between a moving ball 4 and a stationary
ball B of equal mass. Prove that, if the collision is elastic, the paths of 4
and B after collision are a6 right angles to cach other.

A ball on the end of a string 40 cm Iong rotates in s horizontal cirele with
constant kinetic energy of 8 joules. (¢) Caleulate the centripetal - force
exerted by the string on the ball. (b)) How much work does the centripetal
force do on the ball during each revolution?

If the centripetal force acting on a rotating object did work on that object,
what would be the effect on the energy possessed by the object? Is this

actually the case? What conelusion must be drawn?

8-12 SUMMARY

1.

Work = force X displacement
' W = Fscos 8

If F and ¥ have the same direction,

.8 =0and cos @ = 1.

Then W = Fs.
1 joule = 1 newton-metre.

The centripeta,l force does no work on
a rotating object, and does not ehange
the energy of the object.

. The work done by the net force acting

6,

on an object is equal to the increase in

kinetic energy of the object. That is,”

Fs = fm(® — ub)
The ares under a force-distance graph

. An interaction between two objects is
" elastic if the force of internetion de-
pends only on the separation of the ~

two objects,

In an elasticinteraction, kinetic energy
isconserved, inaddition to momentum,

-That is, Ap = 0 and AEx = 0,

O




Chapter 9

Potential Energy

9-1 INTRODUCTION

In Chapier 8 we noted that kinetic
energy disappeared during the first stage
of an elastic collision, During the second
stage of the collision this kinetic energy
is completely recovered, so that the total
kinetic energy of the two objects is the
same immediately after the collision as
it was immediately before. However, we
need to discuss more fully this disappear-
ance and reappearance of kinetic energy.
Does any or all of the energy really dis-
appear; or is any or all of it temporarily
sransformed to another form?

9-2 STORED ENERGY

We shall try to answer these questions
by considering again the slow elastic
interaction which we considered first in
Section 8-8. Figures 8.5 and 8.6 are re-
produced here for your convenience, (See
Figures 9.1 and 9.2.) We found in Section
8-8 that the kinetic energy of the car at
g given position on the way in wag the

99

same as it kinetic energy at that position
on the way out. The reason for the ob-
gserved conservation of kinetic energy
(before and after) is that the nef force
acting on the car depends on distance
onlty, and not on the direction of the car’s
motion.

But kinetic energy is not conserved
during the interaction; it becomes zero
at the distance of closest approach (Tig.
9.1f or Fig. 9.2a). However, at this stage
of the interaction, the magnetic force is
able to, and is about to, do work on the
car. That is, because the two magnets
have been brought close together, energy
has been stored in the system. This stored
energy, or stored work, is called potential
energy, and is given the symbol Ep.
Because the interaction is elastic, the
potential energy of the system, when the
car is at the distance of elosest approach,
is equal to the kinetic energy lost by the
car on the way in. Moreover, the poten-
tial energy lost by the system, as the car
reburns to its original position, is equal
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Fig. 9.1. Kinstic energy disappears dur-
ing the first stage of a magnetic inter-
action.

Physics Depariment,
Undversity of Western Ontario

Fig. 9.2. Kinstic energy reappears dur-
ing the second stage of a magnetic inter-
action,
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POTENTIAL ENERGY

to the kinetic energy gained by the car
on the way out.

Let us now examine the corresponding
energy relationships when the car is at
some intermedialc position, At the stage
shown in Figure 9.1¢, the car has lost
gome kinetic energy and the system has
gained some potential energy. Is the
kinetic energy lost cqual to the potential
energy gained? Here again the answer
depends on whether the interaction is
elastic, that is, whether the force acting
depends on separation only. If the col-
lision is elastic,

ABg = —Al,
or AEK B AEP = 0
or Bz + Ep is constant,

o —————
Q-—Jo

SN
g

Fig. 9.3. Mechanical enorgy is conserved durning
an elastic (nteraction.

Any one of the three equations above
is & mathematical statement of the law
of conservation of mechanical cnergy.
During elastic interactions—interactions
not affected by internal or external fric-
tional forces—the sum of the kinetic and
potential energies remains constant. Any

1l

kinetic energy which digappears is con-
verted entirely to potential energy and
vice VEISA.

Conservation of mechanical energy for
the magnetic interaction (Figs, 9.1 and
9.2) is shown graphically in Figure 9.3.
When the car is ab position 4 {(at the
limit of the range of interaction), the
energy is entirely kinetic and is equal to
the area of figure ACE, When the car is
ab position ¢ (at the distance of closest
approach), the energy is entirely poten-
tial and js equal to the arvea of figure
ACE. When the car is at some inter-
mediate position B, the energy is partly
kinetic and partly potential. The kinetic
energy at B is equal to the ares of figure
BOED; the potential energy at B is equal
to the area of figure ABD,

9--3 GRAVITATIONAL
POTENTIAL ENERGY

Suppose an object of mass m (Tig. 9.4)
is elevated a distance Ak in the earth's

MASS
m

Fig. 9.4. When an objoot fg elevetod, itn gravi,
taticnal potemtial energy INoIeRIRD.
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gravitational field. The force necessary
to cause it to move upward at constant
speed (that is, without any change in
kinetie energy) is equal 1o the weight my
of the objeet, The work done on the objest,
is then mgAh, and because of this work
that was done on it, the objeet is able to
do work that it was unable $o0 do before,
If & string is attached to the object and
passed over a frictionless pulley to o
second object of mass m as shown in
Figure 9.5, and if the first mass is given
a slight downward push it can elevate
the second mass through a distance Ah,
Thus any object possesses potential
energy because of its position in the earth’s
gravifational field. This energy is called
gravitational potentisa) energy and wegive

~ it the symbol E4. The change AE; in an
object's gravitational potential energy as
it undergoes a change Ah in height is
given by the formula

HEIGHT of
RELEASE

Ex

RINKEMATICH AND DYNAMTICS

m

Flg. 8.8, The gravitatlenal potentlal energy of an
og’st givan it the ability to do work on a second
objegt,

Allg = mgAh
Ax an objent {alls, its kinetic energy
inorenges and ite potential energy de-
cransey, If the fall talkoes plasein a vacuum,
or if, for prdetioal purposes, air resistance

TOTAL ENERGY E

A\

A DISTANCE OBJECT HAS DROPPED

ENERGY

Fig. 9.8. The sum of the kinetic and gravitational potentlel gnerglon of a falling object remains

constant,

i,

sl

e
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is negligible, mechanical energy is con-
served, that isg,
ABg + AEg = 0

In other words, the total energy of the
object remains constant, We shall not go
through all of the reasoning involved here;
it is the same as that for the trolley dis-
cussed earlier in this chapter. Note that
the foree of gravity is essentially constant
if Ak is small, and that its value does not
depend on whether the object is moving
up or down. Figure 9.6 shows the relation-
ship between the kinetic energy Fx, the
gravitational potential energy E, and the
total energy E.

9~4 WORKED EXAMPLE

A projectile of mass 20 kg is projected
vertically upward with an initial speed of
50 m/sec. Find (@) its original kinetic
energy, (b) its kinetic energy after 2 sec,
(¢) the change in its gravitational poten-
tial energy during these 2 sec.
SoLuTioN
(@ By = jm?

= ¥ X 20 X 50? joules
= 2,5 X 10% joules
(b) Using the formula v = « 4 af, and
choosing the downward direction as the
positive vector direction,
v == (=50 4 9.8 X 2) m/sec
= —30.4 m/seo
That is, the upward speed of the projec-
tile at the end of 2 sec is 30.4 m/sec.
By = % X 20 X 30.42 joules
= 9,2 X 10% jouleg
(¢ AEg = 9.2 X 10° joules
— 2.5 X 104joules
= —1.6 X 10 joules
If mechanical energy is conserved,
A g = —AEx = +1.6 X 104 joules.
That is, the increase in Iy = 1.6 X 104
joules.
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The increase in E g may be caleulated
by another method,
s =yt 4 ot
Ah = (60 %X 2 — & X 9.8 X 4) metres
= 80.4m
AR g = mgAh
= 20 X 9.8 X 80.4 joules
= 1.6 X 10*joules

986 LABORATORY EXERCISE:
POTENTIAL ENERGY

(a) The force-extension ratio for q
spring. The extension s of a spring depends
on the magnitude of the force F' used to
stretch the spring. To determine the
nabure of the relationship between I” and
s, hang a gpring from a support (Fig.
9.7a). Mark the position of the lower end
of the spring. Now hang & 0.5 kg mass
on the end of the spring and mark the
new position of the lower end of the spring
(Fig. 9.7b). The distance between the two
markers is the cxtension s. The foree in
this case is the weight of the 0.5 kg mass,
that is, 4.9 newtons.

Repeat the above procedure for several
different masses, being careful not to
stretch the spring too far. Draw a graph
with s as abscissa and F as ordinate. Is
the graph a straight line, within the limits
of experimental error? If the graph is a
straight line, what is the relationship
between I and s? What is tho slope of

the graph ? The slope—the eonstant valug'

of Es——is called the force constanty, o

force-extension ratio, of the spring, tnd
is usually given the symbel b ‘I'he
equation of the graph is then I = I,

(b) Potential energy slored tn o apring,
When s spring is siretohed, worlk s done,
and potential enorgy fu sbored in the
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Fig. 9.7(a). An unloaded spring hanging verti- '

caily,

spring. If the interaction is elastic, tho
wotk done by the force stretehing the
spring is equal to the potential energy
stored in the spring. The potential energ
may be caleulated irom the force-
extension graph (Fig. 9.8). The potential
energy stored at extension s, is the ares of
triangle 0 A B and is equal to $04 + AB.
304 « 4B = }s 4
But F, = ks
o Bp = 3ks}
Similarly the potential energy stored
when the extension is s is the aron of
triangle OCD and equals ks,

The increase in potential energy ss tho
extension incresses from s; to s is
$h(s; — §%) and is equal o the ares of
figure 4BDC,

fl
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Fig. 8.7(b), The'sama opring stretched by a 0.5
kg magn.

it

Oaloylatd the petentisl energy stored
in the spulngdey axtenaions of 20, 25 and
30 om, and theinorenss in potentislenergy
o8 tho extenalin inoveases from 20 em to
30 em, If youl geaph of force versus ex-
tonsion ls net @atinight line, the increase
in potonélal pnergy must be found from
the nron of fgme ABDC on the graph,
and not fram.the exprossion 3e(si — ).

(o) Changas  potenidal energy. HMang
1 one=kilogram mass on the spring and
support 1t with your hand (Iig. 9.9a) so
that tho extonslun i about 20 em. Mark
tho posltion of the lower ond of the spring,.
Rolense tho muas, and mork the position
of the lower ond of the spring when the

Cmusg |8 ab {ts lowoesl point (Fig. 9.9b).

Soveral taly may bo nocossary, Caleu-




POTENTIAL ENERGY : 106

late the increase in the potential encrgy
stored in thespring, and the loss of gravi-
tational potential energy of the mass. Are
the two quantities equal ! Did you expect
them to be equal? Is mechanical energy
conserved in this interaction? Is it an
elastic interaction?

9—6 CALCULATION OF AEg
WHEN A/ IS LARGE

The change in an objeet’s gravitational
potential energy cannot be calculated
from the formula Alf ¢ = mg AR if Al is
( ¥ " Py 50 large that ¢ varies appreciably. Insuch
EXTENSION s (metes) —e - cases, & more general formula must be

. used; the development of this formula
Fig. 9.8. Force-extension graph for a spring. - follows, .

FORCE F (newtons) —a~

Flg. 8.8(a). The one-kilogram mass is supported  Fig, 9.9(b). When the mass s mlaesud, il fﬂlli
by hand, limiting the extension of the spring to to the position shown hora,
about 20 cm. . -
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We have seen in Chapter 6 that the
gravitational force Fy exerted by the
esrth on an object of mass m at a dis-
tance r; from the centre of the earth is
given by the formuls

Fy = G’.:;M
where M is the mass of the earth and @
is the grawtatmn congtant. If this gravi.
tational force remains constant, the work
necezsary to elevate an objedt from a
distancer; to a distance , from the earth’s
centre (Fig, 9.10) is given by W = Fs,
W= GmM(h -~ 11}
1

But the force does not remain constant,
and #} is not the conecﬁ denominator to
use here, nor is 75. By means of mathe-
matics beyond the scope of this book, it
may be shown that the denominator
should be ryry.

O.l W =

GmM (‘I'g - ?‘1)
i1
or W = GmM ( 1)
i
But the work done against gravity is equal
to the gravitational potentlal onergy
gained by the object.

= GmM (~ - l)
U S

9-7 ZERO OF GRAVITATIONAL
POTENTIAL ENERGY

When does an object in the earth’s
gravitational field possess zero gravita-
tional potential energy? This question
does not really need to be answered, for
aknowledge of the change in gravitational
potentisl energy is all that is necessary
in most cases. However, formulae and
caloulations are simplified if we make an
arbitrary choice of the level at which E ¢
is zero. T'wo such choices are widely used,

KINEMATICS AND DYNAMICS

(a) Heights of buildings are usually
measured from ground level; that is, the
height of the ground is taken as zero.
Similarly, the gravitational potential
onergy of an object may be taken as zero
atground level, or at any other convenient
level. If heights are measured from this
level, the formula AE ¢ = mg Ah becomes
Eq “2 mﬂh.

|
!
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Fig. 8,10, Work f at be done to elevate an ob-
lect in the sarth'e-gitivitetional fiald.

(b) Another shelos Is frequontly made
when disensilg the motions of earth
satelllten, In this cass, the value of B,
for an objeot Is sadd to be zero when the
objeot lg aé an Infinite distance from the
oentro of the aarth, Sinoce the value of E,4
incronscs o the distance from the centre
of the earth Inorenses, it follows that the
value of 4 i8 negative at any finite dis-
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tance from the earth’s eentre. Lot us
examine the situation mathematically.
Suppose an object is at a distance r
from the centre of the earth, and is then
removed to an infinite distance, Substi-
tuting in the formula
Aty = Gmb(L - l)

3 )
weobtain' AR, = GmM ;1— — 0)
GmM
?l
But the final value of f4 is zero, there-
fore the initial value of B4 must have

Gm

e AE(; =

heen — . {There is an easy snalogy

here. If the temperature increases 5
degrees to a final value of zero, then the
initial teroperature must have been —5
degrees). Therefore, assuming gero po-
tential energy at an infinite distance from
the earth, the potential energy at any
finite distance » i given by the formula
By = _m
r
9--8 ESCAPE ENERGY AND
ESCAPE VELOCITY

Suppose that we wish to launch an
earth satellite which is meant to escape
from the earth’s gravitational field rather
than to go into orbit, What minimum
speed and kinetic energy must the satellite
have? As it moves away from the earth,
its kinetic energy decreases and its po-
tential energy increases, If we ignore the

effects of air resistancein the initial stages,

ABg = —ABg
But AR g = w—GT;M
where 7, is the earth’s radius.
o Ay = G’ff‘f

107

The minimum kinetic enorgy at launch-

GimM for then the kinetic

ing must be
e

energy at infinite distance would just be
zero, This works out to about 9.4 X 104
joules for a 3000 pound sutellite. This
energy is called the escape energy of the
satellite; it depends on the satellite’s mass.

The escape velooity is the minimum
initial speed (upward) which the satellite
must have in order to esoape. It is in-
dependent of mass, because

By = g = 2

and AT

The escape velocity works out to about
11,2 km/see, or about 25000 mi/hr.

9-9 BINDING ENERGY

The total energy E of a satellite is the
sum of its potential and kinetic energies,
E = ymt — GT’,M
This total energy may be positive, zero,
or negative, If the total energy is positive,
thesatellite can eseape with kinetic energy
to spave, If the total energy is zero, it can
just esoape. If the total enorgy is negs«
tive, the satellite cannot escape; it i8

bound to the earth.

Suppose that the total enexgy is ~107
joules. If the satellite is to escape, i
energy mush be at least zero; that Is)
107 joules of energy must be supplled to
it. This 107 joules of energy Is oalled the
binding energy of the satellite, In general,
for any object in the gravitational feld
of the earth,

Binding Energy =

B Gn;:M

-k,
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9-10 PROBLEMS

Where necessary, use
g = 9.8 m/sec? ot or noar the earth’s surface
¢ = 6.67 X 10" nowton-metres*/kg?
mass of earth = 6.0 X 10% kg
radius of earth = 0.4 X 10"m

1. List as many systems as you can in which onergy is stored and released
later.

2. Consider the trolley apparatus showtt in [Mgures 9.1 and 9.2, If the track is
level, kinetic energy is not consorved. lxpluin,

3. In some areas electric motors are used to clovate water to reservoirs. Later,
the water is released to turn genorators to produee eloetricity. Discuss the
procedure from the point of view of conservation of mechanical energy.

4. A book weighing 12 newtons is lifted 3.0 m, Caloulate (@) the work done on
the book, (b) the change in its potontial enorgy. :

5. A 60-gm mass projected vertically upward resches its maximum height in
5 seconds. Calculate (a) the speed of projection, () the initial kinetic
energy, (¢} the maximum height, and (d) the gravitational potential energy
at maximum height.’ :

6. A boy on a sled starts at rest at the top of an loy hill, If the vertical height
of the hill is 15 m, and if his speed ot the bottom i 10 m/sec, what per cent
of his initial potential energy was not convorted into kinetic onergy?

7. A hoist lifts a 3-kg stone to a height of 100 m snd then drops it. What is
the kinetic energy of the stone when it is half-way to the ground? -

8. A stone of mass 0.20 kg is carried in o helivopter which Jo hovering 200 m
above the ground. (¢) What is the gravitational potentisl energy of the stone
relative to the ground? (b} The stone is thrown vertlonlly down with an
initial speed of 7.0 in/sec. Caloulate (¢) its kinotlo energy after it has
fallen for 5 sec, (#7) its gravitational potentinl enérgy after it has fallen
for 5 sec. ’ : o

9. A pendulum consists of a 50-gm mass on the ond of o string 60 em long.
The mass is pulled aside until the string males an anglo of 60° with the
vertical, and is then released. What will bo ity maximum speod as it vibrates?

10. A box of sand of mass 10 kg hangs at the ond of & long, light rope. When a
bullet of mass 45 gm and moving horizontally strikes the box and remains
buried in if, the box swings until it is 18 em abovo s fuitinl height. Caleulate
the initial speed of the bullet. :

11. A 0.2-kg bullet travelling horizontadly nt 500 m/soo strikes and imbeds
itself in a stationary wooden block susponded wé tho ond of o long wive,
causing the block to swing, If the muss of the blogk is 200 kg, caleulate
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(a) the speed of the block immediately after impaect, (b) the maximum
height to which the block rises as it swings.

12. A 1.0-kg objeet is projected up from the top of a cliff at an angle of 60°
with the horizontal. If the cliff is 40 m high and the initial speed of projection
of the object is 20 m/sec, caloulate the magnitude of the velocity of the
object when it is 10 m above the eartl’s surface at the base of the cliff.

13. The force-extension graph for a spring is shown in Figare 9.11. Calculate
(a) the work that must be done to extend the spring (2) 0.2 m, (#) 0.4 m,
(b) the potential energy stored in the spring when the extension is (£) 0.2 m,
() 0.4 m,

14. The force-compression graph for a spring is shown in Figure 9.12. Calculate
(a) the potential energy stored in the spring when if is compressed 0.1 m,
(b) the work necessary to compress it 0.4 m, (¢) the potential energy lost by
the spring as its compression changes from 0.4 m to 0.2 m.

) /
L 25 /
/ )4
4 / t 20
p 7
o
3 7 g 16 /
2 b
vt
2 7 g 10
/ O
/ (VY
1 // 5 /
..
0 0.1 0.2 0.3 0.4 0 0.1 0.2 03 0.4
EXTENSION (M) i COMPRESSION (M) e
Fig. 9.11. For problem 13. Fig, 9.12. For problem 14,
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28. In Section 5-9 we showed that tho speed v of u sniellite in a cireular orbit of
radius 7 is given by the formula v = /i, Wo wlao know that g « ;15 Show

that the speed decreases as the radius of the orblt increnses. What effect does
an increase in the radius of the orbit have on tho porviod of the satellite ?

29. Show that the kinetic energy of o satollito in n stable cireular orbit is
exactly ¥ of its escape energy at the nltitude of the orbit.

' 9-11 SUMMARY (b) Lseapo onergy of a satellite =
1. Potential energy is stored energy. mdf
2. During an elastic interaction, me- vy !
chanical energy is conserved, That is, (c) Eﬂu%%q_yelociby of a satellite =
ABy = Allp" 2GM
3. If Ahis small, AHg = mg Ah If Ahis e !
A | {d) Total energy of a satellite =
large, A = GmM el ;—;) ﬁﬁf i GmM
4, If Hq is taken as zerv at an infinite 2 r!
distance from the earth, then, (¢) Binding energy of a satellite =
GmM amM y_}gf

(¢} By (at distance #) = — R y 3



Chapter 10

Conservation of Energy

10—1 INTRODUCTION

Inaninelastic collision, the total kinetic
energy after collision is less than the total
kinetic enorgy before collision, and yet
the potential energies of the colliding
objects have not changed. Mechanical
energy (kinetic plus potential energy) is
not conserved,

As an object {alls through air, it ac-
celeratesfor a time, but eventually reaches
% limifing constant speed. Thereafter as
it descends it loses gravitational potential
energy but does not gain kinetic energy.
Again, mechanical energy is not conserved.

As o curling stone slides along a sheet
of iee, it slows down and comes to rest.
It loses kinetic energy but it does not
gain potential energy, and again the total
meehanical energy decreases,

The one commeon faetor in all of these
cages seems to be friction, The force of
friction exerted by the ice on the curling
stone, the force of friction exerted by the

air on the falling object, and internal
friction within colliding objects seem to
be responsible for the energy losses. Buy
what becomes of this lost energy 7 What
is the effect of the work done by the
forces of friction?

10—-2 THE EFFECT OF FRICTION

The answer to the above questions ig
fairly obvious to anyone who has warmed
his hands by rubbing them together, or

started a fire by rubbing two stioks to.

gether, Friction is respounsible for the
production of heat.

In some cases, the amount of hoat pros:
duced may .be so small that b passes

unnoticed. This is frue for o ourling stona
shiding on ice, and for u stone falllng
through air for a short distuneo, Here the
rate of loss of mechanical onorgy lu low,
On the other hand, the nose sona of o
satollite re-entoring tho ourth's atmoss
phere becomes very hol, In this oase, the
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- rate of loss of medha,ningl energy is high,
© It may be, then, that the loss of me-

chanical energy in frictional interactions
is balanced by the production of heat.
As a result, we may be able, by consider-

- ing heat as a form of energy, to say that

encrgy is conserved in inelastic inter-
aotions. Before we come to this conclusion,
we must show that the heat energy pro-
duced is proportional to the mechanical

7 enexgy which disappears.

- 10-3 THE MECHANICAL

EQUIVALENT OF HEAT-
Prior to 1800, heat was not considered

" to be a.form of energy, snd units ofher

than those used for measuring mechanical
energy were adopted for measuring quan-

tities of heat. The calorie, for example, is.
- defined as the quantity of heat required
. to raise the temperature of one gram of
- water one centigrade (Celsius) degree. In

the half century following 1800, experi-
ments made it olear that heat could be
considered as a form of energy.

In 1798 Count Benjamin Rumford ~

(1742-1814) established that, in horing

-cannon, the amount, of heat evolved had
. little relation to the quantity of shavings,

the sharpness of the tools, or the kind of

metal, but was proportional to theamount

of mechanical work expended. The pre-
cise rvelationship between the heat pro-

‘duced and the mechanical work expended

wad not determined, however, until James
Joule (1818-1899) performed a series of
experiments between 1843 and 1850. In
one. experiment, water was churned by
paddles and the rise in temperature of

-the water was compared with the me-

chanical work donein turning the paddies.
In another experiment, mercury con-

KINEMATICS AND DYNAMICS

tained in an iron vessel was stirred with
an iron paddle. In yet another experi-
ment, heat was produced by rubbing two
iron rings together under mercury, In all
of these experiments, Joule found a con-
stant ratio (within the limits of experi-
mental error) between the heat produced
and the mechanical work done, This con-
stantratiois called the mechanical equiva-
lent of heat and is denoted by the symbol

J. Thus.J == %, where W is the mechani-

cal work done and H is the heat produced.

The apparatus used by Joule in the
water-churning experiment is illustrated
in Figure 10.1. Paddles immersed in water
in a calorimeter are turned when masses
M, and M, descend and turn the spindle

. of the wheel. The mechanical work done

is ealoulated by multiplying the sum of
the weights of the masses M, and M, by

* the distance through which they fall. The

heat produced is measured by multiply-
ing the mags of the water plus the water
equivalent of the calorimeter by the rise

. in temperature,

Since Joule’s time, many experiments
have been carried out to determine the

value of the ratio % The value com-

monly accepted now is 4,186 joules per
calorie; that is 1 calorie of heat energy is
equivalent to 4.186 joules of mechanical
energy.

10-4 THE NATURE OF
HEAT ENERGY

Experiments such as those performed
by Joule indicate that heat may be con-
sidered as a form of energy. But what
sort of energy is it—a new form or one
related somoehow to either the potential
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Fig-10.1, The epparatus used in Joule's experiment to determine the mechanical equivalent of heat,

or kinetic energy with which we are
already familiar? The molecular theory
of matter, which also was developed in
the nineteenth century, helped answer
this question,

The molecular nature of matter became
evident as the result of many experiments,
particularly in the field of chemistry. A
molecular model was constructed which
pictured & gas as being composed of mole-
oules in rapid motion, and separated from
one another by distances which are large
compared with thedimensions of themol-
ecules themselves. This model provided
explanations for many properties of gases.
We cannot disouss all of these explana-
tiong here; we shall discuss only the energy
of the molecules, for it is this onergy
which aceounts for their heat content.

Molecular motion may be of several
forms. (¢) The molecule may be under-
going motion in a straight line and possess
kinetic energy of translation. This kinetic
energy is the same as the kinetic energy
of moving objects which we considered in
Chapter 8. The molecules of monatomic
gases undergo translational motion only.

(b) Polyatomic gas molecules (molecules’

composed of several atoms) may rotate
and therefore possess rotational kinetic
energy. {¢) In polyatomic molecules, the
atoms may vibrate within the molecule
and therefore possess kinetic energy of
vibration.

The kinetic energy of translation of a
gas moleoule can be shown to be pro-
portional to the absolute temperature of
the gas. This means that we may consider
the temperature as a measure of the
avorage kinetic energy of translation of
the molecules. Botational and vibratory
motions,do not affect the temperature.

It would seem, then, that the total
heat content of a gas would be the sum
of the average kinetic eneorgies of {rang-
lation of all the molecules. This is tyye
for a monatomic gas, but for polyat:ouﬁﬁ
gases the rotational and vibrational entjs
gies have to be considered g well, Tn
addition, potential energy ohanges due
to changes in the arrangements of tho
atorns in the molecules sy have o be
taken into consideration,

The higher the temporature of an
object, the more repidly tte maleaules
move. If the rapidly moving wolooules
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of a hot object or a hot portion of an
object collide with the more slowly mov-
ing molecules of a colder object or & colder
portion, some kinetic energy is transferred
to thelatter. Thus heat flow or conduction
may be explained, in pari at least. (Thers
is considerable evidence of electron trans-
for as well.)

If heat energy is removed from a sub-
stance, by conduetion or other means,
the molecules slow down and the tem-
perature drops. The average distance
between molecules decroases, and the
substance contracts or may even undergo
a change of state, from a gas to a liquid,
or from a liquid to & solid.

10--5 THE LAW OF
CONSERVATION OF ENERGY

Having chosen to define heat as a form
of energy, we ave tempted to conclude
that there is a law of conservation of
energy which applies universally. Before
we malke such a conclusion, let us review
the cases which we have considered in
Chapters 8, 9 and 10,

(a) Interactions free of friction. Here
we include elastic collisions, objects fall-
ing in a vacuum, and the motion of a
pendulum. Friction may not be com-
pletely absent in all of these examples,
but its effect is negligible, and therefore
little heat is produced. The energy which
we have to consider then is either kinetic
or potential,

In an elastic collision, no potential
energy is gained permanently by either
of the colliding masses. Therefore, if there
is a law of conservation of energy, kinetic
energy should be conserved, Thiswefound
to be the casge.

KINEMATICS AND DYNAMICS

When an object changes elevation {and
this includes the mass at the end of the
suspension wire in a pendulum), its pofen-
tial energy changes. However, we have
found that its kinetic energy changes too,
and that Ay = —AF, We found a
similar relationship when we considered
the trolley in a magnetic field (Sect. 9-2).
Again, a law of conservation of energy
seems to be applicable.

(b) Frictional interactions. Here we
include inelastic collisions and objects
falling through air or other fluids. In fact
we inelude any interaction im which
frietion reduces the total mechanical
energy of the system of objects which we
consider. The mechanical energy of such
2 gystem—often called the mechanieal
energy of bulk motion—is not conserved.
¥ wo are to insist that a law of conser-
vation of energy applies here, we must
look for internal energy which is stored in
the system, We find it in the changed
molecular energy, that is, as heat, which
we decided to call & form of energy, When
we conclude, as o result of experiment,
that 1 calorie = 4,186 joules, we are
really assuming that all of the mechanical
energy lost is converted into heat energy.
This assumption ig not an unreasonable
one. Wefeel convinced (though we cannot
proveit), that energy should be conserved,
and that no other recognizable forms of
energy are produced,

Ag a result of countless experiments
involving energy in many forms, it seems
likely that onergy is always conserved.
Energy may be'{ransformed from one
form to another, but the total amount
of enorgy aftor the transformation is the
samo as Lho fota) amount of energy before
the tronsformation. The applisstion of
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this principle to ascale which encompasses
the whole universe 18 now uuder investi-
gation. But we feel reagonably confident

10-—-6 PROBLEMS

8%

in applying it to smaller systems; in fact
it has achieved the status of being one
of the basic laws of science,

Assume, where nccessary, that
1 calovie = 4.2 joules
g = 9.8 m/sec?

1. A force of 0.5 newtons moves a 100-gm mass at a uniform speed of 50

em/sec on a rough horizontal surface for 30 sec. Caleulate (@) the force of
frietion, (b) the work done by the applied force, (¢) the heat produced.

. A body of mass 8 ke falls from a height of 80 m into a pile of sand. If all
the kinetic energy ai impact is transformed inio heat energy, find the
number of calories of heat produced.

. Caleulate the rate, in joules/sec, at which heat is being produced when an
objeot of mass 5 kg falls through air at a constant terrinal velocity of
100 m/sec.

. A ball of mass 0.5 kg is dropped from a height of 250 m and strikes the
ground with a speed of 40 m/sec. Caleulate the heat produced as a result
of the {riction between the ball and the air.

. A 3.6 gm bullet is fired horizontally through a 4.8-kg wooden block sus-
pended by a long cord, The bullet emerges from the block with 4 of the
speed with which 1t enters, and the block starts to move at 12 em/see. Find
(@) the speed with which the bullet enters the bloek, (b) the kinetic energy
lost by the system as a result of the collision, (¢} the heat produced.

10-7 SUMMARY

1. As a result of an inelastic interaction,
kinefic energy is lost, and during an
inelastic interaction, mechanical
energy is lost. These losses can be ac-
counted for by considering the heat
produeed o be a form of energy.

2. The heat produced as a rosult of an
inelastic interaction is proportional 4o
the mechanicsal energy lost,

1 calorie = 4,19 joulos

3. Heat may be considorod ne molacuiar
mechanical enorgy.

4, Ttseems likoly that onorgy I8 sonserved
in all interaotions,
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QUESTIONS FOR REVIEW

1. Define each of the new terms introduced in Chapters 1 to 10.
2. What is a law in Physiea?

3. State each of the laws developed in Chapters 1 to 10, Indicate clearly the
restricting or limiting conditions, if any, associated with each law.

4, Summarize the formulas developed in Chapters 1 to 10. For each formula,
state (a) the monning of each of the symbols used, (b) the restricting or
limiting conditions, if any, associated with the formula, (¢) the units asso-
cigted with each symbol in the formula.

&,

List the graphs for which either the slope, or the area under a part of the
graph, hag special significance, and state what significance it has.

6. What is the meaning of cach of the following statements?

(@) The speed of sound (under certain conditions) is constant at 1100 ft/sec.

(6) The instantaneous speed of a car is 27 mi/hr.

{c) The average speed for a trip was 37 mi/hr,

(d) When the two caxs collided, their relative speed was 120 mi/hr.

(e) The acceleration of a falling object is constant at 9.8 m/sec2

(f) The average acceleration of a seooter in the first 5 seconds after starting
to move is 2.5 m/seck

(9} The instantancous acceleration of a truck is 0.7 m/sec?.

(h) The central acceleration of a car rounding a curve in the highway is
1.6 m/sec? toward the centre of the curve.

(£} The acceleration of an object is proportional to the net foree acting on it.

(7) The acceleration of an object is inversely proportional to its mass,

(k) The gravitational attraction between two objects is inversely proportional
to the square of the distance betweon them.

(1) Motion in a circle at constant speed is accelerated motion.

(m) Momentum is a vector quantity,

(n) Work and energy are scalar quantities.

(0} A collision between two steel balls is (almost) an elastic interaction.

(p) A collision between two balls of putty is an inelastic interaction,

(@) An object at rest in the gravitational field of the earth possesses potential
eneIgy.

(r} The escape energy of a satellite is about 6.2 joules per kilogram,

(s} The escape velocity of a satellite is about 11.2 km/sec.

(&) The binding energy of a particular orbiting satellite is 10° joulos.

() The mechanical equivalent of heat is 4.2 joules per calorio,
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GmM . What is the effect on F of (¢) doubling

7. Consider the relationship Fy =
m, (b) tripling M, (¢) halving 7?

2 I's
8. {6} We may show that the expression %{“ has the units of work or energy

as follows:

%
The MKS units for %’L are kg-(m/sec)?, or kg-m?/sec?® or (kg-m/sect)m,
or newton-mn, i.e., joules.

2
(6) Show that the expression @;“ has the units of foree.
%
(c) Show that the expression % has the units of acceloration.

(d) Show that the expression @g—{ has the units of energy.
GmM
72

{¢) What units has @ in the relationship Iy = ?

- (f) Show that g, the acceleration due to gravity, may be expzessed in
newtons/kg as well as in m/sec?.

%
9. Show that (a) the expression %—U— is not the correct expression for centripetal

L . .
force, (b) the expression s not the correct expression for kinetic energy,

is not the correct exprossion for gravitational force,

{¢) the expression G

is not the correct expregsion for gravitational poten-

. EmM
(d) the expression —

tial energy.
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APPENDIX

1. FUNDAMENTAL UNITS IN THE METRIC SYSTEM

(a) Lenara. The standard unit is the metre, defined as the distance, measured
at 0° G, between two transverse lines engraved on a platinum-iridium bar kept
in the International Bureau of Weights and Measures at Sévres, France. Thirty
copies of the standard metre have been disiributed among other nations.

1 kilometre (km} = 1,000 metres (m)
1 hectometre (hm) = 100 metres
1 dekametre (Dm) = 10 metres
1 decimetre (dm) = 0.1 metres
1 centimetre {(em) = .01 metres
I millimetre (mm) = 0,001 metres

For several years prior to 1962, a good deal of research was carried out with
the aim of defining the standard metre in terms of the wave length of an easily
reproducible line in the spectrum of some slement. On January 1, 1962, the
standard metre was redefined as a length equal to 1,650,763.83 wave lengths in a
vacuum of a specified line in the orange portion of the spectrum of krypton 86.

The following additional units should be noted.

1 Angstrom unit (A} = 10-'° metres
1 mieron {u) = 10-% metres.

(b) Mass. The standard unit is the kilogram, defined as the quantity of matter
in o platinum-iridium cylinder kept at Sévres. The mass of a cubic decimetre of
pure watexr at 4° C is very nearly equal to one kilogram, so nearly equal that for
practical purposes they may be considered identical,

1 kilogram (kg) = 1,000 grams (gm)

In staling the masses of atoms and molecules, the kilogram and gram are
inconveniently large units. In these instances the atomic mass unit (amu) ig
frequently used. One atomic mass unit is defired as one-twelfth of the mass of
neutral atom of ¥C and is equal to 1.65080 X 10— gm.

(¢) Time. The standard unit is the mean solar day—the averago longth of the
apparent solar day. An apparent solar day is the interval from tho moment that
the sun’s centre is on a meridian until it next arrives on that moridinn,

1 day = 24 hours (hr)
1 heur = 60 minutes {min)
I minute = 60 seconds {sec)
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(d) Vorumn. The standard unit is the litre, defined as the volume occupied,
at 4° C, by one kilogram of pure water. This volume is 1,00027 cubie decimetres,
or 1000.27 cubic centimetres, Hence 1 millilifre (ml) is 1.00027 cc, However,
for most purposes the ml may be considered to be equivalent to one ec.

1 litre = 1.76 pints

Prerixes
Commonly used prefixes and the corregponding powers of 10 are summarized
below.

micromicro = 10~ deka = 10*
micro = 10~° hesto = 10?
milli = 1% kilo = 163
cénfi = 102 megs = 108

deci = 10!

2. SIGNIFICANT DIGITS

The precision of any measuring instrument is limited, For example, with an
elemenfary type of laboratory balance, masses may be determined correct to the
nearest tenth of a gram; whereas with more precise balances, masses may be
determined to the nearest milligram. The mass of an object then might be
found $o be 32.2 gm with the first type of balance, or 32.197 gm with the
second. In the first case the mass is not likely exaotly 32.2 gm, but is known to
be between 32.15 gm and 32.25 gm; the second, more precise measurement
indieates that the mass is greater than 32,1065 gm but less than 32,1975 gm,
The first measurement (32.2 gm) has three significant digits; the second meas-
urement (32,197 gm) has § significant digits.

Normally all of the measurements made with o given measuring ingtrument
will have the same precision. However, we may wish to perform calculations
with numbers from different sources; we may, for example, want the total of the
two masses, one of which is given as 27.4 gm and the other ag 33.541 gm. The
sum of these two masses cannot be quoted more precisely than 60.9 gm. In
general, when we add or subtraet measured numbers, the answor can contain no
more decimal places than the least precise of the given numbers.

A different situation occurs, however, when we perform operations of multi-
plication and division with measured quantities. Buppose that, in order to deter-
mine the density of mercury, we find that the mass of some mercury is 276.5 gm
and that its volume is 20.3 ml. Bven though the first moasurement has four
gignificant digits, the density obtained by dividing 276.5 4.0 by 20.3 ml must
be quoted only to three digits and is therefore 13.6 gm/ml, In general, when
operations involving multiplication and division are porformed with measured
quantities, the anawer obtained can have no more significant digits than the
least precise number used in obtaining the angwer,
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The ideas outlined above apply to measured data, but do not necessarily apply
to the numbers given in problems in the exercises in this text. The problems
present an opporiunity for practice in the application of fundamental principles;
the numbers are in many cases chosen so that the necessary arithmetic is

relatively easy.

3. TRIGONOMETRIC FUNCTIONS OF AN ANGLE

In addition to the mathematics involved in inverse relationships and the
corresponding graphs outlined in Chapter 1, the student should be familiar with
the meanings of the sine (sin), cosine (cos), tangent, (fan) and cotangent (cor) of
an angie. In the right angled triangle A BC shown in the accompanying figure,

sin A =§%
cos A =§g
tanAmg%
cot 4 mg—f

&
Y
&
&
)
&

&

-

Adjacent  side
/

C

Opposite
side

Atight-angled triangle ABC. The sides BC and A8
are named in terms of thelr positions relative to

angle A.

r

The values of these rafios are independent of the lengths of the avms of tha
angle, and depend only on the size of the angle, Tables of valugs of these four
trigonometric functions for angles between 0° and 90° follow,




A

Absolute temperature, 115
Acceleration, 10, 60
constant, 15
due to gravity, 58
uniform, 11
veetor, 31
Acceleration and force, 47, 48
Acceleration and masg, 48
Action-~reaction, b3
Appolonius, 71
Aristotle, 42
Average speed, b

B

Binding encrgy, 107
Brahe, Tycho, 71

c

Calovie, 114
Cart, dynamics, 15, 32, 48, 79
Cavendish experiment, 74
Cavendish, Henry, 74
Centripetal fovse, 61, 63, 87
Circular motion, 60
Collisions, elastic, 90, 94, 116
inelastic, 94, 113
two-dimensional, 80
Components of a vector, 29
Conservation of energy, 118
Conservation of kinetic energy,
91
Conservation of momentum,
77,79, 82, 119
Copernicus, Nicolaus, 71

D

Deductive reasoning, 4
Displacement, 26
resultant, 26
Dynamies, 5, 42
cart, 15, 32, 48, 79
Dyne, 50
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E

Fiffeots of friction, 113
Finstein, Albert, 75
Elastic collisions, 80, 94, 116
Elastio interaction, 91
Emergy, 88
binding, 107
gongervation of, 119
eonservation of kinetic, 91
escape, 107
gravitational potential,
101, 105, 108
heat, 114
kinetic, 86, 89, 90, 91, 113, 115
mechanical, 100, 103, 113
potentisl, 99, 103
stored, 99
Equations of motion, 16
Eseape energy, 107
Hseape velogity, 107

F

Fall, free, 32
Tield, earth's gravitational, 58
Flatcher’s trolley, 8, 11, 78, 90
Foree, 44
# vector, 44
centripetal, 61, 63, 87
gravitational, 46
of {riction, 45
Foree-extension ratio, 103
Foueault, 66
Frames of reference, 65
Free fall, 32
Friction, effects of, 118
force of, 45
Frictional interactions, 118

G
Guliloo Golila, b, 43, &7, 69, 72
CGoocontrio theory, 71 .
Gravitation, universnl, 69
Gravitationn! Gold of earth, 58
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Gravitational force, 46

Gravitational mass, 46, 50

Gravitational potential energy,
101, 105, 106

Gravity, acceleration due to, 58

H

Heat, energy, nature of, 114

Heat, mechanical equivalent of,
114

Heliocentrie theory, 71

Hipparchus, 71

Huygens, Christian, 89

Hypotheses, 4

Impulse, 51, 78

Inductive reasoning, 4

Inelastic collision, 94, 113

Inertia, 44

Inertial mass, 49

Ingtantaneous speed, 13

Interaction, elastic, 01
frictional, 116

J
Joule, James, 114

K

Kepler, Johannes, 71
Kepler’s laws, 72
Kinematics, 5, 42
straight line, §
vector, 25
Kinetic energy, 86, 89, 90, 91,
113, 115
conservation of, 91

L

Law, 3

Newton’s first, 43, 119

Newton’s second, 49, 51, 62,
78, 119

Newtor’s third, 52, 78, 119

of conservation of energy, 116

of conservation of momentum,
83

of universal gravitation, 73

physical, 3

Laws, Kepler’s, 72

Laws of motion, Newton's, 42
Leibniz, 8%

Lord Kelvin, 2

M

Mass, gravitational, 46, 50
Mass, inertial, 49
Measurement, units of, 3
Mechanical energy, 100, 103, 113
Mechanical equivalent of heat,

114
Mechanics, Newtonian, 1, 119
Molecular motion, 115
Momentum, 50

conservation of, 77, 79, 82, 119

law of conservation of, 83
Motion, accelerated, 32

cireular, 60

early ideas of, 42

equations of, 16

molecylar, 115

relative, 26

N

Navigator’s vestor triangle, 30

Newton, 60

Newton, Sir Isaac, 1, b, 42, 43,
69, 72

Newtonian mechanics, 1, 119

P

Parallelogram, vector, 26

Path of & projectile, 34, 59

Plato, 71

Polygon, vector, 27

Potential energy, 99, 163
gravitational, 101, 105, 106

Projectile, path of, 34, 69

Ptolemy, 71

Q

Quantity, sealar, 26
vector, 26

R

Ratio, forec-oxtonsion, 103
Reaction, 53
Rensoning, deductive, 4
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Rongoulng, induetive, 4
Roforanen, feames of, 65
Rolative motion, 25
Rosultant displacoment, 26
of sovoral vectors, 26
Resultants, caleulation of, 28
Rackots, 40, 64, 83
Rumford, Count Benjamin,
114

S

Satollites, 64, 83, 107
Scalar quantity, 26
Speed, average, §
constant, 6, 15
ingtantaneous, 13
Stored energy, 99

T

Temperature, absolute, 115

Theories, 4

Theory, geocentrie, 71
heliocentyie, 71

Timer, recording, 15, 32, 33, 48

Triangle, vector, 26
navigator's, 30

Trolley, Fietcher’s, 8, 11, 78, 90
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U

Units of meagurement, 3

Universal gravitation, 69
law of, 73

Universe, early ideas of, 69

\)

Vector acceloration, 81
Vector kinematics, 2b
Vector quantity, 26
Veotor triangle, 26
navigator’s, 30
Veotor pavallelogram, 26
Vector polygon, 27
Vectors, 25, 44
addition of, 27
components of, 20
subtraction of, 27
Velocity, 29, 60
gverage, 30
escape, 107

w

Weight, 46, 57
Work, 86
megsurement of, 87
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ANSWERS

Chapter 2—Section 2-14, page 20

1. (@) 68 km/hr

2. (@) (¢} 374 mi (%) 18% mi/hr

3. (b) Average speed = 20.6 cm/see

4. (@) (i) 60 km/hr (#%) 40 km/hr
&) @) 0.8 hr (i) 1.5 hr
{¢) 1.0 hr
(d) () 120 km w) () 80 km

5 () 24m; 18 m ™ (4) 6 m/sec; 4.5 m/sec

7. 0.24 m/sec; 0.72 m/sec; 1,92 m/gec?

8. {a) 1.0, 1.5, 2.0,2.5, 3.0, 3.5 (b) 1.75 km/hr/sec

9. (2} 2 m/sect 10, 75.6

12, (b) 75 em/see (¢) 78.0

13. 4 m/sec? 14. 6.31 m

15. (&) {2) 2, 6, 10, and 14 m/sec (74) 4 m/sec? (#4) 10 m/sec

16, Av is (a) doubled {b) tripled

- 17. s changes by a factor of

(@) 9 (b 0.7

18, v changes by a factor of B
{a) 2 () /3

19. 1 m/sec?; 10 m/sec 20. 10 m/sec

21. 30 mo/sec; —2 m/sec? 22, 140 m

23. 45 m/see

24, 6 sec Iater, 36 m from the starting point
2b. 6 m/sec?; 8 m/gec

Chapter 3--Section 3-19, page 37

1. 15 mi/hr; 2 min

5. (@) (3) 9.4 cm (%) 18.8 em (#43) 37.7 om
(0) (2} 8.5 cm, 45° below horizontal to right () 12 em down  (443) zero

6. 3.5 mi north

10. (&) 23.2 m, 27° north of east {b) 10.6 m, 3° west of south
(¢) 10.6 m, 8° east of north

11. 4.7 m, 24° west of north

12. (3) 2 ft cash (#4) 2 km west (%42) 5 m, 63.1° north of onsb
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138 KINEMATICS AND DYNAMICS

13. 50 m south-sast 14, 141 m; 141 m
15. (@) 500 mi/hr; 700 ft/min () 100 mi; 8400 ft
16. {(a) 13 km (b) 10.4 km/hr

17. (e} 1.57 cm/see
(b) 1.57 em/sec down; 1.57 om/sec to ’she left
(¢) 2.21 em/sec to the centre

18. (a) 58.3 em/see (b} 74 em/sec
19, 290 mi/hy
20, (a) 7.0 m/sec () 4.0 m/sec (¢) 5.7 m/sec
21. 14 mi/hr, 15° east of north 22. 4° north of west, 802 km/hr
23. (a) 0.25 m/sec (b -3 m/sec
24, (a) BF () BC

(¢y DF (@) D

25. (a) 0.157 em/geo
(b) 0.157 cmy/sec to the left; 0.157 om/sec up
(¢) 0.221 em/sec to the centre
{d) 0.015 cm/sec? to the centre

28. 2.5 mi/hr/see, 87° south of east 27. 25 km/hr/sec west
29, 0.225 m/sec?; —0.06 m/sect 30. 3 see, 5 sec

31, 9.6 gee 33. (&) 20 m/sec

34. 31 {t/sec 35. 34.3 m

36. (a) (2) 14.7 m/sec up; 4.9 m/sec up; 4.9 m/sec down; 14.7 m/sec down;
24,5 m/sec down
(i) 19.6 m up; 29.4 m up; 29.4 m up; 19.6 m up; zero

37, 0.64 see; 192 m 38. 15 m/sec; 10 m/sec
39, (e) 8¢ m %) 50 mm/sec - {e) 120 m
40. {a) 30 sec () 4.6 km

Chapter 4—Section 4-19, page 54

6. 22.4 newtons 7. 141 newtons north-west

8. 10 kg; 24 newtons 9. 1.5 newtons; 3.3 kg

10. 5 m/gec? 11. 5 newtons

12, 4.9 X 1072 newtons .

18. (&) 0.5 m/sec? (&) 1.5 m/sec? (¢) 0.15 m/sec?
14, 2 kg 15. 6.4 newtons

16. 5.1 X 10 newtons .

17. (@) 0.90 newton-sec; 14 newton-sec (b) 1.8 kg-m/sec; 24 kg-m/sec
18. 35 newton-sec; 35 kg-m/sec 19. 3.0 newton-sec

20. (@) 1.0 m/seo ) 2.0 m/sec (¢) 2.5 m/sec
21. 30 newton-seec

22. (a) 2.0 newton-sec {b) 20 newtons (¢) 20 newtons
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ANBWISItH

Chaptor ti=8eotign 6:11, pope 66

1. (e) 0,48 nowlons
2 (a) 40 ke

3. 4.9 4, 1.44
. (@) o changes by a factor of 16

8
7.
8. (@) 10, 20, 30, 40 and 50 m/scc
(¢) 515,25, 35 and46m

49 m; 122.5 m

(a) 0.252 newton-sec down
3.86 X 10% newtons

40 cm.

3 gec; 16 m; 29.8 m/sec

(a) 16 m/sec

F, changes by a factor of

{a) 3

9.
1L
12,
14,
16.
17.
22.

23.
24,
25.
26.

1.08 X 10° newtons
(e) 16.7 newtons
(a) 2.7 X 10" m/sec?

Chapter 6—Section 6-10, page 75

1. Fg changes by a factor of
(e} 4

. 6.67 X 10-° newtons

. (@) 6.67 X 107! newtons

. 4.1 X 10* newtons

. 4 X 10-% newtons; 10~

. B X 10" kg ol L{8

. 24 m/see?

. 8.6 X 10t km

OGS R

pod
o= e o R )

Chapter 7—Section 7-9, page 84

2. (b) 4.8 newton-sec
3. 12.5 om/sec

5. 54.4 cm/sec

7. 2.0 m/sec

214

(b) 9.8 X 102 newtons
() 480 newtons

(0) ¢ must change by a factor of /3
The acceleration due to gravity

() 6.9 newtons

189

{c) 2.94 x 10% newtons
{¢) 60 kg

x 10* newtons 5. 1.96 m/sec?
{¢) a parabola

(by 5,15, 26, 35, and 45 m/sec

(d) 5, 20, 45, 80, and 125 m

10. 184 m; 6.1 sec '

(b} 0.441 newton-sec up

13. 19.6 newtons

15. 4.3 sec;43-m from foot of cliff-
42.0%

(b) 8.0 m/sec?

@ 4 (c) 4

1.25 X 10! newions toward the centre

(c) 26.5 newtons

(b} 0.75

(6} 6.67 X 10~ newtons

5. 2.4 X 107° newlons

7. Approximately 3 X 10° m
9. 4.9 m/sec?

11. 1.8 hrs

(¢} 4.8 kg-m/sec (d) 8.0 m/seo
4. 100 cm/sec
6. 7.1 m/see

8. 30 gm and 90 gm
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11,

12,
13.
14.
16.

KINEMATICS AND DYNAMICS

. 1.5 % 107 m/sec toward the east

c{w) 3:5 (b) 5138

(¢) 3:5 » () 1:1 _

(@) (2) 100 kg-m/sec (7%) 250 m/sec, 37° south of west
() 60 kg-m/sec; 80 kg-m/sec; 100 kg-m/seo; 250 m/sec

{a) 40 em/sec : () 1.6 X 10? newtons

(a) 100 m/sec {b) 0.5 m/sec

0.0u . 15, 20 m/sec

{a) 10° newtons (b) 10¢ kg

. Chapter 8—Section 8-11, page 95

17,
18,
20.
21.

Lo N R

. {(a) 392 joules (b) zero - (¢) zero
. {@) 5 newtons (b) 0.5m
. 23 joules . .
(@) 80 joules (b) 170 joules (¢) 60 joules
. One division = 2 m o
. (@) 30 newtons . (b) 300 joules * (¢) 600 joules
12.5 joules; 12.5 joules . 8. 2.5 % 10% joules - '
. (@) 4.1 X 101 joules @) 4.1 X 107 joules
. 2.0 ¥ 10 m/sec o 11, Eixof A = 0.8 g of B
(.04 newtons
. (@) 24 joules " (b) 9.8 m/sec
. (@) 12 joules (b) 6.0 joules
() 3.0 m/see .
. {a} 10 joules; 3.1 m/sec (b) 16 joules; 4.0 m/sec
{¢) 18 joules; 4.2 m/sec ~ (d) 16 joules; 4.0 m/sec
() 6.25 ¥ 108 joules by 3.1 X 104 joules
1.8 joules; 3.6 joules 19, —0.2 m/sec; 0.2 m/sec
~3.,8 X 108 m/sec; 6.7 X 100 m/sec
(@) 6 m/sec _ C (b)) 649,
{a) 40 newtons (b) none

24,

‘ Chapfer 9—Section 9-10, page 108

4.
b

6.
8.

{a) 36 joules” ()] 36 joules

(@) 49 m/sec , (b) 72 joules

(¢) 1.2 X 10°m ‘ “ {d) 72 joules

669 7. 1.47 X 10% joules :
{a) 392 joules (8} (4) 314 joules (é7) 83 joules
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ANSWIRitd

i
(.
13
i3,

Id!
15.
17.
18.
19.
22.
23.

25.

26.
27,

44 m/nes

(@) 0,8 m/s0

41 m/gep

(8} (3) 0,86 Joulen

(0 () 0,25 Joulos

{a) 0,28 jouloy

(0) 9.4 joules

(w) 1G:1
Approzimately 12 m/sec
(¢) 0.71 m

60 joules

() 900 km approximately
{c}) 1.1 X 10% m/sec

{¢) 1.8 X 1019 joules
(¢) 3.7 X 10% joules
(e} —6.0 X 10§9j0ules
(42) —4.5 X 10? joules
2.5 X 10 joules

(&) no

i

10. 3.8 X 10% m/sec
0) 1.3 am

(i7) 1.0 joules
(1) 1.0 joules
{0y 4.4 joules

() 4:1

(b} (£ 14.1 m/sec (%} 10.2 m
21, 25m
By 5.6 X 10V joules

(6) 1.8 X 10% joules

(d) 1.9 » 16* joules

(B (2) —3.0 X} 10%joules
(##5) —6.0 X 10° joules

{(b) 10°joules

Chapter 10—S8ection 10-6, page 117

1,
2.
b,

(a) 0.5 newtons
1.5 X 108
(¢) 240 m/sec

by 7.5 joules {¢) 1.8 calories
3. 4.9 x 108 4. 196 calories
() 92 joules (¢) 22 calories



