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Abstract

Greenhouse gases, most importantly water vapor, increase the emissivity and decrease
the albedo of clouds for thermal radiation. The modifications, which can be of order
10% for optically thick clouds, depend on the attenuation coefficient a9} of the green-
house gases, and also on the attenuation coefficient, a{}, the single-scattering albedo
&le}, and the scattering phase function pi¢t (y, /) of the cloud particulates. Cold, high-
altitude clouds with low partial pressures of water vapor have smaller emissivities for
thermal radiation and larger albedos than otherwise identical but warmer low-altitude
clouds with higher partial pressures of water vapor. In 2n-stream scattering theory,
these phenomena can be quantified with the intensity emissivities €; of the streams
i =1,2,3,...,2n, and with upward or downward flux emissivities, ¢, and £q. The
emissivities are the ratios of the outgoing thermal intensities or fluxes to those of a
reference black cloud. Emission from optically-thick, isothermal clouds with scatter-
ing, as well as absorption and emission, is limb darkened. Intensity emissivities ¢;
for streams that are nearly normal to the cloud surface are larger than those of more
nearly horizontal streams. The limb darkening increases with increasing values of the
single scattering albedo @. For fixed values of @, the onset of limb darkening with in-
creasing zenith angle is more abrupt for phase functions with more forward scattering.
Black clouds, which have only absorption and emission but no scattering, have unit
(Lambertian) emissivities, €; = 1, for all stream directions.

Keywords: radiative transfer, multiple scattering, reflection, absorption, emission, phase
functions, equation of transfer, Gauss-Legendre quadrature
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1 Introduction

Greenhouse gases in clouds of water droplets, ice crystallites, and other particulates increase
the emissivity and decrease the albedo of the clouds for thermal radiation. In the air between
cloud particulates, greenhouse-gas molecules emit and absorb radiation very efficiently at
their resonance frequencies but have negligible scattering. Some of the molecular emission
can be absorbed by cloud particulates or by other molecules, but single or multiple scattering
by the particulates releases the remainder through the top and bottom surfaces of the cloud
and increases the thermal emissivity, in comparison to a cloud with no greenhouse gases.
The greenhouse gases also increase the probability that an external photon, incident onto
the top or bottom of the cloud, will be absorbed before it can be scattered back out. This
decreases the albedo of the cloud.

The steady-state equation of radiation transfer for axially symmetric conditions in clouds
is

w0 . o (!
(L +1) 102 =0 -@8C) + 5 [ ottt ) )
a0z 2 /.
Here I(p,2) = I(u, z,v) is the monochromatic radiation intensity of frequency v at the al-
titude z, propagating with a direction cosine u = cosf with respect to the vertical. The
zenith angle of the intensity is #. The attenuation coefficient, a« = «(z,v), gives the in-
finitesimal probability 0P = a 0z that a photon is absorbed or scattered after propagating
an infinitesimal distance 0z.

On the right of (1), @ denotes the single-scattering albedo, the probability that a photon
colliding with a cloud particulate or greenhouse-gas molecule is scattered, rather than ab-
sorbed and converted to heat. The monochromatic Planck intensity B = B(z) = B(T,v) of
spatial frequency v and absolute temperature T'= T'(z) is

2hpctv?

b= evehe/(keT) _ 1 (2)

Here hp is Planck’s constant, ¢ is the speed of light and kg is Boltzmann’s constant. The
kernel of the integral transform on the right of (1) is the scattering phase function p(u, it').
The probability dP that a photon propagating with the initial direction cosine y’ is scattered
into a new direction cosine between p and p + dp is dP = p(u, p')dp/2. The well-known
integro-differential equation (1) is the same as Eq, (1) in the recent paper Radiation Transfer
in Cloud Layers[1], to which we will make frequent reference.

The integro-differential equation (1) is difficult to solve efficiently and accurately enough
to model radiation transfer in clouds. But very nearly the same results can be obtained with
the much simpler 2n-stream approximation to (1), given by Eq. (55) of reference [1],

i =i(18)-1n). 3)

This is an ordinary, linear differential equation for the 2n x 1 radiation intensity vector |/}
with a 2n x 1 thermal source vector | B} and a 2n x 2n exponentiation rate operator #. The
increment of optical depth is

dr = adz. (4)



A more detailed discussion of |1}, |B} and &, and how to efficiently solve (3) can be found
in reference [1]. The 2n-stream method of analyzing radiative transfer is a generalizaion of
the 2-stream method described in Schuster’s paper, Radiation Through a Foggy Atmosphere
2], published in 1905. Using 2n streams along the Gauss-Legendre sample directions to
generalize Schuster’s work was first suggested by Wick in his paper Uber ebene Diffusion-
sprobleme 3], published in 1943.

2 Radiation Transfer Parameters

In this section, we discuss the basic parameters of the equation of radiative transfer (1): the
attenuation coefficient «, the single-scattering albedo @ and the scattering phase function

P, ).

2.1 The attenuation coefficient «

The attenuation coefficient o of (1) is the sum of a part a9} due to greenhouse gases and a
part ol due to cloud particulates.

In accordance with (4), the attenuation coefficient (5) can be used to write the optical depth
T = 7(2) at the altitude z above the bottom of a cloud as

. /O Cdva(?), (6)

In Eq. (25) of reference [8], we showed that the spatial attenuation coefficient al9} =
al9}(z, v) of radiation of frequency v at the altitude z (denoted by x(z, v) in reference [8]) is
almost purely absorptive (there is negligible scattering of thermal radiation by greenhouse
gases) and can be written as

a9 (z,v) = ZN{} yol (z,v), (7)

where N1} (2) is the number density of greenhouse-gas molecules of type i, with i = H,0,
COay, Og, ete. As shown in Eq. (3) of reference [8], the absorption (and stimulated emission)
cross section ol (z,v) at the altitude z is normally assumed to be the sum of partial cross

{i}(
=Y ol (z), (8)

sections o,,’ (2, v),
corresponding to the Bohr spatial frequencies,

o _ B - Bl

ul_

(9)

hpC

for transitions between an upper (u) vibration-rotation level of energy E{ and a lower level
of energy El{l}. The absorption cross sections o (2, v) of (8) depend strongly on the spatial
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frequency v. The absorption cross sections o{"(z,v) also depend on the altitude z. This
is because the fractions of molecules in the lower level [ and upper level u of the molecule
are determined by the altitude-dependent temperature 7'(z). Molecules in the lower level
attenuate radiation when they absorb photons and transition to the upper level. Molecules in
the upper level amplify radiation when they are stimulated to emit photons and transition to
the lower level. The widths of the individual vibration-rotation absorption lines are functions
of the altitude-dependent pressure p(z) and temperature 7'(z), and this also contributes to
the altitude dependence of the cross sections. ‘

As shown in Eq. (4) of reference [8], the partial cross section Ui;} of (8) is normally

written as the product of a line intensity, Sl{j} = SE} (T"), which depends on temperature
T, and a line-shape function, G;EZZ} = Gi;}(u,p, T), which depends on the frequency v, the
pressure p and the temperature 7.

o =Su'ay (10)

{a}

. » are normalized to have unit area,

/ GUlldy =1. (11)

0

The line shape functions, G

Since we use spatial frequencies v, with units of waves per centimeter or cm™!, the units of
fol} are cm. As discussed in Section 3.1 of reference [8], accurate and complete values of
the line intensities Sﬂ} for the most important greenhouse gases can be obtained from the
HITRAN data base [5].

The jagged green line of Fig 1 shows the attenuation coefficient al9}(v) of (7) for thermal-
radiation frequencies in the range 500 to 700 cm™!. The values were calculated at a sea level
pressure of 1000 mb, at 100% relative humidity. At the Earth’s average surface temperature
of 288.7 K, the saturation vapor pressure of liquid water is pt% = 17.7 hPa. Absorption
by pure rotational transitions of HoO molecules is responsible for most of the attenuation
for frequencies ¥ < 620 cm™'. The air has 400 ppm of CO,, which is responsible for the
absorption band centered at the CO, bending mode frequency v = 667 cm™!. Nitrous oxide
N,O at a concentration of 0.32 ppm makes a very small contribution to af9} for frequencies
near its bending-mode frequency v = 588 cm~!. The other naturally occuring greenhouse
gases, ozone, O3, and methane, CHy, make negligible contributions for the frequency range
of Fig. 1. For the range of frequencies v shown in Fig. 1, the magnitude of a!9} varies in a
complicated way, from a minimum close to 107° m~! to nearly 10 m~!, about six orders of
magnitude.

Cloud particulates also attenuate radiation, but unlike greenhouse gases, where essentially
all of the attenuation is due to absorption (with negligible scattering), the attenuation by
cloud particulates is partly due to absorption and partly due to scattering. The cloud
attenuation rate a!® varies much more slowly with frequency v than the attenuation rate a{%
due to greenhouse gases. To simplify subsequent discussions, we have assumed a frequency-
independent cloud attenuation rate from clouds,

ol =0.01 m™, (12)
and indicated it as the dashed red line in Fig. 1. This corresponds to a thermal radiation

“visibility” of 1/al®t = 100 m through the cloud particulates.
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2.2 The single-scattering albedo w

In (5), the attenuation coefficient atet due to cloud particulates consists of two parts,
ol = ol ol (13)

The part at? describes the rate at which radiation is absorbed and converted to heat; ol

describes the rate at which radiation is scattered to other directions with no conversion to
heat. The attenuation coefficient a9} due to greenhouse gases can be written in an analogous
way

ol — a;{Lg} + aig}. (14)

For the conditions of Earth’s atmosphere, the scattering of thermal radiation by greenhouse-
gas molecules is completely negligible compared to absorption, as discussed in connection
with Eq. (30) of reference [6]. It is therefore an excellent approximation to set

ol =0 and o9 =aldh (15)
We define the single-scattering albedos of cloud particulates and greenhouse gases as
{c {9}
ol = & ooy — @
0= and oW = e (16)

The single-scattering albedo wi® of clouds is poorly known for thermal radiation. It probably
depends more on frequency than the cloud attenuation rate af®, which we took to be
independent of frequency in (12). But for illustrative purposes, we will assume that the
single-scattering albedo for cloud particulates is also frequency-independent and has the
value,

ol =0.5. (17)

The dashed cyan line of Fig. 1 shows the assumed value of w{°} from (17). The approximation
(15) corresponds to a vanishing single-scattering albedo for greenhouse gases,

ol = 0. (18)

The overall single scattering albedo is

a;{c} _|_ O{:g{g} OC{C}(D{C} _|_ a{g}d]{g}

YT ol o

(19)
For a cloud containing greenhouse gases with vanishing single-scattering albedos, &9 = 0,
the overall single-scattering albedo (19) becomes

_ afdpiad

b=—" (20)
We have plotted @ of (20) as the jagged black line in Fig. 1. The large changes of & with
frequency v are due to the large changes of the greenhouse-gas attenuation rate at9?. For
atmospheric “window” frequencies where a9 < ol the overall single-scattering albedo is
nearly the same as that of cloud particlates, @ — @{“. Though not shown in Fig. 1, nearly
all of the frequencies between 800 to 1000 cm™! are window frequencies. Near the centers
of greenhouse-gas absorption lines, where a9 > al°}, the overall single-scattering albedo is
nearly zero w — 0.
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Figure 1: The jagged green line is the attenuation coefficient at9} of (7) at sea level due to
greenhouse gases. The complicated dependence on frequency comes from the line structure of
the greenhouse-gas molecules. Simplified parameters for cloud particulates are the dashed red
line, showing the frequency-independent attenuation coefficient o = 0.01 m~! of (12) and
the dashed cyan line, showing the frequency-independent single-scattering albedo &{t = 0.5
of (17). The jagged black line is the overall single scattering albedo @ of (19). The symbols
H;0 and CO; mark frequency ranges where absorption by those molecules predominates.

There is also a very small contribution from N,O close to 588 cm ™.

2.3 The scattering phase function p(u, 1)

The probability that a photon with an initial direction cosine p’ is scattered by a cloud
particulate into direction cosines between y and u + dyp is dP = dupt(p, u')/2. The
scattering phase function pl9*(u, ;i) for greenhouse gases has an analogous meaning. One
can use arguments like those leading to (19) to write the phase function p(u, i) that appears
in (1), which accounts for both cloud particulates and greenhouse gases, as

a{c}a}{c}p{c} (M? ,u/) + a{g}a){g}p{g}('u7 /’L/)
aw '

plp, ') = (21)

For the special case (18) that &9} = 0, the phase function (21) reduces to

p(u, ') = pt (p, 1). (22)

Greenhouse gases between the cloud particulates make no difference to the scattering phase
function p(u, '), which is determined entirely by cloud particulates. But for frequencies
strongly absorbed by greenhouse gases, the single scattering albedo @ can be reduced to 1%
or less, as shown in Fig. 1.

We assume rotational symmetry for the scattering of radiation by cloud particulates. This
is a good approximation for most clouds of liquid water droplets, which are nearly spherical.
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’ ‘Isotropic Rayleigh | Forward | Backward

o 1 1 1 1
n 0 0 8182 ~ 3182
D 0 0.1 7273 7273
s 0 0 5967 ~5967
D1 0 0 4988 4988
s 0 0 3869 ~.3869
e 0 0 2937 2937
pr 0 0 2016 ~2016
Ds 0 0 1209 1209
Do 0 0 0573 ~.0573

Table 1: Numerical values of the multipole coefficients p; for the phase functions of (23) or
(26). The numbers p, = @™ in the fourth column and p; = (—1)'w™ in the fifth column
give phase functions that can be constructed from the first 2m = 10 Legendre polynomials,
and have the maximum possible forward and backward values. The values of wl{m} are from

Table 1 of reference [§], with m = 5.

For clouds of ice crystallites, there will be rotational symmetry if non-spherical crystallites
have random orientations. The assumption of random orientations can be violated, for
example, for rare winter conditions when light pillars[7] form from plate-like, hexagonal
crystallites, suspended with a horizontal orientation in calm air. We will not consider such
unusual situations in this paper. Rotational symmetry allows us to write the scattering
phase function of (1) in the form

2m—1

plp ') = > p(@l+ D) P(u) P, (23)

=0

as given by Eq. (126) of reference [8]. Here P,() and P(y') are Legendre polynomials. The

scattering phase function p(u, i) is nonnegative, and is invariant to the exchange of p and
/

1

p(us ') = p(i's ) = 0. (24)
In keeping with its significance as a probability density, the phase function satisfies the
identity

%/_1 dpp(p, i) = 1. (25)

The possible values of the multipole coefficients p; of (23) are constrained by (24) and (25).

We will consider four types of scattering, isotropic, Rayleigh, forward and backward.
Numerical values of p; for these scattering types are listed in Table 1. The forward scat-
tering phase function, p(u, ') = @™ (u, i'), is given by Eq. (141) of reference [8], and is
constructed from the first 2m = 10 Legendre polynomials to give the maximum possible
forward scattering, {™}(1,1) = m(m + 1) = 30. The backward scattering phase function is

p(p, 1) = @™ (—p, ).
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Figure 2: Polar plots of the scattering phase functions p = p(u) of (26), evaluated with the
multipole coefficients of Table 1. The radiation is scattered from the initial vertical direction,

with direction cosine ;' = 1 into the angle § = cos™! p.

It is useful to display the phase function p(u,p’) for upward incoming radiation, with
direction cosine ' = 1. We can use (23) to write this reference phase function as

2m—1

plp) = plp, 1) = > (2l + 1) Pi(p). (26)
=0

Polar plots of the phase functions p(u) = p(cos8) of (26) versus the zenith angle § are shown
in Fig. 2 for the multipole coefficients p; of Table 1. The same phase functions are plotted
versus direction cosine p = cos# in Fig. 3.

3 The 2n-Stream Equation of Transfer

The 2n-stream equation of transfer (3) can be efficiently solved with modern computer
software. The angular dependence is characterized with 2n sample values of the intensity,
I(p;, ) > 0, along the directions of the streams ¢ = 1,2, 3,...,2n. As sketched in Fig. 1 of
reference [1], the ith stream makes an angle 6; = cos™ y; to the zenith. As shown by Fig.
2 of reference [1], the Gauss-Legendre [12] direction cosines, p;, are the zeros of the Legendre
polynomial P, of degree 2n,

Pon(p1:) = 0. (27)
We will choose the indices 1 = 1,2,3,--- ,2n such that

< o < g < - < Ugp. (28)
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Figure 3: The same scattering phase function p = p(u) of (26) as for Fig. 2 but plotted
versus the direction cosine i = cos . The forward-scattering and backward-scattering phase
functions are described by polynomials in p of degree 2m — 1 =9, shown in the right panel.
The values of p(u) for forward or backward scattering are p(£1) = m(m + 1) = 30 and
p(F1) = 0, respectively.

Because the Legendre polynomial Py, is even, with Py, (1) = Pa,(—pu), the values of p; occur
as equal and opposite pairs,

i = — (i) (29)
The index reflection function is
r(i) =2n+1—1i. (30)

For the ordering convention (28) the indices j for downward streams and the indices k for
upward streams are

;g <0 for j=1,2,3,...,n,
e >0 for k=n+1,n+2,n+3,...,2n.

)}
33

The weighted sample values of the intensity, w;I(u;, 7), are denoted with the symbol (p;|/

(el I(7)} = wil (pi, 7) > 0.
A formula for the Gauss-Legendre weights, w; > 0, was given by Eq. (13) of reference [8] as

(
(
(
(

~—

2n—1
11 A+1 ,
PR DR (31)

We recall from Eq. (14) of reference [8] that the weights sum to 2,

2n
i=1
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We can think of the weights w; as discrete versions of direction-cosine increments, w; ~
Wi — fi—1 — dp as n— 00.

3.1 The p-space basis |u;)

To simplify subsequent equations, we write the weighted intensity samples, w; I (;) = (1|1},
as elements of an abstract vector [I} = |I(7)}. We can represent |/} with a 2n x 1 column

vector
((Ml |] }

((M2|]}

1= ) Gl 1} = (36)

(p2nl I}
We will call the column vector on the right of (36) the p-space representation of the abstract
vector |1}. We will use other 2n x 1 arrays of numbers to represent the same abstract vector
|I} in other bases, for example, the multipole basis |l), discussed in Section 3.2, or the
A-space bases |);) of Section 3.3.

The stream basis vectors |u;) of (36) can be represented with the right (column) basis
vectors

1 0 0
0 1 0

|lu1) = . ) |N’2) = . ’ R |M2n) - . . (37)
0 0 1

Corresponding left (row) basis vectors can be represented as

(o = [0 1 - 0],
(nenl = [0 0 -~ 1] (38)

We use a double left parenthesis, (u;|, as a reminder that row basis vectors need not be
Hermitian conjugates of column basis vectors, although that happens to be the case for the
stream basis vectors (37) and (38). One can think of column basis vectors as analogs of
crystal lattice vectors and row vectors as analogs of reciprocal lattice vectors [10].

As discussed in connection with Eq. (18) of reference [1], the stream basis vectors are
right and left eigenvectors of the direction cosine operator [

filpe) = pilpa), and (il = (il pa- (39)
The eigenvectors ;) and (p;| have the orthonormality property

(peilpir) = 0ir- (40)
They have the completeness property

Z |2) (1] = 1. (41)

11



In (41) and elsewhere, we will use the symbol 1 to denote a square identity operator with
ones along the main diagonal and zeros elsewhere. 1 has the same dimensions as any square
operator that is added to, subtracted from, or equated to it. Multiplying (41) on the left or
right by /1 and using (39) we find an expression for the direction-cosine operator,

f= ZMM)((M- (42)

In (42) and elsewhere we will use the same symbol i, to denote an operator and the matrix
that represents the operator in some convenient basis. For example, the matrix representing
i1 in the p-space basis is diagonal and has the elements

(il ol pir) = i - (43)

2n-stream computations must be done with real numbers that are the elements of 2n x 2n
matrix representions of operators or the numerical elements of 2n x 1 or 1 x 2n column or
row vectors. But the basic theory can be described more clearly with operator equations like
(3).

The direction secant operator < is the inverse of the direction cosine operator ji. We can
use (42) to write

=gt = Z§z‘|ﬂi)((ﬂi|~ (44)

The eigenvalues of the direction secant operator ¢ are the inverses of the eigenvalues p; of

the direction cosine operator /i,

1
G = —. (45)
Hi
The eigenvectors of (39) are also eigenvectors of ¢,

Slwi) = Gilpa), and  (pilS = (pilsi- (46)

In accordance with Eq. (25) of reference [1] it is convenient to use the stream basis vectors
to define a projection operator Mg for downward streams (31) and a projection operator
M, for upward streams (32).

Mdzzmj)((ﬂjl and My = > ) (- (47)

In accordance with Eqgs. (29) of reference [1], we write the direction-cosine operator i as
the sum of a downward part jiq and an upward part fi, in p-space,

= fia+ i (48)
According to Eq. (30) and Eq. (31) of reference [1],

fa = Majp=iMa = plu) (. (49)
j=1
2n
= Muaft =M= plp) (- (50)
k=n+1

12



In like manner, we write the direction-secant operator ¢ as the sum of a downward part
¢q and an upward part ¢,
¢ =44+ Su- (51)

In analogy to (50), expressions for the downward and upward parts are

Ga = Mas=<Ma=> glu) (. (52)
j=1
2n

o= Mul=Mu= > alpm) (- (53)
k=n-+1

The eigenvalues ¢; were given by (45).

3.2 The multipole basis |I)

Describing the angular distribution of the axially symmetric intensity I(u, ) with the 2n
sample values, I(u;,7), at the Gauss-Legendre direction cosines p; of (27), is equivalent to
approximating the intensity as a superposition of the first 2n Legendre polynomials,

2n—1

I(u,r) = 3 2+ DAWL(T). (54)

=0

The Ith intensity multipoles at the optical depth 7 are

L(r) = (U1(7)}

2n

= > (Ul I(7)}- (55)

=1

Projections (I|y;) of the left multipole basis (/| onto the right stream basis |u;), and vice
versa, were given by Eqs. (39) and (40) of reference [1] in terms of the Legendre polynomials
P, and the weights w; of (34) as

(Ups) = %Pl(,ui)a (56)
and
(mill) = wi (2L + 1) P(p;). (57)

Substituting (56) and (33) into (55), we find that the multipole moments [;(7) of the intensity
are linear combinations of the sample values I(y;, 7) at the Gauss-Legendre direction cosines

M,
0T = 53w e, 7). (58)

In analogy to (40) the multipole basis vectors |I') and (/| have been chosen to have the
orthonormality property

o) = ow. (59)

13



In analogy to (41), they have the completeness property

> =1 (60)

2n—1 2n—1
()} =Y @} =Y D). (61)
1=0 1=0
The expansion coefficients (I|1(7)} = [;(7) were given by (58).
From (57) we see that the elements ((14;]0) of the right monopole basis vector |0) are the
weights w; of (34)

0= I0)sl0) = -l = | | or (ul0) = w (62)

The right monopole vector (62) is particularly useful for representing the thermal emission
source vector |B} of (3),
|B} = 10)B. (63)

Here B is the Planck intensity of (2).
From (56) we see that the elements (0|u;) of the left monopole basis vector (0] are all
equal to 1/2,

(O =30l = 530wl = 5 5 - 3| o Owa=5 6

i=1 i=1
To facilitate subsequent discussions, we note the identity from Eq. (48) of reference [1],

1

(Olte7(0) = (~1)*(0ljzhe™"|0) = S B (7). (65)

Here ¢ is an integer, ¢ = 0 or ¢ = 1 in our work. The n-stream exponential integral functions
were given by Eq. (49) of reference [1] as

2n
BT = 3 w2, (66)
k=n+1

can be obtained by evaluating the exact exponential integral functions,

1
Bf) = [ duprieh, (67)

with Gauss-Legendre quadratures [12]. The exponential integral functions (67) are discussed
in Appendix I of Chandrasekhar’s book [13]. They account for the contributions to radiation

14



transfer of intensity propagating at various slant angles with respect to the vertical. Graphi-
cal plots of the functions (67) and its n-exponential approximation (66) for n > 5 can hardly
be distinguished, as shown by Fig. 9 of reference [11].

For future reference we note from (65) that

(014a]0) = =B (0) —

5 as n — oo. (68)

1 =

The limit Eé{n}(O) — 1/2 as n — oo was given by Eq. (222) of reference [11]. Some simple
examples of (68) are

(02519, ifn=5
(OH“JO)“{ 0.2502, if n = 16. (69)

3.3 The A-space basis |)\;)

The exponentiation-rate operator # of (3) was given by Eq. (57) of reference [1] as
the product of the direction-secant operator ¢ of (44), and the efficiency operator

~ 1
2
given by Eq. (58) of reference [1]. In accordance with Eq. (61) of reference [1], the scattering
operator p of (71) can be written in terms of the right and left multipole basis vectors, |l)
and (/| of (56) and (57) and the multipole coefficients p; of (23) as

2n—1

p=2Y mlh(ll. (72)

For a non-scattering atmosphere, when the single-scattering albedo vanishes, @ — 0, the
efficiency operator 7 of (71) reduces to the identity operator, 7 — 1 and the exponentiation-
rate operator & of (70) reduces to the direction secant operator & — ¢ of (44). So & is a
generalized direction secant operator ¢ for a scattering atmosphere.

It is convenient to introduce a penetration-length operator,

A=kt =0T, (73)

the inverse of the exponentiation-rate operator # of (70). From (73) and (71) we see that
A= fias @ — 0and 77! — 1. So \is a generalized direction cosine operator i for a
scattering atmosphere.

We denote right and left eigenvectors, |;) and (\;| of the penetration-length operator A,
in analogy to (39), by

AN) = AA) and (A = (| (74)

As in (28) the real eigenvalues or penetration lengths are ordered such that

)\1<>\2<>\3<"'>\2n- (75)
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As in (29) the penetration lengths for a homogeneous cloud have the reflection symmetry
Ai = =iy (76)

The index reflection function r(i) = 2n+1—1i was defined by (30). The A-space basis vectors
(Ai| and |A;) are chosen to have orthonormality and completeness relations analogous to (40)
and (41),

(AilAj) = 045, (77)
and
L=2 P (78)

In analogy to (47) we define the downward and upward projection operators in A space by
n 2n
La=) )N and La= 37 )l (79)
j=1 k=n+1

The exponentiation-rate operator (70) can be written as the sum of downward and upward
parts in A space

where 9
Ra= Y miA)A] and Ba= ) sl (Al (B
j=1 k=n+1

The eigenvalues k; of & are the inverses of the eigenvalues \; of 5\, and the eigenvectors are
the same as those of \,

ki=—, (ri]l=(N], and |&;) =1|N). (82)

i

The A-space basis is especially useful for homogeneous clouds, where the exponentiation-rate
operator & of (70) is independent of the optical depth 7.

4 Clouds

In this section we show how to use 2n-stream radiative theory [1] to model the thermal emis-
sion of clouds that have greenhouse gases in the air between the condensed-phase particulates,
water droplets or ice crystallites.

4.1 The scattering operator S

Eq. (104) of reference [1] shows that a cloud scatters external incoming intensity vector [t}
into outgoing intensity vector |/1°"*} as described by the scattering operator S,

1) = S|ty (83)
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Eq. (109) of reference [1] shows that the emissivity operator £ describes the outgoing intensity
| 71"} produced by thermal emission of the cloud, when it has a uniform temperature 7" and
the corresponding Planck intensity B of (2),

|[ony = £]0)B. (84)

The monopole basis |0) was given by (62). As discussed in Section 2.6 of reference [1], the
double dots of [I{°"} and |71} in (83) identify intensities orginating from sources outside
the cloud. The single dot of |11} in (84) identifies intensities generated by thermal emission
of cloud particulates and greenhouse gases.

According to Kirchhoff’s law, Eq. (111) of reference [1], the emissivity operator & of (84)
and the scattering operator S of (83) sum to the 2n x 2n identity operator 1,

E+S=1. (85)

4.2 Intensity emissivities

Using (33), (62) and (84), we write the outgoing thermal intensity of the ith stream from an

isothermal cloud as )
jow) _ (T} (il€10)B

w; (11410)
We can write (86) as
" = ¢,B, (87)
where the intensity emissivity ¢; is

S (71T} (AT )R

4.3 Flux emissivities

According to (84) and Eq. (90) of reference[1], the upward flux vector |Z£OUt)} for an
isothermal cloud is _ .
| ZwY = d7fi | 1Y = 47/1,E]0) B, (89)

u

According to Eq. (69) of reference [1], the scalar flux corresponding to (89) is
2" = (0125} = 47(0]1u€]0) B, (90)

For a black cloud, where the emissivity operator is €& = 1, the outgoing upward flux follows
from (90) and is

Z®P) = 47(0]/14]0)B
— mB as n — oo. (91)

We used (68) to write the last line of (91). From inspection of (90) and (91) we see that we
can write
ASRIES WAL (92)
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where we use (90), (91) and (85) to write the upward fluz emissivity of (92) as

CZ9 (01i€l0) . (0]/uS]0)
= o T (Ol0) L (Offal0) 63

In analogy to (92) we can write the downward flux from an isothermal cloud as

7 = cqz0), (94)
The downward flux emissivity is
A8 (00agl0) | (0laS]0) (95)
Z®b)  (0]fal0) (0]fzal0)

It is straightforward to show that the upward and downward flux emissivities €, and €4 of
(93) and (95) are related to the intensity emissivities ¢; of (87) by

:Zjﬂjwjgj and & :Zkukwkgk.
Zjﬂjwj > ok HEWk

The summation indices j and k of (96) for downward and upward streams were given by
(31) and (32).

In Eq. (163) of reference[l] we showed that the downward and upward flux albedos
wq and w, of an isothermal cloud are the complements of the downward and upward flux
emissivities £q and &, of (95) and (93),

€d (96>

wg=1—¢eq and wy=1—¢,. (97)

Anything that increases the downward or upward flux emissivities, eq and ¢, will decrease
the corresponding downward and upward flux albedos, wq and w,, and vice versa.

4.4 Bounds on emissivities

In Eq. (117) of reference [1] we mentioned the fundamental bounds on the scattering operator

S
0 < (1alS10) < (1140)- (98)

If we replace S in (98) by 1— & from Kirchhoff’s law (85) we find that the emissivity operator
& satisfies an analogous bounding equation

0 < (1al€10) < (i]0)- (99)

Dividing all terms of (99) by the factor (u;|0) = w; > 0 from (62) we find that the intensity
emissivity ¢; of (88) is bounded by
0<& <L (100)

Using the bounds (100) in (96) we see that the values of the upward and downward flux
emissivities are also const