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Abstract

For 2n-stream radiation transfer theory, a stack of m = 2, 3, 4, . . . clouds can be rep-
resented as an equivalent cloud. Individual clouds, indexed by c = 1, 2, 3, . . . ,m, are
characterized by 2n × 2n scattering matrices S{c}, that describe how the cloud inter-
acts with 2n streams of axially symmetric incoming radiation, propagating in upward
and downward Gauss-Legendre sample directions. Some of the radiation is transmitted,
some is absorbed and converted to heat, and some is scattered into 2n outgoing streams
along the directions of the incoming streams. The clouds are also characterized by 2n×1
thermal source vectors |J̇{c}} that describe the thermal emission of radiation along the
stream directions by cloud particulates and gas molecules. The 2n× 2n scattering ma-
trix for the equivalent cloud, S{ev} = S{m}*S{m−1}* · · ·S{2}*S{1}, is the Redheffer star
product of the scattering matrices S{c} of the individual clouds. The 2n × 1 thermal
source vector for the equivalent cloud, |J̇{ev}} = G[m,m}|J̇{m}}+G[m,m−1}|J̇{m−1}}+
· · ·+G[m,2}|J̇{2}}+G[m,1}|J̇{1}}, is a linear combination of the thermal source vectors
|J̇{c}} of the individual clouds. The 2n × 2n discrete Green’s matrices G[m,c} can be
constructed from the scattering matrices S{c} of individual clouds. The equivalent
scattering matrix S{ev} and the equivalent thermal source vector |J̇{ev}} are analogous
to the equivalent resistance and the equivalent electromotive force (emf) of Thévenin’s
theorem for a network of electrical circuits. Illustrative numerical examples are given
for single clouds, 3-cloud stacks and 10-cloud stacks. These methods are useful for
modeling radiation transfer in Earth’s atmosphere, which can be represented by layers
of invisible clouds, consisting of clear air and greenhouse gases, or visible clouds which
also include condensed water, smog, etc.

Keywords: radiative transfer, multiple scattering, reflection, absorption, emission, scatt-
tering phase functions, equation of transfer, Gauss-Legendre quadrature, two-port networks
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1 Introduction

In a previous paper, 2n-Stream Radiative Transfer [1], we outlined how to use operator and
matrix methods to accurately and efficiently analyze radiative transfer with angular distri-
butions of scattering, including highly forward scattering of sunlight by cloud particulates
and more nearly isotropic Rayleigh scattering by gas molecules in Earth’s atmosphere. In
a subsequent paper, 2n-Stream Conservative Scattering [2], we showed how to extend these
methods to the limit of conservative scattering, where photons can only be transmitted or
scattered, but not absorbed or emitted. A third paper of this series, 2n-Stream Thermal
Emission from Clouds [3], was devoted to Kirchhoff’s laws of transmission, absorption, scat-
tering and emission of thermal radiation by clouds. The 2n-stream method used in these
papers is a generalization of the 2-stream method of Schuster [4] in his classic paper of 1905,
Radiation Through a Foggy Atmosphere.

Our three previous papers on radiation transfer dealt mostly with homogeneous clouds,
where the single-scattering albedo ω̃ and the scattering phase function p(µ, µ′) were spatially
uniform. In the present paper we will extend this discussion to stacks of individual clouds, c,
each with its own scattering matrix S{c}, and thermal source vector |J̇{c}}. When scattering
incoming radiation, a stack acts like a single cloud with an equivalent scattering matrix
S{ev} = S{m}*S{m−1}* · · ·S{2}*S{1}, the Redheffer star product of the scattering matrices
S{c} of the individual clouds. When emitting thermal radiation, a stack acts like a single
cloud with an equivalent thermal source vector |J̇{ev}} = G[m,m}|J̇{m}}+G[m,m−1}|J̇{m−1}}+
· · ·+G[m,2}|J̇{2}}+G[m,1}|J̇{1}}, a linear combination of the thermal source vectors |J̇{c}} of
the individual clouds. The 2n× 2n discrete Green’s matrices G[m,c} can be constructed from
the individual scattering matrices S{c}. Stacks of clouds have close analogies to networks
of two-port electrical circuits connected in series [5]. The equivalent scattering matrix S{ev}

and the equivalent thermal source vector |J̇{ev}} are analogous to the equivalent resistance
and the equivalent electromotive force (emf) of a network of electrical circuits that follow
from Thévenin’s theorem [6].

An instructive history of radiative transfer theory has been given by Mobley[7]. To our
knowledge, the earliest paper where the 2n-stream method was used to analyze multiple
scattering was published in 1943 by G. C. Wick in connection with his analysis of neutron
diffusion, Über ebene Diffusionsprobleme [8]. Wick’s work has led to an extensive literature
on variants of the 2n-stream computational methods, often described as the discrete ordinate
method (DOM). A useful review of DOM work has been given by Ganapol[11] in 2015 as
The Response Matrix Discrete Ordinates Solution to the 1D Radiative Transfer Equation.
An early application of the 2n stream method to describe radiation transport in clouds
was published by Flannery, Roberge and Rybicki [10] in 1980 as The Penetration of Diffuse
Ultraviolet Radiation into Stellar Clouds. We will frequently refer to the authoritative review
of radiative transfer in Chandrasekhar’s classic book, Radiative Transfer[12]. The book by
Thomas and Stamnes[13], Radiation Transfer in the Atmosphere and Ocean has extensive
discussions of discrete ordinate methods.

3



2 Radiation Intensity and Flux

For axial symmetry about the zenith direction, we will characterize time-independent, steady
state radiation of spatial frequency ν at an altitude z above Earth’s surface with the
monochromatic intensity I(ν, µ, z), also called the radiance. One can think of the intensity
as streams of photons making various angles, θ = cos−1 µ, with the vertical. I(ν, µ, z) dµ dν
is the radiative flux carried by photons with direction cosines between µ and µ + dµ and
with spatial frequencies between ν and ν + dν. A representative unit of I(ν, µ, z) is W m−2

cm sr−1, where W= watts, is the unit of radiation power, m2 = square meters, is the unit of
irradiated area, cm−1 = waves per cm, is the unit of spatial frequency of the radiation, and
sr = steradian, is the unit of solid angle. In 2.1(3), Chandrasekhar[12] uses the symbol Iν to
denote our intensity I = I(ν, µ, z). For most of the remainder of this paper we will discuss
only monochromatic radiation and we will usually omit the frequency variable ν and write
I(ν, µ, z) = I(µ, z).

The intensity I(µ, τ) obeys the steady-state equation of transfer,(
µ
∂

∂τ
+ 1

)
I(µ, τ) = (1− ω̃)B(τ) +

ω̃

2

∫ 1

−1

dµ′ p(µ, µ′)I(µ′, τ). (1)

We neglect any variation of the intensity in horizontal spatial directions. Chandrasekhar[12]
writes (1) as §6(47). He uses the symbol ℑν to denote both source terms on the right of (1).
He writes the emissive part of the source, which is proportional to the Planck intensity B(τ),
as §5(42). He writes the scattering part of the source, that is proportional to the scattering
phase p(µ, µ′), as §5(41). The optical depth τ = τ(z) at an altitude z above the bottom of
the cloud is

τ =

∫ z

0

dz′ α(z′), (2)

The net attenuation rate, due to absorption and scattering, at the altitude z is α = α(z).
We see that dτ = α dz.

The source terms on the right of (1) are characterized by the single-scattering albedo
ω̃, by the Planck intensity B(τ), and by the scattering phase function p(µ, µ′). Both ω̃ and
p(µ, µ′) may depend on altitude z, or equivalently, on the vertical optical depth τ . The single-
scattering albedo ω̃ is the probability that a photon, after a collision with a molecule or cloud
particulate, is elastically scattered into other directions. A fraction 1 − ω̃ of the photons is
absorbed and converted to atmospheric heat. We will neglect the very small effects of Raman
scattering in Earth’s atmosphere, where scattered photons emerge at substantially different
frequencies due to internal energy changes of the scattering molecule. Chandrasekhar[12]
uses the symbol ϖ0, the first term in his multipole expansion §3(33) of the scattering phase
function, to denote the single-scattering albedo ω̃ of (1).

The phase function p(µ, µ′) of (1) is a symmetric and nonnegative function of the direction
cosine, µ = cos θ, of the scattered radiation and the direction cosine, µ′ = cos θ′, of incident
radiation

p(µ, µ′) = p(µ′, µ) ≥ 0. (3)

The probability dP that a collision with a cloud particulate scatters a photon, propagating
with direction cosine µ′, into a photon with a direction cosine between µ and µ + dµ is
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Figure 1: Sample directions of 2n = 4 streams of axially symmetric radiation. The streams
are centered on conical surfaces with opening angles θi to the zenith. In accordance with (6),
the direction cosines of the streams, µi = cos θi, are the zeros of the Legendre polynomial
P2n, in this example, P2n(µi) = P4(µi) = 0.

dP = ω̃ p(µ, µ′)dµ/2. In keeping with its significance as a probability density, the phase
function satisfies the identity

1

2

∫ 1

−1

dµ p(µ, µ′) = 1. (4)

The Planck intensity B = B(τ) of (1) depends on the local temperature, T of the
scattering medium, and on the spatial frequency ν of the radiation, as described by

B =
2hPc

2ν3

eνc hP/(kBT ) − 1
. (5)

We are using cgs units, where hP is Planck’s constant and kB is Boltzmann’s constant. We
assume that the absolute air temperature, T = T (z) may depend on altitude z. Then the
Planck intensity, B = B(τ), may depend on the altitude z or equivalently, on the optical
depth τ . The radiation wavelength is λ = 1/ν.

2.1 The 2n-stream basis

The 2n-stream method of reference[1] allows one to solve the integro-differential equation
of transfer (1) accurately and efficiently with modern computer software. The angular de-
pendence of the intensity is characterized with 2n sample values, I(µi, τ) ≥ 0, along the
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Figure 2: Representative parameters for Gauss-Legendre quadratures and 2n = 4 streams.
In accordance with (6) the sample direction cosines, µi = cos θi, of the streams of Fig. 1 are
the zeros of the Legendre polynomial, P2n(µ) = P4(µ), which is shown as the continuous red
curve. The zeros µi, where P2n(µi) = 0, are marked with small red circles. For this example
the values are µ1, µ2, µ3, µ4 = −0.8611,−0.3400, 0.3400, 0.8611. The stream weights, calcu-
lated with (13), are w1, w2, w3, w4 = 0.3479, 0.6521, 0.6521, 0.3479. See the text for more
discussion.

directions of the streams i = 1, 2, 3, . . . , 2n. As sketched in Fig. 1, the ith stream makes an
angle θi = cos−1 µi to the zenith. The Gauss-Legendre [14] direction cosines, µi, are the zeros
of the Legendre polynomial P2n of degree 2n,

P2n(µi) = 0. (6)

We will choose the indices i = 1, 2, 3, · · · , 2n such that

µ1 < µ2 < µ2 < · · · < µ2n. (7)

Because the Legendre polynomial P2n is even, with P2n(µ) = P2n(−µ), the values of µi occur
as equal and opposite pairs,

µi = −µr(i). (8)

The index reflection function is
r(i) = 2n+ 1− i. (9)
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For the ordering convention (7)

µj < 0 for j = 1, 2, 3, . . . , n, (10)

µk > 0 for k = n+ 1, n+ 2, n+ 3, . . . , 2n. (11)

The weighted sample values of the intensity, wiI(µi, τ), will be denoted with the symbol
((µi|I(τ)},

((µi|I(τ)} = wiI(µi, τ) ≥ 0. (12)

A formula for the Gauss-Legendre weights, wi > 0, was given by Eq. (72) of reference [1] as

1

wi

=
2n−1∑
l=0

2l + 1

2
P 2
l (µi) > 0. (13)

The weights wi sum to 2,

2n∑
i=1

wi = 2. (14)

The weights wi of (13) and the sample direction cosines µi defined by (6) are illustrated in Fig.
2. The weights are almost, but not precisely, the distances between local maxima and minima
of P2n(µ) for values of µ in the interval [−1, 1]. For example, dP4(µ)/dµ = (5µ/3)(7µ2 − 3).
The solutions to dP4(µ)/dµ = 0 are µ = 0,±

√
3/7. But

√
3/7 = 0.6547 ̸= w3 = 0.6521, the

number calculated with (13).
To simplify equations, we denote the intensity as an abstract vector |I} = |I(τ)}. We

can represent the abstract vector |I} with a 2n× 1 column vector

|I} =
2n∑
i=1

|µi)((µi|I} =


((µ1|I}
((µ2|I}

...
((µ2n|I}

 . (15)

We will call the column vector on the right of (15) the µ-space representation of the abstract
vector |I}. We will use other 2n× 1 arrays of numbers to represent the same abstract vector
|I} in other bases, for example, the multipole basis |l), discussed in Section 2.2.

The stream basis vectors |µi) of (15) can be represented with the unit column vectors

|µ1) =


1
0
...
0

 , |µ2) =


0
1
...
0

 , · · · , |µ2n) =


0
0
...
1

 . (16)

Corresponding left basis vectors can be represented as the unit row vectors

((µ1| = [1 0 · · · 0],

((µ2| = [0 1 · · · 0],
...

((µ2n| = [0 0 · · · 1].

(17)
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We use a double left parenthesis, ((µi|, as a reminder that the row (or left) basis vectors need
not be Hermitian conjugates of the column (or right) basis vectors. The row basis vectors
((µi| are like reciprocal lattice vectors of a crystal [15]. The column basis vectors, |µi) are
like direct lattice vectors. Just as low-symmetry crystals can have oblique, non-orthogonal
lattice vectors, the right basis vectors |µi) need not be orthogonal to each other, although
they are orthonormal to the left eigenvectors ((µi|.

As discussed in connection with Eq. (105) of reference [1], the stream basis vectors are
right and left eigenvectors of the direction cosine matrix µ̂

µ̂|µi) = µi|µi), and ((µi|µ̂ = ((µi|µi. (18)

The eigenvectors are chosen to have the orthonormality property

((µi|µi′) = δii′ . (19)

They have the completeness property

2n∑
i=1

|µi)((µi| = 1̂. (20)

In (20) and elsewhere, we will use the symbol 1̂ to denote a square identity matrix with
ones along the main diagonal and zeros elsewhere. It has the same dimensions as any square
matrices that are added to, subtracted from, or equated to it.

Multiplying (20) on the left or right by µ̂ and using (18) we find an expression for the
direction-cosine operator,

µ̂ =
2n∑
i=1

µi|µi)((µi|. (21)

The direction secant matrix ς̂ is the inverse of the direction cosine matrix µ̂. We can use
(21) to write

ς̂ = µ̂−1 =
2n∑
i=1

ςi|µi)((µi|. (22)

The eigenvalues of the direction secant matrix are the inverses of the eigenvalues µi of the
direction cosine matrix

ςi =
1

µi

. (23)

The direction secant matrix ς̂ has the same left and right eigenvectors as the direction cosine
matrix µ̂,

ς̂|µi) = ςi|µi), and ((µi|ς̂ = ((µi|ςi. (24)

In accordance with Eq. (88) of reference [1] it is convenient to use the stream basis vectors
to define a projection matrix Md for downward streams with indices j ≤ n and µj < 0, and
a projection matrix Mu for upward streams with indices k > n and µk > 0.

Md =
n∑

j=1

|µj)((µj| and Mu =
2n∑

k=n+1

|µk)((µk|. (25)
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The projection matrices of (25) have the simple algebra

Md +Mu = 1̂ (26)

M2
d = Md and M2

u = Mu (27)

MdMu = 0̆ and MuMd = 0̆. (28)

Here and elsewhere, the symbol 0̆ denotes a matrix, not necessarily square, for which all the
elements are zero. The dimensions of 0̆ are the same as the dimensions of other matrices to
which it is added, subtracted or equated.

In accordance with Eqs. (109) and (110) of reference [1], we write the direction-cosine
matrix µ̂ as the sum of a downward part µ̂d and an upward part µ̂u

µ̂ = µ̂d + µ̂u. (29)

Expressions for the downward and upward parts are

µ̂d = Mdµ̂ = µ̂Md =
n∑

j=1

µj|µj)((µj|, (30)

µ̂u = Muµ̂ = µ̂Mu =
2n∑

k=n+1

µk|µk)((µk|. (31)

In like manner, we write the direction-secant matrix ς̂ as the sum of a downward part ς̂d and
an upward part ς̂u

ς̂ = ς̂d + ς̂u. (32)

Expressions for the downward and upward parts are

ς̂d = Mdς̂ = ς̂Md =
n∑

j=1

ςj|µj)((µj|, (33)

ς̂u = Muς̂ = ς̂Mu =
2n∑

k=n+1

ςk|µk)((µk|. (34)

It will often be convenient to write intensity vectors, flux vectors, source vectors, etc. as
sums of downward and upward parts, for example,

|I} = |Id}+ |Iu} =

[
|Id}
|Iu}

]
, (35)

where
|Id} = Md|I} and |Iu} = Mu|I}. (36)

2.2 The multipole basis

Describing the angular distribution of the axially symmetric intensity I(µ, τ) with the 2n
sample values, I(µi, τ), at the Gauss-Legendre direction cosines µi of (6), is equivalent to

9



approximating the intensity as a superposition of the first 2n Legendre polynomials,

I(µ, τ) =
2n−1∑
l=0

(2l + 1)Pl(µ)Il(τ). (37)

The intensity multipoles are

Il(τ) = ((l|I(τ)}

=
2n∑
i=1

((l|µi)((µi|I(τ)}. (38)

Projections ((l|µi) of the left multipole basis ((l| onto the right stream basis |µi), and vice
versa, were given by Eqs. (84) and (85) of reference [1] in terms of Legendre polynomials Pl,
and weights wi of (13) as

((l|µi) =
1

2
Pl(µi), (39)

and
((µi|l) = wi(2l + 1)Pl(µi). (40)

Substituting (39) and (12) into (38), and noting from (37) that I(µ, τ) can be written
as a superpositon of the first 2n Legendre polynomials, we can use the Gauss-Legendre
quadrature [14] to write the l-th multipole moment of the intensity as

Il(τ) =
1

2

2n∑
i=1

wiPl(µi)I(µi, τ)

→ 1

2

∫ 1

−1

dµPl(µ)I(µ, τ) as n → ∞. (41)

In analogy to (19) the multipole basis vectors |l′) and ((l| have been chosen to have the
orthonormality property

((l|l′) = δll′ . (42)

In analogy to (20), they have the completeness property

2n−1∑
l=0

|l)((l| = 1̂. (43)

Using (42) we can write the intensity vector as

|I(τ)} =
2n−1∑
l=0

|l)((l|I(τ)} =
2n−1∑
l=0

|l)Il(τ). (44)

The expansion coefficients ((l|I(τ)} = Il(τ) were given by (41).

10



From (40) we see that the elements ((µi|0) of the right monopole basis vector |0) are the
weights wi of (13)

|0) =
2n∑
i=1

|µi)((µi|0) =
2n∑
i=1

|µi)wi =


w1

w2
...

w2n

 , (45)

From (39) we see that the elements ((0|µi) of the left monopole basis vector ((0| are all equal
to 1/2,

((0| =
2n∑
i=1

((0|µi)((µi| =
1

2

2n∑
i=1

((µi| =
[
1

2

1

2
· · · 1

2

]
. (46)

An identity from Eq. (53) of reference [3] that will be useful subsequently is

((0|µ̂ = ((1| and µ̂|0) = 1

3
|1). (47)

To facilitate subsequent discussions, we note the identity from Eq. (217) of reference [3],

((0|µ̂q
ue

−ς̂uτ |0) = (−1)q((0|µ̂q
de

ς̂dτ |0) = 1

2
E

{n}
q+2(τ). (48)

Here q is an integer, most often q = 0 or q = 1 in our work. The n-stream exponential
integral functions,

E{n}
q (τ) =

2n∑
k=n+1

wkµ
q−2
k e−τ/µk , (49)

can be obtained by evaluating the exact exponential integral functions,

Eq(τ) =

∫ 1

0

dµµq−2e−τ/µ, (50)

with Gauss-Legendre quadratures. The exponential integral functions (50) are discussed in
Appendix I of Chandrasekhar’s book [12]. They account for the contributions to radiation
transfer of intensity propagating at various slant angles with respect to the vertical. Graphi-
cal plots of the functions (49) and (50) for n ≥ 5 can hardly be distinguished on a linear scale,

as shown by Fig. 9 of reference [3]. Values of E
{n}
q (0) are given in Table 1 of reference [3].

The first few multipole moments Il of the intensity have useful physical interpretations.
As shown by Eq. (19) of reference [1], the monopole moment (l = 0) is proportional to the
volume energy density u of the radiation,

((0|I} = I0 =
cu

4π
, (51)

where c is the speed of light. As shown by Eq. (20) of reference [1], the dipole moment
(l = 1) is proportional to the vertical energy flux Z of the radiation,

((1|I} = I1 =
Z

4π
. (52)
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Under many conditions of practical importance one finds that the intensity is nearly isotropic
and its quadrupole and higher moments are very small compared to the monopole moment

((l|I} = Il ≪ I0, for l = 2, 3, 4, . . . (53)

When radiation-transfer conditions are such that (53) is valid, it is common to use the
Eddington approximation

((l|I} = Il = 0 for l = 2, 3, 4, . . . (the Eddington approximation). (54)

As shown in Fig. 1 and Fig. 2 of reference [2], the Eddington approximation can be very
good deep inside an optically thick cloud. But the approximation is not good just inside the
top and bottom surfaces. We do not use the Eddington approximation in this paper.

2.3 Equation of radiative transfer

According to Eq. (62) of reference [1], for a 2n-stream model of radiative transfer the integro-
differential equation of transfer (1) simplifies to the first-order, linear differential equation
for the intensity vector |I},

d

dτ
|I} = κ̂ (|B} − |I}) . (55)

The Planck intensity vector |B} = |B(τ)} of (55) is

|B} = |0)B. (56)

Here the right monopole basis vector |0) was given by (45), and the scalar Planck intensity
B = B(τ) was given by (5). The exponentiation-rate matrix κ̂ of (55) was given by Eq. (63)
of reference [1] as

κ̂ = ς̂ η̂, (57)

the product of the direction-secant matrix ς̂ of (22), and the efficiency matrix η̂. As discussed
in Section 3.2.1 of reference [1], the eigenvalues ηl of the efficiency matrix are the fraction
of the lth multipole moment that remains after each generation of scattering. As shown in
(54) of reference [1], the efficiency matrix can be written as

η̂ = 1̂− 1

2
ω̃p̂. (58)

Here the single-scattering albedo ω̃, which we mentioned in connection with (1), is the
probability that a photon that collides with a cloud particulate is scattered, rather than
being absorbed and converted to heat. Probabilities must be nonnegative and no larger
than 1. So ω̃ must be bounded by

0 ≤ ω̃ ≤ 1. (59)

The continuous phase function p(µ, µ′) of (3) is represented by the scattering phase matrix p̂
in (58). The matrix elements ((µi|p̂|µi′) = wip(µi, µi′) give the representation of p̂ in µ-space
as a 2n× 2n array of numbers. The matrix p̂ is defined such that a photon in the stream i′
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that is not absorbed in a collision with a cloud particulate has a probability ((µi|p̂|µi′)/2 to
be scattered into the stream i. Therefore, in analogy to (4), we must have

2n∑
i=1

1

2
((µi|p̂|µi′) = 1 and 0 ≤ 1

2
((µi|p̂|µi′) ≤ 1. (60)

In accordance with Eq. (40) of reference [1], for a cloud of randomly oriented scattering
particulates or gas molecules the scattering matrix p̂ can be written in terms of the right
and left multipole basis vectors, |l) and ((l| of (39) and (40), as

p̂ = 2
2n−1∑
l=0

pl|l)((l|. (61)

where the multipole phase coefficients are pl. The monopole coefficient is always unity

p0 = 1. (62)

The coefficients pl of higher multipolarity, 1 ≤ l ≤ 2n − 1, can be used to represent any
physically permissible (nonnegative) phase function for a 2n-stream model, for example:
isotropic scattering, Rayleigh scattering, strongly peaked forward or backward scattering,
etc.

For isotropic scattering, the phase matrix is simply

p̂ = 2|0)((0|. (63)

According to Eq. (133) of reference [1], the only non-zero multipole phase coefficients pl of
a Rayleigh-scattering phase function are p0 = 1 and p2 = 1/10. So the phase matrix of (61)
for Rayleigh scattering is

p̂ = 2|0)((0|+ 1

5
|2)((2|. (64)

For a 2n model, the possible multipole indices are l = 0, 1, 2, . . . , 2n − 1. Therefore, to
represent the Rayleigh scattering operator (64), which includes terms with l = 2, we must
have 2n− 1 ≥ 2 or n ≥ 3/2. Since n must be an integer, Raleigh scattering phase operators
(64) can only be represented in models with n ≥ 2.

As in Section 5.2 of reference [1], we let p(µ, 1) = ϖ{p}(µ) denote the phase function
p(µ, 1) that can be constructed from the first 2p Legendre polynomials P0(µ), P1(µ), . . . , P2p−1(µ),
and which gives the maximum possible forward scattering p(1, 1), subject to the constraint
that p(µ, 1) ≥ 0 for any direction cosine, −1 ≤ µ ≤ 1. The multipole coefficients pl of

ϖ{p}(µ) are denoted by pl = ϖ
{p}
l and are listed in Table 1 of reference [1]. Then the phase

operator (61) for maximum forward scattering of radiation modeled with 2n streams is

p̂ = 2
2n−1∑
l=0

ϖ
{n}
l |l)((l|. (65)
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For an illustative model with 2n = 10, the phase operator (65) for maximum forward scat-
tering becomes

p̂ = 2

(
|0)((0|+ .8182 |1)((1|+ .7273 |2)((2|+ .5967 |3)((3|+ .4988 |4)((4|

+.3869 |5)((5|+ .2937 |6)((6|+ .2016 |7)((7|+ .1209 |8)((8|+ .0573 |9)((9|
)
. (66)

The phase function for maximum backward scattering differs from (65) for maximum forward
scattering by having alternating signs for the multipole expansion coefficients,

p̂ = 2
2n−1∑
l=0

(−1)lϖ
{n}
l |l)((l|. (67)

As shown in Eq. (138) of reference [1], the phase function p(µ, 1) = ϖ{n}(µ) modeled
by (66) is strongly peaked in the forward direction, ϖ{n}(1) = n(n + 1). More detailed
discussions of the scattering-phase matrix p̂ and its multipole coefficients pl can be found in
Section 5 of reference [1].

2.4 Vertical flux

For quantitative studies of vertical energy transfer, the vertical flux vector

|Z} = 4πµ̂|I}, (68)

given by Eq. (210) of reference [1] and the corresponding scalar flux

Z = ((0|Z}
= 4π((0|µ̂|I}
= 4π(1|I}
= 4πI1, (69)

are more directly useful than the intensity vector |I} of (15).
According to (12), the elements of the intensity vector are always nonnegative ((µi|I} ≥ 0.

But according to (10) and (11), the elements ((µi|Z} of the vertical flux vector can have either
positive or negative signs, with

((µj|Z} = 4πµj((µj|I} ≤ 0 for j = 1, 2, 3, . . . , n, (70)

((µk|Z} = 4πµk((µk|I} ≥ 0 for k = n+ 1, n+ 2, n+ 3, . . . , 2n. (71)

We can use (20), (46), (37), (38), (18) and (12) to write the scalar vertical flux (69) as

Z = 4π
2n∑
i=1

((0|µi)((µi|µ̂|I}

= 2π
2n∑
i=1

wiµiI(µi)

→ 2π

∫ 1

−1

dµµI(µ) =

∫
4π

dΩµI(µ). (72)
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We noted that the second line of (72) is proportional to a Gauss-Legendre quadrature of the
function 2πµ I(µ), which converges to the continuous integral of the third line when n → ∞.
The unit of solid angle for axially symmetric radiation is dΩ = 2πdµ.

Using (70) and (71) with the definitions (35) and (36) of downward and upward parts of
radiation vectors, we write the downward and upward parts of the scalar flux as

Zd = ((0|Zd} = ((0|Md|Z} ≤ 0, (73)

Zu = ((0|Zu} = ((0|Mu|Z} ≥ 0, (74)

with
Z = Zd + Zu. (75)

2.5 Outgoing and incoming radiation

The radiation coming into and going out of a stack of m clouds can be characterized with
the intensity vector |I(m)} just above the top of the stack, and by the intensity vector |I(0)}
just below the bottom. Alternatively, one can characterize the intensity with the incoming
intensity |I(in)} and outgoing intensity |I(out)}. As discussed in Eq. (174) and (175) of
reference [1], we can write the incoming intensity vector as

|I(in)} = |I(in)d }+ |I(in)u }
= |I(m)

d }+ |I(0)u }. (76)

where
|I(in)d } = |I(m)

d } and |I(in)u } = |I(0)u }. (77)

The upward and downward parts of the intensity vectors of (76) and (77) are defined in
accordance with (36). In like manner, the outgoing intensity vector can be written as

|I(out)} = |I(out)d }+ |I(out)u }
= |I(0)d }+ |I(m)

u }. (78)

where
|I(out)d } = |I(0)d } and |I(out)u } = |I(m)

u }. (79)

The inverses of (76) and (78) are

|I(0)} = |I(0)d }+ |I(0)u }
= |I(out)d }+ |I(in)u }, (80)

and

|I(m)} = |I(m)
d }+ |I(m)

u }
= |I(in)d }+ |I(out)u }. (81)

In accordance with (68) we write the flux vectors above and below a cloud as

|Z(0)} = 4πµ̂|I(0)}, (82)

|Z(m)} = 4πµ̂|I(m)}. (83)
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Substituting (80) into (82) we find

|Z(0)} = |Z(in)
u } − |Z(out)

d }, (84)

where we define the upward part |Z(in)
u } of the incoming flux and the downward part |Z(out)

d }
of the outgoing flux by

|Z(in)
u } = 4πµu|I(in)}, (85)

|Z(out)
d } = −4πµd|I(out)}. (86)

By convention, we use a negative sign on the right of (86) to ensure that elements of the

vector |Z(out)
d } are nonnegative in µ space. Multiplying (84) on the left by ((0| we find the

that the scalar flux defined by (69) is

Z(0) = Z(in)
u − Z

(out)
d . (87)

Substituting (81) into (83) we find

|Z(m)} = −|Z(in)
d }+ |Z(out)

u }, (88)

where

|Z(in)
d } = −4πµd|I(in)}, (89)

|Z(out)
u } = 4πµu|I(out)}. (90)

Multiplying (88) on the left by ((0| we find the that the scalar flux defined by (69) is

Z(m) = −Z
(in)
d + Z(out)

u . (91)

We can use (84) – (90) to write the outgoing and incoming flux vectors as

|Z(out)} = 4π(µ̂u − µ̂d)|I(out)} = 4π
∑
q

sqµ̂q|I(out)} (92)

|Z(in)} = 4π(µ̂u − µ̂d)|I(in)} = 4π
∑
q

sqµ̂q|I(in)} (93)

Here the sign factors are
su = 1 and sd = −1. (94)

The negative signs in the equations (92) and (93) ensure that the elements of the outgoing
and incoming flux vectors are nonnegative,

((µi|Z(out)} ≥ 0 and ((µi|Z(in)} ≥ 0 for i = 1, 2, 3, . . . , 2n. (95)

From (46) and (95) we see that the scalar fluxes corresponding to (92) and (93) are nonneg-
ative

Z(out) = ((0|Z(out)} =
1

2

2n∑
i=1

((µi|Z(out)} ≥ 0, (96)

Z(in) = ((0|Z(in)} =
1

2

2n∑
i=1

((µi|Z(in)} ≥ 0. (97)
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Subtracting (88) from (84) and using the identity (26) we find

|Z(0)} − |Z(m)} = |Z(in)} − |Z(out)}. (98)

Multiplying (98) on the left by ((0| we find

Z(0) − Z(m) = Z(in) − Z(out). (99)

According to (99), the difference between the scalar fluxes Z(0) and Z(m), each of which
can be positive, negative or zero, is equal to the difference between the nonnegative flux
Z(in) ≥ 0 flowing into the cloud through the top and bottom, and the nonnegative flux
Z(out) ≥ 0 flowing out. Positive values of the flux differences of (99) correspond to radiative
heating of the cloud; negative values correspond to radiative cooling.

2.6 Incident and thermal radiation

As shown in Secton 2.6 of reference [3], the intensity at an optical depth τ above the
bottom of a cloud can be written as the sum of a part |İ} = |İ(τ)} from thermal emission of
particulates and gas molecules inside the cloud and a part |Ï} = |Ï(τ)} from the transmission,
absorption and scattering of incoming (incident) radiation,

|I} = |İ}+ |Ï}. (100)

The single dots denote quantities originating from internally generated thermal radiation.
The double dots denote quantities originating from external incoming radiation. We do
not use single and double dot to represent first and second time derivatives, a convention
that goes back to Isaac Newton. Most of the work of this paper is focussed on steady-state
radiation transfer for which there is no time dependence.

We write the intensity (76) that is incident on the top and bottom of a stack of m ≥ 1
clouds, or onto a single isolated cloud, with m = 1 as

|I(in)} = |İ(in)}+ |Ï(in)}
= |Ï(in)} (101)

Thermal emission of particulates and gas molecules in the clouds can generate outgoing
intensity, |İ(out)} > 0̆, but it cannot generate incoming intensity. Therefore,

|İ(in)} = 0̆, and |Ż(in)} = 0̆. (102)

The second equation of (102) follows from (93).
In accordance with (100) we write the outgoing radiation (78)

|I(out)} = |İ(out)}+ |Ï(out)}, (103)

As shown by Eq. (111) of reference [3], the outgoing intensity vector |Ï{out}} is proportional
to the incoming intensity vector |Ï{in}}. The coefficient of proportionality is the scattering
matrix S,

|Ï(out)} = S|Ï(in)}. (104)
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We will frequently write the scattering matrix of a single cloud as the 2× 2 block matrix

S =

[
Sdd Sdu

Sud Suu

]
where Sqq′ = MqSMq′ . (105)

Possible values of the stream-direction indices q and q′ of (105) are d and u. In Section 2.8
we review how to calculate the scattering matrix S for a homogeneous cloud.

Using (93) and (104) we write (92) as

|Z̈(out)} = Ω|Z̈(in)}. (106)

In accordance with Eq. (216) of reference [1], the cloud albedo matrix Ω of (106) is a similarity
transformation of the scattering matrix,

Ω = (µ̂u − µ̂d)S(µ̂u − µ̂d)
−1 = (µ̂u − µ̂d)S(ς̂u − ς̂d). (107)

The part of the outgoing intensity (103) that comes from thermal emission of cloud
particulates and gas molecules can be written as

|İ(out)} = |J̇} =

∫ τ

0

dτ ′G(τ ′)|0)B(τ ′). (108)

In (108) τ is the vertical optical thickness of the cloud, G(τ ′) is the 2n × 2n continuous
Green’s matrix for thermally generated outgoing radiation, the monopole basis vector of (45)
is |0), and B(τ ′), given by (5), is the Planck intensity at the source optical depth τ ′ above the
bottom of the cloud. We review how to construct G(τ ′) for homogeneous clouds in Section
2.9. The analogous discrete Green’s matrix G[mc} of (256) depends on the discrete index
c = 1, 2, 3, . . . ,m of individual clouds in a stack of m clouds, rather than on the continuous
optical depth τ ′ above the bottom of a single cloud.

For the special case of a single isothermal cloud of constant Planck intensity B(τ ′) = B,
(108) simplifies to

|İ(out)} = |J̇} = E|0)B. (109)

The emissivity matrix E of the isothermal cloud is the integral of the continuous Green’s
matrix over the entire optical depth τ of the cloud,

E =

∫ τ

0

dτ ′G(τ ′). (110)

According to Kirchhoff’s law of radiation, Eq. (279) of reference [1], the emissivity matrix E
of (110) is related to the scattering matrix S by

E = 1̂− S. (111)

An explicit proof of (111) for homogeneous clouds is given by (139) below. In analogy to
(105) we will frequently write the emissivity matrix of an isothermal cloud as the 2×2 block
matrix

E =

[
Edd Edu
Eud Euu

]
where Eqq′ = MqEMq′ . (112)
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In summary, for a single cloud we can write (103) as

|I(out)} = |J̇}+ S|Ï(in)}. (113)

The output intensity vector |I(out)} of (113) is a linear combination of intensity |J̇}, thermally
emitted by cloud particulates and gas molecules, and transmitted and scattered incoming in-
tensity S|Ï(in)}. For long wave thermal radiation, both cloud particulates and greenhouse gas
molecules absorb and emit radiation, but only only cloud particulates contribute significantly
to scattering. Short wave sunlight is efficiently scattered by cloud particulates. Especially
for blue and ultraviolet sunlight, there is also significant Rayleigh scattering by atmospheric
gases. Both particulates and gases absorb small fractions of sunlight, but Earth’s atmosphere
is normally too cool to emit short wave radiation.

2.7 Identities for scattering matrices S
Some important fundamental properties of scattering matrices S of (104) are summarized
here. Formal proofs will be given in a subsequent paper.

For conservatively scattering clouds, with unit single-scattering albedo, ω̃ = 1, no thermal
radiation can be emitted. That is, we must have

|İ(out)} = 0̆ when ω̃ = 1. (114)

Comparing (114) with (109) we see that for a conservatively scattering cloud, with ω̃ = 1,

E|0) = 0̆. (115)

Using (115) with Kirchhoff’s law (111) we find for a conservatively scattering cloud

S|0) = |0). (116)

Eq. (116) is the conservative-scattering limit of the more general inequality

0 ≤ ((µi|S|0) ≤ ((µi|0) = wi for 0 ≤ ω̃ ≤ 1. (117)

The elements of any scattering matrix, for a homogeneous or inhomogeneous cloud, must
satisfy the Helmholtz-reciprocity symmetry

((µo|S|µi)

wo|µi|
=

((µr(i)|S|µr(o))

wi|µo|
. (118)

The index reflection function r(i) was defined by (9). The reciprocity theorem (118) quanti-
fies the plausible fact that for clouds described by (55), the rate of scattering from an input
stream with index i to an output stream with index o is proportional to the rate of scattering
of the time-reversed output stream with index r(o) into the time-reversed input stream with
index r(i).

The elements of scattering matrices of homogeneous clouds also satisfy the simpler re-
flection symmetry

((µo|S|µi) = ((µr(o)|S|µr(i)). (119)
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Scattering matrix elements of more general and realistic inhomogeneous clouds do not satisfy
the reflection symmetry (119) but they do satisfy the Helmholtz reciprocity symmetry (118).

Helmholtz reciprocity symmetries were discussed by Chandrasekhar [12] in his Sections
§13 and §52. Chandrasekhar uses a normalization of the scattering matrix S that eliminates
the factors |µi| and |µo| from (118). We use a slightly different normalization to simplify
the forms of equations like (116), (117) and (119). So formulas involving the S matrix are
slightly different in our work from those in Chandrasekhar’s book.

2.8 Scattering matrix S for a homogeneous cloud

According to Eq. (206) of reference [1], the scattering matrix S of a homogeneous cloud is
given by the simple formula

S = OI−1. (120)

Here we review how to calculate the outgoing matrix O and incoming matrix I of (120). Let
((λi| and |λi) be the left and right eigenvectors, and let λi be the corresponding eigenvalue
of the penetration-length matrix,

λ̂ = κ̂−1 =
2n∑
i=1

λi|λi)((λi|, (121)

the inverse of the exponentiation rate matrix κ̂ of (57). As in (7) the real eigenvalues or
penetration lengths are ordered such that

λ1 < λ2 < λ3 < · · ·λ2n. (122)

As in (8) the penetration lengths for a homogenous cloud have the reflection symmetry

λi = −λr(i). (123)

The index reflection function r(i) was defined by (9). The λ-space basis vectors ((λj| and |λi)
are chosen to have orthonormality and completeness relations analogous to (20) and (21),

((λi|λj) = δij, (124)

and

1̂ =
2n∑
i=1

|λi)((λi|

= Ld + Lu. (125)

For the limit of vanishing single scattering albedos, ω̃ → 0, λ-space quantities are chosen to
approach the corresponding µ-space quantities. λi

((λi|
|λi)

→

 µi

((µi|
|µi)

 as ω̃ → 0. (126)
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In analogy to (25) we define the downward and upward projection operators in λ space by

Ld =
n∑

j=1

|λj)((λj| and Lu =
2n∑

k=n+1

|λk)((λk|. (127)

The exponentiation-rate operator (57) can be written as the sum of downward and upward
parts in λ space

κ̂ = κ̂d + κ̂u. (128)

where

κ̂d =
n∑

j=1

κj|λj)((λj| and κ̂u =
2n∑

k=n+1

κk|λk)((λk|. (129)

The eigenvalues κi of κ̂ are the inverses of the eigenvalues λi of λ̂, and the eigenvectors are
the same as those of λ̂,

κi =
1

λi

, ((κi| = ((λi|, and |κi) = |λi). (130)

The overlap matrix C between µ space and λ space is defined by Eq. (162) of reference [1]
as

C =

[
Cdd Cdu
Cud Cuu

]
=

[
MdLd MdLu

MuLd MuLu

]
. (131)

Note that the left directional index, q = d or u, of Cqq′ refers to µ space, and the right
directional index, q′ = d or u, refers to λ space. A useful identity for the overlap matrices
was already given as Eq. (163) of reference [1]

Cdd + Cud + Cdu + Cuu = Md(Ld + Lu) +Mu(Ld + Lu)

= Md +Mu

= 1̂. (132)

Here we noted the sum rules (26) and (125) of the upward and downward projection operators
Mq in µ space and Lq in λ space. Each of the matrices Cqq′ can be represented as a 2n× 2n
matrix so it does not matter if we write the Cqq′ as an element of a 2 × 2 block matrix or
simply add them as in (132).

A slight modification of the overlap matrix gives the incoming matrix, defined by Eq.
(199) of reference [1] as

I =

[
Cdd Cdue−κ̂uτ

Cudeκ̂dτ Cuu

]
. (133)

The outgoing matrix is defined by Eq. (201) of reference [1] by

O =

[
Cddeκ̂dτ Cdu
Cud Cuue−κ̂uτ

]
. (134)

A simple limiting case of (120) is a purely absorbing cloud with ω̃ → 0 and negligible
scattering, like a layer of clear air with greenhouse-gas absorption. Then Lq → Mq, κ̂ → ς̂
and

I → 1̂, O →
[
eς̂dτ 0̆

0̆ e−ς̂uτ

]
, and S = OI−1 →

[
eς̂dτ 0̆

0̆ e−ς̂uτ

]
. (135)
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2.9 Continuous Green’s matrix G(τ ′)

In reference [3] we used a continuous Green’s vector |G(τ ′)} = G(τ ′)|0) instead of the con-
tinuous Green’s matrix G(τ ′) of (110). In Eq. (151) of that reference we showed that G(τ ′)
for a homogeneous cloud can be written as

G(τ ′) = [Q(τ ′) + SR(τ ′)] κ̂

=
∂

∂τ ′
[Q(τ ′) + SR(τ ′)] . (136)

In (136) the scattering matrix S = S(τ) depends on the total optical thickness τ of the
cloud, but is independent of the variable optical thickness τ ′ above the bottom of the cloud.
The retro matrix R(τ ′) was given by Eq. (127) of reference [3] as

R(τ ′) = Cudeκ̂dτ
′ − Cdue−κ̂u(τ−τ ′). (137)

The matrix Q(τ ′) was given by Eq. (149) of reference [3] as

Q(τ ′) = Cuue−κ̂u(τ−τ ′) − Cddeκ̂dτ
′
. (138)

To verify (110) we integrate (136) to find∫ τ

0

dτ ′G(τ ′) = Q(τ)−Q(0) + S [R(τ)−R(0)]

= Cuu − Cddeκ̂dτ − Cuue−κ̂uτ + Cdd
+S

[
Cudeκ̂dτ − Cdu − Cud + Cdue−κ̂uτ

]
= 1̂−O + S

[
I − 1̂

]
= 1̂− S
= E . (139)

To derive the expression to the right of the third equal sign of (139) from the previous line,
we used (132), (134) and (133). To derive fourth line we used (120). The last line follows
from (111). We will call (139) the Kirchhoff identity. A discretized version (139) for cloud
stacks is given by (271).

2.10 Black clouds

A single black cloud absorbs all incident intensity and scatters none so the scattering matrix
S{1} is the null matrix,

S = 0̆. (140)

A purely absorbing cloud with the scattering matrix (135) becomes black as the optical
thickness approaches infinity, τ → ∞. From Kirchhoff’s law (111) and from (140) we see
that the emissivity matrix of a black cloud is the identity matrix

E = 1̂. (141)
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Then according to (109) and (141) the intensity emitted by an isothermal black cloud with
the Planck intensity B is blackbody radiation

|İ(out)} = |J̇} = |0)B. (142)

The output flux vector (92) corresponding to (142) is

|Ż(out)} = 4π(µ̂u − µ̂d)|0)B. (143)

Using (143) we write the scalar output flux (69) of a black cloud as

Ż(out) = ((0|Ż(out)} = 2Ż(bb). (144)

Here the scalar blackbody flux Ż(bb), emitted upward from the top of the black cloud, or
downward from the bottom, is

Ż(bb) = 4π((0|µ̂u|0)B
= −4π((0|µ̂d|0)B
= 2πE

{n}
3 (0)B

→ πB as n → ∞. (145)

To write the third line of (145) we used the expresssion (48) for the n-stream analog E
{n}
3 (τ)

of the exponential integral function E3(τ). To write the last line of (145) we recalled from

(222) of reference [3] that E
{n}
3 (0) converges to 1/2 as n → ∞. The convergence is rapid.

For n = 5, Table 1 of reference [3] gives E
{5}
3 (0) = 0.5038.

The frequency-integrated value of the flux (145) is

Ż(bb) =

∫ ∞

0

dν Ż(bb)

= 2E
{n}
3 (0)σSBT

4

→ σSBT
4 as n → ∞. (146)

Here we noted that the integral of the Planck intensity (5) over all upward solid angle
increments, 2πµdµ, and frequency increments, dν, is

2π

∫ 1

0

dµµ

∫ ∞

0

dνB = π

∫ ∞

0

dνB = σSBT
4. (147)

The Stefan-Boltzmann constant is

σSB =
2πk4

B

c2h3
P

∫ ∞

0

dx
x3

ex − 1

=
2π5k4

B

15c2h3
P

. (148)

According to (144), an isothermal black cloud emits equal upward and downward fluxes Ż(bb)

through its top and bottom surfaces. The frequency-integrated fluxes (146) are very nearly

Ż(bb) = σSBT
4.
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2.11 Planck emissivities

For a non-black, isothermal cloud with Planck intensity B, we can use (109) with (92) to
write the outgoing thermal flux vector as

|Ż(out)} = 4π(µ̂u − µ̂d)|İ(out)}
= 4π(µ̂u − µ̂d)E|0)B. (149)

In accordance with (82) the scalar outgoing flux that corresponds to (149) is

Ż(out) = ((0|Ż(out)} = Ż(out)
u + Ż

(out)
d . (150)

The upward flux from the top of the cloud is

Ż(out)
u = 4π((0|µ̂uE|0)B = εuŻ

(bb), (151)

where the blackbody flux Ż(bb) was given by (145). The Planck emissivity εu for the cloud
top is

εu =
Ż

(out)
u

Ż(bb)
=

((0|µ̂uE|0)
((0|µ̂u|0)

= 1− ((0|µ̂uS|0)
((0|µ̂u|0)

. (152)

In like manner, we write the downward flux from the bottom of the cloud as

Ż
(out)
d = −4π((0|µ̂dE|0)B{1} = εdŻ

(bb). (153)

The Planck emissivity εd for the cloud bottom is

εd =
Ż

(out)
d

Ż(bb)
=

((0|µ̂dE|0)
((0|µ̂d|0)

= 1− ((0|µ̂dS|0)
((0|µ̂d|0)

. (154)

The total flux from the top and bottom of an isothermal cloud is

Ż(out) = (εu + εd)Ż
(bb), (155)

From (117), (152) and (154) we see that the emissivities are bounded by

0 ≤ εu ≤ 1 and 0 ≤ εd ≤ 1 (156)

By symmetry, a homogeneous isothermal cloud emits equal upward and downward scalar
fluxes, so εu = εd. For an inhomogeneous cloud, εu and εd may not be equal because
particulates near the top of the cloud may have different single-scattering albedos ω̃ and
scattering-phase matrices p̂ from those near the bottom.

Examples of Planck emissivities εu(τ) for homogeneous clouds of finite thickness τ were
shown in Fig. 10 of reference [3], where the expression (152) for the emissivity was given
as Eq. (229). The emissivities increase with increasing optical depths τ of the clouds. In
the limit τ → ∞, the emissivity saturates at a value, εu(∞) ≤ 1, that depends on the
single-scattering albedo ω̃ and the scattering-phase matrix p̂ of (61). For purely absorbing
clouds with ω̃ = 0, the optically-thick emissivity is εu(∞) = 1.

Some representative examples of the Planck emissivities εu of homogeneous, optically
thick clouds, calculated with (152) as functions of the single-scattering albedo ω̃ are shown
in Fig. 3. The curves are for fixed values of the four scattering-phase matrices p̂ of (63) –(67).
Independent of p̂, for black clouds with no scattering or transmission and only absorption
(ω̃ = 0) we have εu = 1. For clouds with 100% scattering or transmission and no absorption
(ω̃ = 1) we have εu = 0. Only for intermediate values of the single scattering albedo,
0 < ω̃ < 1, does the emissivity depend on the scattering-phase matrix p̂ of (61).
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Figure 3: Planck emissivities εu of (152) for homogeneous, optically thick clouds with the
scattering-phase matrices p̂ of (63) – (67) as functions of the single-scattering albedos ω̃. See
the text for more detail.

2.12 Planck albedos

Suppose that the cloud discussed in the preceding section is illuminated from above and
below with isotropic radiation of Planck intensity B, so the incoming intensity is

|Ï(in)} = |0)B (157)

According to (104), the cloud will scatter the incoming intensity into outgoing intensity

|Ï(out)} = S|Ï(in)} = S|0)B. (158)

The scattering matrix S of the cloud is related to the emissivity matrix E in accordance with
Kirchhoff’s law (111). We use (82) to write the scattered scalar flux as

Z̈(out) = 4π((0|(µ̂u − µ̂d)|Ï(out)} = Z̈(out)
u + Z̈

(out)
d . (159)

We can write the upward part of (159) as

Z̈(out)
u = 4π((0|µ̂uS|0)B = ωuŻ

(bb). (160)

where we can use the expression (145) for the blackbody flux Ż(bb), and Kirchhoff’s law (111)
to write the upward part of the Planck albedo ωu as

ωu =
Z̈

(out)
u

Ż(bb)
=

((0|µ̂uS|0)
((0|µ̂u|0)

= 1− εu. (161)
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In like manner we can write the downward part of (159) as

Z̈
(out)
d = −4π((0|µ̂dS|0)B = ωdŻ

(bb). (162)

where

ωd =
Z̈

(out)
d

Ż(bb)
=

((0|µ̂dS|0)
((0|µ̂u|0)

= 1− εd. (163)

The Planck albedos ωu and ωd of (161) and (163) should not be confused with the single-
scattering albedo ω̃ of a cloud particulate or gas molecule, which we distinguish with a
tilde. A cloud with purely absorbing particulates and gas molecules, and therefore with a
vanishing single-scattering albedo, ω̃ = 0, can have a Planck albedo ωq close to 1 if the cloud
is optically thin enough that most of the incoming radiation can be transmitted through
the cloud without absorption. As one would intuitively expect, and as follows formally from
(117) the Planck albedos are bounded by

0 ≤ ωu ≤ 1 and 0 ≤ ωd ≤ 1 (164)

The isotropic input intensity (157) corresponds to the input flux

Z̈(in) = 4π((0|(µ̂u − µ̂d)|Ï(in)}
= 4π((0|(µ̂u − µ̂d)|0)B
= 2Ż(bb), (165)

where the blackbody flux Ż(bb) was given by (145). The ratio of the output flux Z̈(out) of
(159) to the input flux Z̈(in) of (165) is therefore

Z̈(out)

Z̈(in)
=

ωu + ωd

2
. (166)

The mean Planck albedo, (ωu + ωd)/2 of (166), is much like the Bond albedo of a
planet [16], the fraction of the intercepted solar energy flux that the planet transmits or
scatters back to space without absorption. But the mean Planck albedo (ωu + ωd)/2 is the
fraction of isotropic, monochromatic incoming radiation per unit area of the top and bottom
of a cloud that is reflected or transmitted, rather than being absorbed and converted to heat.
The Bond albedo for planets in our solar system is defined for nearly collimated illumination
of the entire planet by the full frequency spectrum of the Sun.

Using (87) and (91) we write the scalar flux Z(τ ′) as Ż(0) = Ż(0) at the bottom of the
cloud, where τ ′ = 0 and Ż(1) = Ż(τ) at the top, where τ ′ = τ .

Ż(0) = Ż(in)
u − Ż

(out)
d = −Ż

(out)
d = 4π((0|µ̂dE|0)B (167)

Ż(1) = −Ż
(in)
d + Ż(out)

u = Ż(out)
u = 4π((0|µ̂uE|0)B. (168)

Here we noted that a single cloud has no incoming thermal flux, |Ż(in)} = 0̆.
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To facilitate subsequent discussions of stacks of more than one cloud, we write (167) and
(168) as the single vector equation

|Ż) = 4πṀ |B] or Z(g) = 4π
1∑

c=1

Ṁ (gc}B{c}, (169)

where |B] = B{c} = B{1} is the Planck intensity of cloud c = 1 in a stack of m = 1 clouds,
and Z(g) is the flux in the space g = c above the cloud c or in the space g = c − 1 below
the cloud c. We will call the spaces below or above clouds gaps. For a stack of m clouds the
cloud indices c and gap indices g can take on the values

c = 1, 2, 3, . . . ,m and g = 0, 1, 2, 3, . . .m. (170)

On the left of (169) the abstract vector and matrix symbols mean

|Ż) =
[
Ż(0)

Ż(1)

]
and Ṁ =

[
Ṁ (01}

Ṁ (11}

]
=

[
((0|µ̂dE|0)
((0|µ̂uE|0)

]
. (171)

Since the abstract matrix M converts a cloud property |B] to a gap quantity |Ż) we write
its elements as M (gc} with a left parenthesis and a right curly bracket as delimiters for the
gap and cloud indices.

2.13 Half isotropic incoming intensity

To fully specify the intensity vector |Ï(in)} of incoming radiation onto the bottom and top
of a cloud stack, one needs 2n numbers, for example, the stream amplitudes ((µi|Ï(in)} for
i = 1, 2, 3, . . . , 2n. But for this expository work it is convenient to model input radiation as
half-isotropic Planck radiation, which would be generated by an external black cloud with
a Planck intensity B

{in}
d , located above the cloud stack, and a second external black cloud

of Planck intensity B
{in}
u , located below the cloud stack. The two nonnegative numbers,

B
{in}
d and B

{in}
u , are sufficient to specify half-isotropic incoming radiation with the incoming

intensity vector

|Ï(in)} =
u∑

q=d

Mq|0)B{in}
q . (172)

The input flux vector (93) corresponding to (172) is

|Z̈(in)} = 4π
u∑

q=d

sqµ̂qB
{in}
q |0). (173)

The sign factors sq were defined by (94). The upward and downward scalar incoming fluxes
corresponding to (173) are

Z̈(in)
u = ((0|Mu|Z̈(in)} = 4π((0|µ̂u|0)B{in}

u , (174)

Z̈
(in)
d = ((0|Md|Z̈(in)} = −4π((0|µ̂d|0)B{in}

d . (175)
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From (106) we see that the outgoing flux corresponding to the incoming flux (173) is

|Z̈(out)} = 4π
u∑

q=d

Ω sq µ̂q|0)B{in}
q . (176)

The cloud albedo matrix Ω in (176) was given by (107). The upward and downward scalar
outgoing fluxes corresponding to the vector flux (176) are

Z̈(out)
u = ((0|Mu|Z̈(out)} = 4π

∑
q

((0|MuΩ sq µ̂q|0)B{in}
q , (177)

Z̈
(out)
d = ((0|Md|Z̈(out)} = 4π

∑
q

((0|MdΩ sq µ̂q|0)B{in}
q , (178)

We can use (174), (175), (177) and (178) with (87) to write the scalar flux Z̈(0) below

the cloud as a linear combination of the input Planck intensities B
{in}
d and B

{in}
u ,

Z̈(0) = Z̈(in)
u − Z̈

(out)
d

= 4π((0|µ̂u −MdΩµ̂u|0)B{in}
u + 4π((0|MdΩµ̂d|0)B{in}

d

= N̈ (0)
u B{in}

u + N̈
(0)
d B

{in}
d . (179)

In like manner, can use (174), (175), (177) and (178) with (91) to write the scalar flux Z̈(1)

above the cloud as

Z̈(1) = −Z̈
(in)
d + Z̈(out)

u

= 4π((0|µ̂d −MuΩµ̂d|0)B{in}
d + 4π((0|MuΩµ̂u|0)B{in}

u

= N̈
(1)
d B

{in}
d + N̈ (1)

u B{in}
u . (180)

To facilitate subsequent discussions of stacks of more than one cloud, we write (179) and
(180) as the single vector equation

|Z̈) = 4πN̈ |B{in}⟩ or Z̈(g) = 4π
u∑

q=d

N̈ (g)
q B{in}

q , (181)

where

|Z̈) =
[
Z̈(0)

Z̈(1)

]
, (182)

and

|B{in}⟩ =

[
B

{in}
d

B
{in}
u

]
. (183)

The elements of the (m+ 1)× 2 = 2× 2 matrix N̈ of (181) follow from (179) and (180) and
are

N̈ =

[
N̈

(0)
d N̈

(0)
u

N̈
(1)
d N̈

(1)
u

]
=

[
((0|MdΩµ̂d|0) ((0|µ̂u −MdΩµ̂u|0)
((0|µ̂d −MuΩµ̂d|0) ((0|MuΩµ̂u|0)

]
. (184)

Summing the flux |Ż) of (169) from thermal emission and the flux |Z̈) of (181) from scattering
of incoming radiation we find the total fluxes

|Z) =

[
Z(0)

Z(1)

]
= |Ż) + |Z̈) = 4πṀ |B] + 4πN̈ |B{in}⟩. (185)

28



2.14 Radiative heating and cooling of an isolated cloud

It is instructive to consider a 1-cloud stack consisting of a single isolated cloud. The number
of clouds in the stack is m = 1 and the cloud index can only be c = 1. Using (185) we write
the net radiative absorption rate R{c} per unit area of the isolated cloud as the difference
between the vertical flux Z(0) at the bottom of the cloud and the vertical flux Z(1) at the
top,

R{c} = Z(0) − Z(1)

= −
1∑

g=0

∆{cg)Z(g). (186)

The elements of the m× (m+ 1) = 1× 2 differencing matrix ∆ are

∆ =
[
∆{10) ∆{11) ]

=
[
−1 1

]
. (187)

In preparation for discussions of stacks of more than one cloud we have written (186) as the
element of an abstract vector equation

|R] = −∆|Z)
= −4π∆Ṁ |B]− 4π∆N̈ |B{in}⟩. (188)

The rate R{c} of (186) is the diabatic heating rate (or cooling rate if R{c} < 0) due to
absorption and emission of radiation by cloud particulates and gas molecules. One definition
of diabatic heating is: A process that occurs with the addition or loss of heat. The opposite
of adiabatic. Meteorological examples include air parcels warming due to the absorption of
infrared radiation or release of latent heat [17]. This definition refers to the enthalpy the
non-condensible (non-water) molecules of an air parcel. If one were to include the enthalpy
of water and water vapor in the total enthalpy of the air parcel, condensation or evaporation
would generate no diabatic heating or cooling. For example, the heat (enthalpy) added by
condensation of water vapor to the dry air of an expanding air parcel would be equal and
opposite to the heat (enthalpy) lost from the condensing vapor.

We can write the net heating rate of (186) as the difference between the heating rate Ḧ{c}

due to absorption of external radiation and the cooling rate Ċ{c} due to thermal emission
by cloud particulates and gas molecules.

R{c} = Ḧ{c} − Ċ{c}. (189)

From inspection of (186) we see that

Ḧ{c} = Z̈(0) − Z̈(1)

= Z̈(in) − Z̈(out)

= ((0|Z̈(in)} − ((0|Z̈(out)}
= ((0|(1̂− Ω{c})|Z̈(in)}
= ((0|A{c}|Z̈(in)}. (190)
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We used (99) to write the second line of (190) and we used (106) to write the fourth line.
In the last line we have introduced the absorptivity matrix A{c} which we define as the
complement of the albedo matrix Ω{c},

A{c} = 1̂− Ω{c}

= (µ̂u − µ̂d)E{c}(ς̂u − ς̂d). (191)

The second line of (191) comes from (107) and (111). From (191) we see that the same
similarity transformation (107) that converts the scattering matrix S{c} to the albedo matrix
Ω{c}, converts the emissivity matrix E{c} to the absorptivity matrixA{c}. For future reference,
we use (173) to write the last line of (190) as

Ḧ{c} = ((0|A{c}|Z̈(in)}

= ((0|A{c}
(
µ̂uB

(in)
u − µ̂dB

(in)
d

)
|0) (192)

From inspection of (186) we see that the cooling rate due to thermal emission by partic-
ulates and gas molecules of a single isothermal cloud of Planck intensity B{c} is

Ċ{c} = Ż(1) − Ż(0)

= ∆|Ż)
= 4π∆ṀB{c}

= 4π((0|(µ̂u − µ̂d)E{c}|0)B{c}

= (εu + εd)Ż
{bb}. (193)

We used the 1× 2 matrix ∆ of (187) and the 2 × 1 vector |Ż) of (171) to write the second
line of (193); we used the expression (187) for ∆ and the expression (169) for |Ż) to write
the third line; we used the matrix elements of (171) to write the fourth line; for the fifth
line we used the definitions (152) and (154) of the Planck emissivities εu and εd, along with
the definition (145) of the blackbody flux Ż{bb}. Not surprisingly, the cooling rate (193) of
a single, isolated, isothermal cloud is the sum of the thermal flux εuŻ

{bb} emitted upward
from the cloud top and the thermal flux εdŻ

{bb} emitted downward from the cloud bottom.
We can use the second line of (191) to write the fourth line of (193) as the isolated cloud

cooling rate
Ċ{c} = 4π((0|A{c}(µ̂u − µ̂d)|0)B{c}. (194)

Substituting (192) and (194) into (189) we find that the net heating rate of the cloud is

R{c} = Ḧ{c} − Ċ{c}

= 4π((0|A{c}([B{in}
u −B{c}]µ̂u − [B

{in}
d −B{c}]µ̂d)|0). (195)

2.15 Radiative equilibrium

The net radiative heating rate for an isolated cloud will vanish, R{c} = 0. Then the cloud
thermally emits just as much radiation out of its top and bottom surfaces as it absorbs
from incoming radiation. Suppose that convection and other heat transfer mechanism are
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negligibly small compared to radiative heat transfer. Then for fixed half-isotropic incoming
radiation, described by the 2× 1 vector of upward and downward Planck intensities, |B(in)⟩
of (183), the temperature T {c} of the cloud will rise if R{c} > 0 or drop if R{c} < 0 until
the Planck intensity B{c} of the isothermal cloud makes the expression (195) equal to zero.

Setting R{c} = 0 in (195) we see that for given values, B
{in}
d and B

{in}
u , of half-isotropic

incoming radiation the heating rate will vanish if the Planck intensity of a isolated, isothermal
cloud is

B{c} =
((0|A{c}(B

{in}
u µ̂u −B

{in}
d µ̂d)|0)

((0|A{c}(µ̂u − µ̂d)|0)
. (196)

The cloud Planck intensity B{c} for radiative equilibrium will be somewhere between B
{in}
d

and B
{in}
u , and the cloud temperature T {c} will be somewhere between the temperatures T

{in}
d

and T
{in}
u of the downward and upward incoming radiation.

The fundamental symmetries of a homogeneous cloud, with the same single-scattering
albedo ω̃ and the same scattering-phase matrix p̂ of (61) from top to bottom, are such that

((0|A{c}µ̂u|0) = −((0|A{c}µ̂d|0). (197)

Then (196) simplifies to

B{1} =
B

{in}
u +B

{in}
d

2
. (198)

In radiative equilibrium the Planck intensity B{1} of a homogeneous cloud is the average of
the Planck intensities B

{in}
u and B

{in}
d of the half isotropic incoming radiation.

2.16 1-cloud examples

To graph numerical results it is convenient to introduce a reference Planck intensity B0 and
a reference flux Z0. In accordance with (145), these are related as the flux of a blackbody is
related to its Planck intensity

Z0 = 4π((0|µ̂u|0)B0

= 2πE
{n}
3 (0)B0

→ πB0 as n → ∞. (199)

We use caligraphic fonts to denote fluxes measured in units of Z0 or Planck intensities
measured in units of B0. For example, for half-isotropic incoming radiation incident on a
homogeneous cloud we can use (199) and (173) to write

Z̈(in)
q =

Z̈
(in)
q

Z0

=
B

{in}
q

B0

= B{in}
q . (200)

In Fig. 4 – 6 we show numerical examples of radiation transport by a single homogeneous
cloud of optical thickness

τ = 1. (201)
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Figure 4: A Rayleigh scattering cloud of optical depth τ = 1 with the same temperature
as incoming radiation from above and below. The downward and upward relative fluxes
of incoming radiation are denoted by Z̈(in)

d and Z̈(in)
u , and are shown as the dotted cyan

lines. The downward and upward parts of transmitted and reflected radiation are denoted
by Z̈(out)

d and Z̈(out)
u , and are shown as the dashed cyan lines. The net fluxes above and

below the cloud from the incoming radiation are denoted by Z̈(1) and Z̈(0), and are shown
as the continuous cyan lines. For thermal emission by cloud particulates and gas molecules,
the fluxes below and above the clouds are denoted by Ż(0) and Ż(1), and are shown as the
continuous red lines. The net fluxes are denoted by Z(0) and Z(1), and are shown as the
dashed green lines. Fluxes with only upward or only downward radiation are distinguished
with arrowheads from fluxes which are the net of both upward and downward radiation. See
the text for more detailed discussions.

For the examples considered here, we assume that both the particulates and gas molecules
have a Rayleigh scattering-phase matrix p̂ of (64) with a single-scattering albedo

ω̃ =
1

2
. (202)

We can use the value (202) for the single-scattering albedo ω̃, together with the Rayleigh-
scattering-phase matrix p̂ of (64) to evaluate the efficiency matrix η̂ of (58). Multiplying η̂
on the left with the secant matrix ς̂ of (32) gives the exponentiation matrix κ̂ of (57). As
summarized in connection with (105), κ̂, together with the optical depth τ of (201), can be
used to evaluate the scattering matrix S of the cloud. The closely related albedo matrix Ω
follows from (107), the emissivity matrix E follows from (111) and the absorptivity matrix
A follows from (191). We use 2n = 10 streams so S, E , Ω and A are 10× 10 matrices, too
large for convenient display in this paper, but readily used by modern mathematical software
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Figure 5: The same cloud as for Fig. 4, but with only upward incoming radiation incident
on the bottom of the cloud. See the text for more detailed discussions.

packages like Matlab. Using E to evaluate the upward Planck emissivity εu of (152), and
using S to evaluate the upward Planck albedo ωu of (161), we find

εu = 0.5568 and ωu = 0.4432. (203)

Doubling the number of streams to 2n = 20 decreases the Planck albedo by about 0.15%,
from ωu = 0.4432 to ωu = 0.4426, too small to be displayed in Fig. 4. So 2n = 10 streams
gives good modeling accuracy.

Using E to evaluate the matrix Ṁ of (171) we find

4πṀ =

[
−0.5568
0.5568

]
Z0

B0

. (204)

Here Z0 is the reference flux and B0 is the reference Planck intensity of (199). Using Ω to
evaluate the matrix N̈ of (184) we find

4πN̈ =

[
−0.3058 0.8627
−0.8627 0.3058

]
Z0

B0

. (205)

Let the Planck intensity B{c} of the cloud and the Planck intensities B
{in}
d and B

{in}
u of

the half-isotropic incoming radiation be

B{c} = B0 and |B{in}⟩ =

[
B

{in}
d

B
{in}
u

]
=

[
1
1

]
B0. (206)
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Figure 6: The same incoming radiation as for Fig. 5, but after the cloud has cooled to
radiative equilibrium. See the text for more detailed discussions.

Evaluating (169) with B{c} from (206) and Ṁ from (204) we find

|Ż) =
[
Ż(0)

Ż(1)

]
= 4πṀB{c} =

[
−0.5568
0.5568

]
Z0. (207)

Evaluating (181) with |B{in}⟩ from (206) and N̈ from (205) we find (after adjusting the last
numerical digit for roundoff error)

|Z̈) =
[
Z̈(0)

Z̈(1)

]
= 4πN̈ |B{in}⟩ =

[
0.5568

−0.5568

]
Z0. (208)

We see that the flux (207) due to thermal emission of cloud particulates and gas molecules is
equal and opposite the flux (208) due to transmission and scattering of incoming radiation.
Summing (207) and (208) we find that the total flux vanishes,

|Z) =
[
Z(0)

Z(1)

]
= |Ż) + |Z̈) =

[
0
0

]
. (209)

The cloud heating rate (186) also vanishes

R{c} = Z(0) − Z(1) = 0. (210)

The cloud of Fig. 4 is in full thermal equilibium with the incoming radiation, and it neither
heats nor cools.
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In Fig. 5 we show what happens if the downward incoming radiation is removed but
everything else remains the same. The Planck intensity |B{in}⟩ of (206) is changed to

|B{in}⟩ =

[
B

{in}
d

B
{in}
u

]
=

[
0
1

]
B0. (211)

Since the cloud retains the same Planck intensity B{1} = B0 as for (206), the thermally
emitted flux |Ż) stays the same as for (207). Evaluating (181) with |B{in}⟩ from (211) and
N̈ from (205) we find values different from (208)

|Z̈) =
[
Z̈(0)

Z̈(1)

]
=

[
0.8627
0.3058

]
Z0. (212)

Summing (207) and (212) we find that the net flux is positive both below and above the
cloud

|Z) =
[
Z(0)

Z(1)

]
= |Ż) + |Z̈) =

[
0.3058
0.8627

]
Z0. (213)

The cloud heating rate (186) is negative, that is, the cloud cools by releasing more vertical
flux Z(1) = 0.8627Z0 out of the top than the flux Z(0) = 0.3058Z0 that comes into the
bottom

R{c} = Z(0) − Z(1) = −0.5568Z0. (214)

In Fig. 6 we show what happens to the cloud of Fig. 5 if it is allowed to cool to radiative
equilibrium. The incoming radiation |B{in}⟩ retains the value of (211). In accordance with
(198), the Planck intensity of the cloud is halved from the value of (206).

B{c} =
1

2
B0. (215)

Evaluating (169) with B{c} from (215) and Ṁ from (204) we find that the thermally emitted
fluxes |Ż) are half as large as those of (207)

|Ż) =
[
Ż(0)

Ż(1)

]
=

[
−0.2784
0.2784

]
Z0. (216)

The flux |Z̈) from scattered incoming radiation remains the same as (212). Summing the
thermally emitted flux (216) and scattered flux |Z̈) of (212) we find that the total flux for
radiative equilibrium is

|Z) =
[
Z(0)

Z(1)

]
= |Ż) + |Z̈) =

[
0.5842
0.5842

]
Z0. (217)

The cloud heating rate (186) is zero, that is, the cloud thermally emits the same amount
of radiation as it absorbs from incoming radiation

R{c} = Z(0) − Z(1) = 0. (218)

But the cloud is colder than the source of external radiation. The Planck intensity B{c} =
B0/2 of the cloud is only half of the Planck intensity of B

{in}
u = B0 of the radiation coming

up from below.
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Figure 7: A stack of m clouds, labeled by the indices c = 1, 2, 3, . . . ,m. As described in the
text, the figure illustrates the fundamental equations (224) – (231) for radiation transfer in
a cloud stack.

3 Cloud Stacks

Having discussed transmission, scattering and absorption of radiation, along with radiative
heating and cooling of single clouds, we turn to stacks of m clouds, like those shown schemat-
ically by Fig. 7. Each cloud is identified by a superscript {c} where c = 1, 2, . . . ,m. The
cloud c will have a scattering matrix S{c}. The thermal radiation emitted by cloud c will
be denoted by |J̇{c}}. The dotted red arrows of Fig. 7 indicate the upward and downward

parts, |J̇{c}
u } and |J̇{c}

d }. For a nonisothermal cloud, |J̇{c}} is given by the (110) as

|J̇{c}} =

∫ τ{c}

0

dτ ′G{c}(τ ′)|0)B{c}(τ ′). (219)

Here B{c}(τ ′) is the Planck intensity at the optical depth τ ′ above the bottom of the cloud,
and |G{c}(τ ′)} is the Green’s function vector for a cloud with a variable internal temperature,
T (τ ′) at τ ′. The vertical optical depth between the bottom and top of the cloud is τ {c}. For
an isothermal cloud of constant Planck intensity B{c} we can use the simpler expression
(109),

|J̇{c}} = E{c}|0)B{c}, (220)
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where the emissivity matrix E{c} of the cloud follows from (110) and is

E{c} =

∫ τ{c}

0

dτ ′G{c}(τ ′). (221)

In accordance with Kirchhoff’s law (111), the sum of the emissivity matrix E{c} and the
scattering matrix S{c} is the 2n× 2n identity matrix 1̂.

E{c} + S{c} = 1̂. (222)

We characterize the incoming radiation by the intensity vector |Ï(in)} = |Ï(m)
d }+ |Ï(0)u } of

(76), the sum of the downward part |I(m)
d } of the intensity vector in the mth “gap,” above

the top cloud (c = m), and the upward part |I(0)u } of the intensity vector in the 0th “gap”
below the bottom cloud (c = 1). We recall from (101) that |İ(in)} = 0̆ and |I(in)} = |Ï(in)}.
There is no internally generated thermal radiation coming into the bottom and top of the
stack. In Fig. 7 the incoming intensity is shown as the dotted cyan arrows.

Just as for a single cloud there is an outgoing intensity vector |I(out)} like that of (78),

the sum of the downward part |I(out)d } = |I(0)d } of the intensity vector in the 0th gap below

the cloud stack and the upward part |I(out)u } = |I(m)
u } of the intensity vector in the mth gap

above the cloud stack. The downward and upward parts of the outgoing intensity, |I(out)d }
and |I(out)u } are denoted by the green arrows above and below the cloud stack of Fig. 7.

The most convenient descriptors of radiation transfer in cloud stacks are the gap inten-
sities

|I(g)} = |İ(g)}+ |Ï(g)}
= |I(g)d }+ |I(g)u }, (223)

The gap index can take on the values g = 0, 1, 2, . . . ,m. We already defined the gap intensity
|I(0)} in the bottom gap, that is, the intensity below the stack in (80). The gap intensity
|I(m)}, that is, the intensity above the stack, was defined by (81). In addition, a stack of
m > 1 clouds has m − 1 internal gaps. For internal gaps g = 1, 2, 3, . . . ,m − 1 we denote
the intensity in the gap between cloud c = g and the next higher cloud c = g + 1 by
|I(g)} . The downward and upward parts of the internal gap intensities, |I(g)d } and |I(g)u } for
g = 1, 2, 3, . . . ,m− 1 are denoted by the green arrows between adjacent clouds of Fig. 7.

We see that the radiation in a stack of clouds is determined by 2n(m+1) known, nonneg-
ative numbers, the 2n stream projections ((µi|Ï(in)} of the incoming intensity, and the 2nm
stream projections ((µi|J̇{c}} of the thermal source vectors. These known variables of the
problem determine the values of 2nm unknown variables, the 2n nonnegative stream projec-
tions ((µi|I(out)} of the outgoing radiation, and the 2n(m−1) nonnegative stream projections
((µi|I(g)} of the internal gap intensities.

From inspection of Fig. 7 we see that the 2nm unknown intensities can be determined
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by 2nm linear equations, which we abbreviate as 2m equations of n× 1 vectors

|I(1)d } = S{2}
du |I(1)u }+ S{2}

dd |I(2)d }+ |J̇{2}
d }. (224)

|I(1)u } = S{1}
uu |Ï(in)u }+ S{1}

ud |I(1)d }+ |J̇{1}
u }. (225)

|I(2)d } = S{3}
du |I(2)u }+ S{3}

dd |I(3)d }+ |J̇{3}
d }. (226)

|I(2)u } = S{2}
uu |I(1)u }+ S{2}

ud |I(2)d }+ |J̇{2}
u }. (227)

... =
...

|I(m−1)
d } = S{m}

du |I(m−1)
u }+ S{m}

dd |Ï(in)d }+ |J̇{m}
d }. (228)

|I(m−1)
u } = S{m−1}

uu |I(m−2)
u }+ S{m−1}

ud |I(m−1)
d }+ |J̇{m−1}

u }. (229)

|I(out)d } = S{1}
du |Ï(in)u }+ S{1}

dd |I(1)d }+ |J̇{1}
d }. (230)

|I(out)u } = S{m}
uu |I(m−1)

u }+ S{m}
ud |Ï(in)d }+ |J̇{m}

u }. (231)

We see that the downward radiation |I(g)d } in the gap g is the sum of three parts

1. S{g+1}
du |I(g)u }, the downward reflection of upward radiation |I(g)u } in gap g by the next

higher cloud c = g + 1.

2. S{g+1}
dd |I(g+1)

d }, the downward transmission of downward radiation |I(g+1)
d } in gap g+1

by the cloud c = g + 1.

3. The downward thermal radiation |J̇{g+1}
d } emitted by the cloud c = g + 1.

The upward radiation |I(g)u } in the gap g is the sum of three analogous parts.
To account for intensity below and above the cloud stack, there are four exceptional

cases in (224) – (231). In (225) and (230) the upward gap radiation on the right side of

the equations is replaced by |Ï(in)u } of (76) the upward incoming intensity incident on the
bottom of the stack. In (228) and (231) the downward gap radiation on the right side of the

equations is replaced by |Ï(in)d }, the downward incoming intensity incident on the top of the
stack. The left sides of (230) and (231) show how the downward and upward parts of the
unknown intensity |I(out)} are related to the other unknown intensities and to the thermal
and external sources.

3.1 Stack analysis

To find the unknown intensities on the left sides of equations (224) – (231) it is helpful to
write the equations as the formally simpler stack equation

|U ] = X|U ] + P |J̇ ] + Y |Ï{in}}. (232)
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The left side of (232) is the unknown intensity stack vector, which we define as the concate-
nation

|U ] =


|U [1]}
|U [2]}
...
|U [m−1]}
|U [m]}

 =



|U [1]
d }

|U [1]
u }

|U [2]
d }

|U [2]
u }

...

|U [m−1]
d }

|U [m−1]
u }

|U [m]
d }

|U [m]
u }


. (233)

For x = 1, 2, 3, . . . ,m − 1 the unknown intensity vectors |U [x]} are identical to the gap
intensity vectors |I(x)}, that is

|U [x]} = |I(x)} for x = 1, 2, 3, . . . ,m− 1. (234)

For the special case of x = m, the unknown intensity vector is the same as the outgoing
intensity (78)

|U [m]} = |I(out)} = |I(0)d }+ |I(m)
u }. (235)

We use square brackets [ and ] as delimiters for the superscript indices x of the unknown
intensity vectors |U [x]}.

The first term on the right of the stack equation (232) is the product of the generation
matrix X with the unknown intensity stack vector |U ] of (233),

X|U ] =
∑
xx′qq′

X
[xx′]
qq′ |U [x′]

q′ }. (236)

The unknown intensity indices, x and x′, can have the values 1, 2, 3, . . . ,m. The directional
indices q and q′ can have the values d and u.

From inspection of (224) – (231) and (232) we see that if m is not so small that the
pattern is distorted by the four exceptions, (225), (228), (230) and (231), the n × n block
matrix elements in the upper left corner of X are

X =



0̆ S{2}
du S{2}

dd 0̆ 0̆ 0̆ 0̆ · · ·
S{1}
ud 0̆ 0̆ 0̆ 0̆ 0̆ 0̆ · · ·
0̆ 0̆ 0̆ S{3}

du S{3}
dd 0̆ 0̆ · · ·

0̆ S{2}
uu S{2}

ud 0̆ 0̆ 0̆ 0̆ · · ·
0̆ 0̆ 0̆ 0̆ 0̆ S{4}

du S{4}
dd · · ·

0̆ 0̆ 0̆ S{3}
uu S{3}

ud 0̆ 0̆ · · ·
...

...
...

...
...

...
...

. . .


. (237)
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The block matrix elements in the bottom right corner of X are

X =



...
. . .

...
...

...
...

...
...

...

0̆ · · · 0̆ 0̆ S{m−1}
du S{m−1}

dd 0̆ 0̆ 0̆

0̆ · · · S{m−2}
uu S{m−2}

ud 0̆ 0̆ 0̆ 0̆ 0̆

0̆ · · · 0̆ 0̆ 0̆ 0̆ S{m}
du 0̆ 0̆

0̆ · · · 0̆ 0̆ S{m−1}
uu S{m−1}

ud 0̆ 0̆ 0̆

S{1}
dd · · · 0̆ 0̆ 0̆ 0̆ 0̆ 0̆ 0̆

0̆ · · · 0̆ 0̆ 0̆ 0̆ S{m}
uu 0̆ 0̆


. (238)

The last two columns of X have only n × n null matrices, 0̆, as elements. For the simplest
case of m = 2 clouds, X is constructed entirely from the four exceptional equations, (225),
(228), (230) and (231), and can be written as

X =


X

[11]
dd X

[11]
du X

[12]
dd X

[12]
du

X
[11]
ud X

[11]
uu X

[12]
ud X

[12]
uu

X
[21]
dd X

[21]
du X

[22]
dd X

[22]
du

X
[21]
ud X

[21]
uu X

[22]
ud X

[22]
uu

 =


0̆ S{2}

du 0̆ 0̆

S{1}
ud 0̆ 0̆ 0̆

S{1}
dd 0̆ 0̆ 0̆

0̆ S{2}
uu 0̆ 0̆

 . (239)

The second term on the right of (232)

P |J̇ ] =
∑
xc′qq′

P
[xc′}
qq′ |J{c′}

q′ }. (240)

is the product of the permutation matrix P with the known thermal source stack matrix |J̇ ],
which we write as

|J̇ ] =


|J̇{1}}
|J̇{2}}
...

|J̇{m−1}}
|J̇{m}}

 =



|J̇{1}
d }

|J̇{1}
u }

|J̇{2}
d }

|J̇{2}
u }

...

|J̇{m−1}
d }

|J̇{m−1}
u }

|J̇{m}
d }

|J̇{m}
u }


. (241)

Here the thermal source vectors |J̇{c}} are given by (219) for a cloud c with a variable internal
temperature, or by (220) for an isothermal cloud. The downward and upward parts of the

source vectors are |J̇{c}
d } = Md|J̇{c}} and |J̇{c}

u } = Md|J̇{c}}.
From inspection of (224) – (231) and (232) we see that the matrix P is a block version
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of a permutation matrix [18]

P =



0̆ 0̆ 1̂ 0̆ 0̆ · · · 0̆ 0̆ 0̆ 0̆

0̆ 1̂ 0̆ 0̆ 0̆ · · · 0̆ 0̆ 0̆ 0̆

0̆ 0̆ 0̆ 0̆ 1̂ · · · 0̆ 0̆ 0̆ 0̆

0̆ 0̆ 0̆ 1̂ 0̆ · · · 0̆ 0̆ 0̆ 0̆
...

...
...

...
...

. . .
...

...
...

...

0̆ 0̆ 0̆ 0̆ 0̆ · · · 0̆ 0̆ 1̂ 0̆

0̆ 0̆ 0̆ 0̆ 0̆ · · · 0̆ 1̂ 0̆ 0̆

1̂ 0̆ 0̆ 0̆ 0̆ · · · 0̆ 0̆ 0̆ 0̆

0̆ 0̆ 0̆ 0̆ 0̆ · · · 0̆ 0̆ 0̆ 1̂


. (242)

Here 1̂ denotes an n×n identity matrix and 0̆ is an n×n null matrix. For the simplest case
of m = 2, the matrix P becomes

P =


P

[11}
dd P

[11}
du P

[12}
dd P

[12}
du

P
[11}
ud P

[11}
uu P

[12}
ud P

[12}
uu

P
[21}
dd P

[21}
du P

[22}
dd P

[22}
du

P
[21}
ud P

[21}
uu P

[22}
ud P

[22}
uu

 =


0̆ 0̆ 1̂ 0̆

0̆ 1̂ 0̆ 0̆

1̂ 0̆ 0̆ 0̆

0̆ 0̆ 0̆ 1̂

 . (243)

The last term on the right of (232)

Y |Ï(in)} =
∑
xqq′

Y
[x]
qq′ |Ï(in)q′ } (244)

is the product of the insertion matrix Y with the incoming intensity vector |Ï(in)} of (76).
From inspection of (224) – (231) and (232) we see that Y has the general form

Y =



Y
[1]
dd Y

[1]
du

Y
[1]
ud Y

[1]
uu

...
...

Y
[m−1]
dd Y

[m−1]
du

Y
[m−1]
ud Y

[m−1]
uu

Y
[m]
dd Y

[m]
du

Y
[m]
ud Y

[m]
uu


=



0̆ 0̆

0̆ S{1}
uu

...
...

S{m}
dd 0̆

0̆ 0̆

0̆ S{1}
du

S{m}
ud 0̆


. (245)

The four non-zero elements, Y
[1]
uu , Y

[m−1]
dd , Y

[m]
du , and Y

[m]
ud , are parts of the scattering matrices

S{1} and S{m} of the bottom and top clouds of the stack. From inspection of (245) we see
that (244) determines:

1. how much the upward incoming intensity |Ï(in)u } contributes to the upward unknown

intensity |Ü [1]
u } in the gap above the bottom cloud with c = 1

2. how much the downward incoming intensity |Ï(in)d } contributes to the downward un-
known intensity |Ü [m−1]} in the gap below the top cloud with c = m− 1
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3. how much the upward incoming intensity |Ï(in)u } contributes to the downward unknown

intensity element |Ü [m]
d }. According to (235), this is equal to the downward outgoing

intensity |Ï{out}d } from the cloud stack, |Ü [m]
d } = |Ï{out}d }

4. how much the downward incoming intensity |Ï(in)d } contributes to the upward unknown

intensity element |Ü [m]
u }. According to (235), this is equal to the upward outgoing

intensity |Ï{out}u } from the cloud stack, |Ü [m]
u } = |Ï{out}u }

For the simplest case of m = 2 we see from inspection of (224) – (231) that the matrix Y
simpifies to

Y =


Y

[1]
dd Y

[1]
du

Y
[1]
ud Y

[1]
uu

Y
[2]
dd Y

[2]
du

Y
[2]
ud Y

[2]
uu

 =


S{2}
dd 0̆

0̆ S{1}
uu

0̆ S{1}
du

S{2}
ud 0̆

 . (246)

3.2 Thermal equilibrium

Suppose that all clouds, as well as the external radiation that is incident on them, have the
same temperature and therefore the same Planck intensity B. Then the gap intensities must
be given by

|U ] = |0]B, (247)

The angular part of the thermal-equilibrium intensity (247) is a stack of m copies of the
monopole basis vector |0) of (45)

|0] =


|0)
|0)
...
|0)

 . (248)

For isothermal clouds, each with the same Planck intensity B, we can use (220) to write
the thermal source stack vector of (241) as

|J̇ ] = [E ]|0]B. (249)

The stack matrix for emissivity is block diagonal and given by

[E ] =



E{1} 0̆ 0̆ · · · 0̆ 0̆

0̆ E{2} 0̆ · · · 0̆ 0̆

0̆ 0̆ E{3} · · · 0̆ 0̆
...

...
...

. . .
...

...

0̆ 0̆ 0̆ · · · E{m−1} 0̆

0̆ 0̆ 0̆ · · · 0̆ E{m}


. (250)

The emissivity matrices E{c} of individual clouds were given by (111).
External radiation in thermal equilibrium is simply Planck radiation, or blackbody radi-

ation, like that of (142),
|Ï(in)} = |0)B. (251)
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Substituting (247), (249) and (251) into (232) we find(
1̂−X − P [E ]

)
|0] = Y |0). (252)

The identity (252) can be used as a consistency check of the numerical values of the matrices
X, P , [E ] and Y .

3.3 Formal solutions

Rewriting (232) as
(1−X)|U ] = P |J̇ ] + Y |Ï(in)}, (253)

we see that the formal solution is

|U ] = (1̂−X)−1P |J̇ ] + (1̂−X)−1Y |Ï(in)}
= G|J̇ ] +W |Ï(in)}
= |U̇ ] + |Ü ]. (254)

According to the last line of (254), the unknown intensity stack vector |U ] is a linear com-
bination of the known thermal source stack vector |J̇ ] of (241) and the known incoming
intensity vector |Ï(in)} of (76). We will discuss the proportionality matrices G and W below.

The contribution to (254) of thermal emission by cloud particulates and gas molecules is

|U̇ ] = G|J̇ ] or |U̇ [x]} =
m∑
c=1

G[xc}|J̇{c}}. (255)

Here the stack matrix G of (255) can be written as the m×m block matrix

G = (1̂−X)−1P =


G[11} G[12} · · · G[1,m−1} G[1,m}

G[21} G[22} · · · G[2,m−1} G[2,m}

...
...

. . .
...

...
G[m−1,1} G[m−1,2} · · · G[m−1,m−1} G[m−1,m}

G[m,1} G[m,2} · · · G[m,m−1} G[m,m}

 . (256)

The 2n×2n discrete Green’s matrices G[xc}, that are the elements of the block matrix (256),
are themselves 2× 2 block matrices,

G[xc} =

[
G

[xc}
dd G

[xc}
du

G
[xc}
ud G

[xc}
uu

]
where MqG

[xc}Mq′ . (257)

Both the row index x, which labels unknown intensities, and the column index c of G[xc},
which labels clouds, can have the values 1, 2, 3, . . . ,m.

We can use the last block element of the matrix equation (255) to write the equivalent
thermal source vector |J̇{ev}} of the entire stack as a linear combination of the thermal source
vectors of the individual clouds,

|J̇{ev}} = |İ(out)} = |U̇ [m]}

=
m∑
c=1

G[mc}|J̇{c}}. (258)
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For the special case that each cloud is isothermal with a Planck intensity B{c} and a cor-
responding thermal source vector |J̇{c}} = E{c}|0)B{c} from (220), we can simplify (258)
to

|J̇{ev}} = |İ(out)} = |U̇ [m]}

=
m∑
c=1

G[mc}E{c}|0)B{c}. (259)

If all clouds have the same temperature and the same Planck intensities B{c} = B, (259) can
be further simplified to

|J̇{ev}} = |İ(out)} = |U̇ [m]}
= E{ev}|0)B. (260)

The emissivity of the isothermal cloud stack is a weighted sum of the individual cloud
emissivities,

E{ev} =
m∑
c=1

G[mc}E{c}. (261)

From inspection (261) and (139) we see that in the limit of clouds c of infinitesimal optical
thickness, τ {c} → dτ ′ → 0, the discrete Green’s matrixG[mc} and the emissivity E{c} approach
the limits

G[mc}

τ {c}
→ G(τ ′) and E{c}τ {c} → 1̂ dτ ′ as τ {c} → dτ ′ → 0. (262)

Here G[mc} is the discrete Green’s matrix of (271), G(τ ′) is the continuous Green’s matrix of
(139), and τ ′ is the total optical depth from the bottom of the cloud stack to the bottom of
the cloud c.

The contribution to (254) of incoming radiation is

|Ü ] = W |Ï(in)} or |Ü [x]} = W [x]|Ï(in)}. (263)

The scattering coefficients W [x] are generalized scattering matrices that give the contribution
to the unknown gap intensity |U [x]} from the incoming intensity |I{in}} after transmissions
and reflections by all of the clouds of the stack. The m × 1 block matrix W of scattering
coefficients is

W = (1̂−X)−1Y =


W [1]

W [2]

...
W [m−1]

W [m]

 . (264)

The elements W [x] of the block matrix (264) are themselves 2× 2 block matrices, with n×n

elements W
[x]
qq′ ,

W [x] =

[
W

[x]
dd W

[x]
du

W
[x]
ud W

[x]
uu

]
where MqW

[x]Mq′ . (265)
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We write the last element of the matrix equation (263) as

|Ü [m]} = W [m]|Ï(in)}. (266)

or since |Ü [m]} = |Ï(out)} according to (235),

|Ï(out)} = S{ev}|Ï(in)}. (267)

From inspection of (266) and (267) we see that the last scattering coefficient W [m] is the
equivalent scattering matrix of the entire cloud stack,

S{ev} = W [m]. (268)

As we will discuss in more detail in Section 4, the equivalent scattering matrix S{ev} of
a cloud stack is the Redheffer star product [19] of the scattering matrices of the individual
clouds,

S{ev} = W [m] = S{m}*S{m−1}* · · · *S{2}*S{1}. (269)

An explicit expression for the star product of two clouds is given in Section 4.3 as Eq. (336).
The general expression (269) for a stack of m ≥ 2 clouds follows by mathematical induction.

In summary, we can use (258) and (266) to write the total output intensity, the sum of
a part due to thermal emission of cloud particulates and gas molecules, and a part due to
transmission, scattering and absorption of incoming radiation, as

|I(out)} = |J̇{ev}}+ S{ev}|Ï(in)}. (270)

The thermal source vector |J̇{ev}} of the equivalent cloud was given by (258) for non-
isothermal clouds and by the simpler expression (259) for isothermal clouds. For a stack
of isothermal clouds, we can substitute the emissivity matrix (261), and the scattering ma-
trix (268) into Kirchhoff’s law (111), to find the identity,

m∑
c=1

G[mc}E{c} + S{m}*S{m−1}* · · · *S{2}*S{1} = 1̂. (271)

Eq. (271), a discretized version of the Kirchhoff identity (139), can provide a useful check of
numerical calculations.

Using the stack Green’s matrix G to find |U̇ ] = G|J̇ ] in (255), and using the scattering
coefficient matrix W to find |Ü ] = W |Ï(in)} in (263), have the advantage of physical clarity.
But this is not the most efficient and accurate way to numerically solve (254). For extensive
numerical calculations, it is better to avoid calculating the inverse matrix (1−X)−1 needed
to evaluate G and W , and to evaluate the contribution |U̇ ] of internal thermal emission and
|Ü ] of incoming radiation with backslash fractions,

|U̇ ] = (1̂−X)\P |J̇ ], (272)

and
|Ü ] = (1̂−X)\Y |Ï{in}}. (273)

The algorithms used by modern mathematical software like Matlab [20] to evaluate backslash
fractions like (272) and (273) are more efficient and much more accurate than those used to
evaluate the inverse matrix (1̂−X)−1.
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3.4 Gap intensities and fluxes

Having solved (254) for the stack vector |U ] of unknown intensities, we can use the results
to evaluate the gap intensity stack vector

|I) =



|I(0)}
|I(1)}
|I(2)}
...
|I(m−1)}
|I(m)}


. (274)

The gap intensity stack vector |I) of (274) and the unknown intensity vector |U ] of (233)
are almost the same, but the small differences are important. The gap intensity vector
|I) of (274) has m + 1 block elements, |I(g)} for g = 0, 1, 2, . . . ,m, in contrast to the m
block elements |U [x]} for x = 1, 2, 3, . . . ,m of the unknown intensity vector |U ] of (233).
According to (234) the m − 1 middle block elements |I(g)} = |U [g]} for the internal gap
indices g = 1, 2, 3, . . . ,m− 1. The first block element |I(0)} of the gap intensity vector |I) of
(274) was given by (80), which we rewrite as

|I(0)} = |I(out)d }+ |I(in)u }
= |U [m]

d }+ |Ï(in)u }. (275)

The second line of (275) comes from (101) and (235). The last block element |I(m)} of the
gap intensity vector |I) of (274) was given by (81), which we rewrite as

|I(m)} = |I(in)d }+ |I(out)u }
= |Ï(in)d }+ |U [m]

u }. (276)

The second line of (276) comes from (101) and (235).
The gap intensity stack vector |I) of (274) is fully characterized by 2n(m+1) nonnegative

numbers ((µi|I(g)}. One can also fully characterize the intensity with the 2n(m+1) multipole
moments

I
(g)
l = ((l|I(g)}, (277)

where the possible values of the multipole index are l = 0, 1, 2, ..., 2n − 1 and the possible
values of the gap index are g = 0, 1, 2, . . . ,m. Expressions for the multipole amplitudes I

(g)
l

were given in Section 2.2. Of particular importance are the dipole moments I
(g)
1 . According

to (52) we can write the scalar gap fluxes Z(g) as

Z(g) = 4πI
(g)
1 = 4π((1|I(g)}. (278)

We will denote the (m+ 1)× 1 array of scalar gap fluxes by

|Z) =



Z(0)

Z(1)

Z(2)

...
Z(m−1)

Z(m)


. (279)
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3.5 Model cloud stacks

To gain insight into radiation transfer for cloud stacks we consider the simplified model where
each cloud is isothermal and has a Planck intensity B{c}, and where the incoming radiation
|Ï(in)} is the half-isotropic radiation of (172). We assume that the scattering matrices, S{c},
and therefore the emissivity matrices, E{c} = 1̂−S{c}, are known for all of the clouds. Then
the radiation transfer is determined by only m+2 initial conditions: the m Planck intensities
B{c} of the isothermal clouds and the upward and downward Planck intensities, B

{in}
u and

B
{in}
d of the half-isotropic incoming radiation.
We first consider the scalar fluxes of internal gaps g = 1, 2, 3, . . . ,m − 1, when |I(g)} =

|U [g]} in accordance with (234). Using (255) with |J̇{c}} = E{c}|0)B{c} in accordance with
(220), we write the thermally generated part of (278) as

Ż(g) = 4π
m∑
c=1

((1|G[gc}E{c}|0)B{c}. (280)

We can use (263) and (172) to write the contribution of incoming radiation to the internal
gap flux as

Z̈(g) = 4π
u∑

q=d

((1|W [g]Mq|0)B{in}
q . (281)

Summing (280) and (281), we find that the total scalar flux for the internal gap g is

Z(g) = Ż(g) + Z̈(g)

= 4π
m∑
c=1

((1|G[gc}E{c}|0)B{c} + 4π
u∑

q=d

((1|W [g]Mq|0)B{in}
q

= 4π
m∑
c=1

Ṁ (gc}B{c} + 4π
u∑

q=d

N̈ (g)
q B{in}

q . (282)

For the internal gaps with g = 1, 2, 3, . . . ,m− 1, the coupling matrices are

Ṁ (gc} = ((1|G[gc}E{c}|0) for c = 1, 2, 3, . . . ,m, and N̈ (g)
q = ((1|W [g]Mq|0). (283)

The gap fluxes Z(0) below the stack, and Z(m) above, require special attention. Using
(259), (263) and (268) we write (275) as

|I(0)} = |U [m]
d }+ |Ï(in)u }

= Md

(
m∑
c=1

G[mc}E{c}|0)B{c} +W [m]|Ï(in)}

)
+Mu|Ï(in)}

=
m∑
c=1

MdG
[mc}E{c}|0)B{c} +

(
Mu +MdW

[m]
)
|Ï(in)}. (284)

Multiplying the last line of (284) on the left by 4π((1|, and using (172) for |Ï(in)} we write
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the scalar flux (278) for the gap g = 0 as

Z(0) = 4π
m∑
c=1

((1|MdG
[mc}E{c}|0)B{c} + 4π

∑
q

((1|(Mu +MdW
[m])Mq|0)B{in}

q

= 4π
m∑
c=1

Ṁ (0c}B{c} + 4π
u∑

q=d

N̈ (0)
q B{in}

q . (285)

The coupling matrices are

Ṁ (0c} = ((1|MdG
[mc}E{c}|0) and N̈ (0)

q = ((1|(Mu +MdW
[m])Mq|0). (286)

Using (259), (263) and (268) we write (276) as

|I(m)} = |U [m]
u }+ |Ï(in)d }

= Mu

(
m∑
c=1

G[mc}E{c}|0)B{c} +W [m]|Ï(in)}

)
+Md|Ï(in)}

=
m∑
c=1

MuG
[mc}E{c}|0)B{c} +

(
Md +MuW

[m]
)
|Ï(in)}. (287)

Multiplying the last line of (287) on the left by 4π((1|, and using (172) for |Ï(in)} we write
the scalar flux (278) for the gap g = m as

Z(m) = 4π
m∑
c=1

((1|MuG
[mc}E{c}|0)B{c} + 4π

∑
q

((1|(Md +MuW
[m])Mq|0)B{in}

q

= 4π
m∑
c=1

Ṁ (mc}B{c} + 4π
u∑

q=d

N̈ (m)
q B{in}

q . (288)

The coupling matrices are

Ṁ (mc} = ((1|MuG
[mc}E{c}|0) and N̈ (m)

q = ((1|(Md +MuW
[m])Mq|0) (289)

Using |B{in}⟩, defined by (183), and the m × 1 array of the Planck intensities B{c} of
individual clouds,

|B] =



B{1}

B{2}

...
B{m−2}

B{m−1}

B{m}


, (290)

we can summarize (280), (281), (285) and (288) with the formally simpler equation, the
analog of (185) for a single cloud,

|Z) = 4πṀ |B] + 4πN̈ |B{in}⟩, (291)
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or more explcitly

Z(g) = 4π
m∑
c=1

Ṁ (gc}B{c} + 4π
u∑

q=d

N̈ (g)
q B{in}

q . (292)

We note that matrix Ṁ of (291), with the scalar elements Ṁ (gc} of (292), is not square but
has m+ 1 rows, one for each gap index g, and m columns, one for each cloud index c. The
matrix N̈ of (291), with the scalar elements N̈

(g)
q of (292), is also not square, but has m+ 1

rows, one for each gap index g, but only 2 column indices, labeled by q = d or q = u, for
Planck intensities of the downward and upward parts of the half-isotropic incoming radiation.

3.6 Radiative heating and cooling of cloud stacks

Guided by the first line of (186), we write the stack vector for net radiative absorption as

|R] =


R{1}

R{2}

R{3}

...
R{m}

 = −∆|Z) = −4π∆|I1) =


Z{0} − Z{1}

Z{1} − Z{2}

Z{2} − Z{3}

...
Z{m−1} − Z{m}

 . (293)

Here the m× (m+ 1) differencing matrix is

∆ =


−1 1 0 0 · · · 0 0 0 0
0 −1 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 −1 1 0
0 0 0 0 · · · 0 0 −1 1

 . (294)

Substituting (291) into (293) we find

|R] = −4π∆Ṁ |B]− 4π∆N̈ |B{in}⟩. (295)

According to (295), the net heating rate |R] is determined by the Planck intensities |B] of the
clouds, given by (290) and by the downward and upward Planck intensities of the incoming
radiation |B{in}⟩, given by (183).

An interesting special case of (295) is radiative equilibrium, when the net heating and
cooling rates of all clouds vanish and |R] = 0̆. Then we can use (295) to find the Planck
intensities |B] of clouds that are in radiative equilibrium with the Planck intensities |B{in}}
of incoming radiation,

|B] = −(∆Ṁ)−1∆N̈ |B{in}⟩
= −(∆Ṁ)\∆N̈ |B{in}⟩. (296)

Since the matrix ∆Ṁ is a relatively small array of m × m numbers, in contrast to the
2nm×2nm array (1̂−X), the advantage of using a backslash numerical computation instead
of a matrix inverse computation in (296) is much more modest than for (272) or (273).
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Figure 8: Three isothermal, Rayleigh scattering clouds. All have the same single-scattering
albedo, ω̃ = 0.5. The optical depths are τ {1} = 10, τ {2} = 1 and τ {3} = 0.1. The clouds
and the incoming radiation have equal temperatures and are in thermal equilibrium. The
radiation is modeled with 2n = 10 stream pairs. The continuous red line shows the rela-
tive gap fluxes Ż(g) = Ż(g)/Z0 of thermal radiation emitted by cloud particulates and gas
molecules. The reference flux Z0 was given by (199). The continuous cyan lines show the
relative gap fluxes, Z̈(g), due to scattering of incoming radiation, and the dashed green line
is the algebraic sum, Z(g) = Ż(g) + Z̈(g), of the gap fluxes from both sources. See the text
for a detailed discussion.

3.7 3-cloud examples

In this section we discuss numerical solutions of (291) for anm-cloud stack that are analogous
to those of Section 2.16 for a single cloud. We cite fluxes in units of the reference flux Z0

and Planck intensities in units of the reference Planck intensity B0 of (199). In Figs. 8, 9
and 10 we show stacks of m = 3 isothermal, homogeneous clouds, with optical depths τ {1}

τ {2}

τ {3}

 =

 10
1
0.1

 . (297)

As for the examples of Section 2.16, the single-scattering albedo is ω̃ = 0.5, and there is
Rayleigh scattering with the phase matrix p̂ of (64). Modeling the radiation with 2n = 10

streams as in Section 2.16, we find that the upward Planck emissivities ε
{c}
u of (152) and the

upward Planck albedos ω
{c}
u of (161) of the three clouds, if each were isolated, would be
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 ε
{1}
u

ε
{2}
u

ε
{3}
u

 =

 0.8499
0.5568
0.0920

 and

 ω
{1}
u

ω
{2}
u

ω
{3}
u

 =

 0.1501
0.4432
0.9080

 . (298)

The bottom cloud with optical thickness τ {1} = 10, has the same, relatively small Planck
albedo, ω

{1}
u = 0.1501, as an infinitely thick cloud with τ = ∞. The Planck albedo of the

middle cloud with optical thickness τ {2} = 1 is larger, ω
{2}
u = 0.4432, the same as (203). More

incident photons are transmitted through the middle cloud or reflected, rather than being
absorbed. The Planck albedo of the top cloud with the smallest optical thickness τ {3} = 0.1
is largest, ω

{3}
u = 0.9080. Most incident photons are transmitted through the optically thin

top cloud and few are reflected. Only a small fraction of photons are absorbed.
If each of the three isothermal clouds were alone in cold space, and each had the reference

Planck intensity B0 of (199), their cooling rates Ċ{c} of (193), due to unhindered thermal
emission to space, would be Ċ{1}

Ċ{2}

Ċ{3}

 = 2

 ε
{1}
u

ε
{2}
u

ε
{3}
u

Z0 =

 1.6998
1.1136
0.1840

Z0 (299)

Noting that the reference flux Z0 of (199) is the same as the blackbody flux Ż(bb) of (145)
out of the top or bottom of a black cloud with Planck intensity B0,

Z0 = Ż(bb), (300)

we see that the nearly optically thick bottom cloud, with τ {1} = 10 and Ċ{1} = 1.6998Z0

comes closest to the maximum cooling rate Ċ{max} = 2Z0, with blackbody fluxes out of the
top and bottom of the cloud. Although it is optically thick, the bottom cloud emits less
than a black cloud because we have assumed a non-zero single-scattering albedo ω̃ = 1/2. As
one can see from Fig. 3, this limits the emissivity of an optically thick, Rayleigh-scattering
cloud to εu = 0.8499. The middle cloud, with Ċ{2} = 1.1136Z0, emits less cooling radiation
because of its moderate optical depth, τ {2} = 1. The top cloud, with Ċ{3} = 0.1840Z0, emits
the least cooling radiation because of its small optical depth, τ {3} = 0.1.

We now suppose that the three clouds are stacked as shown in Figs. 8, 9 and 10. Using
the optical thicknesses, single-scattering albedos and phase functions mentioned above to
calculate scattering matrices S{c} as outlined in Section 2.8 and using these with formulas
of Sections 3.1 and 3.3 to calculate other necessary factors, we find that the matrix Ṁ of
(291) becomes

4πṀ =


−0.8499 −0.0000 −0.0000
0.7481 −0.4871 −0.0199
0.2610 0.5609 −0.0772
0.2411 0.5037 0.1051

 Z0

B0

. (301)
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Similarly, the matrix N̈ of (291) becomes

4πN̈ =


−0.0000 0.8499
−0.2411 0.0000
−0.7448 0.0000
−0.8499 0.0000

 Z0

B0

. (302)

The differencing matrix (294) becomes

∆ =

 −1 1 0 0
0 −1 1 0
0 0 −1 1

 . (303)

For the example of Fig. 8 the clouds and the incoming radiation all have the same tem-
perature, corresponding to the Planck intensity B0, so (290), which describes the Planck
intensities of the clouds, becomes

|B] =

 B{1}

B{2}

B{3}

 =

 1
1
1

B0, (304)

and (183), which describes the Planck intensities of the half-isotropic incoming radiation
(172) becomes

|B{in}⟩ =

[
B

{in}
d

B
{in}
u

]
=

[
1
1

]
B0 (305)

The dotted cyan lines on the bottom and top of Fig. 8 indicate the upward and downward
half-isotropic incoming fluxes Z̈(in)

u = Z
(in)
u /Z0 and Z̈(in)

d = Z
(in)
d /Z0 that follow from (174)

and (175). The dashed cyan lines are the reflected and transmitted incoming fluxes Z̈(out)
u =

Z
(out)
u /Z0 and Z̈(out)

d = Z
(out)
d /Z0 that follow from (177) and (178). The continuous cyan line

is the net of upward and downward fluxes Z̈(g) = (Z̈
(g)
d + Z̈

(g)
u )/Z0.

The continuous red line of Fig. 8 shows the gap fluxes Ż(g) = Ż
(g)
1 /Z0 generated by

thermal emission of cloud particulates and gas molecules. For internal gaps with g =
1, 2, 3, . . . ,m − 1, the scalar flux Ż(g) is given by (280). Below the stack, Ż(0) is given
by the sum on c in (285). Above the stack, Z(m) is given by the sum on c in (288).

The total gap fluxes Z(g) = (Z
(g)
u + Z

(g)
d )/Z0 in the cloud stack are shown as the dashed

green line. Z(g) = Ż(g) + Z̈(g) is the algebraic sum of the continuous red and cyan lines. For
the situation illustrated by Fig. 8, with the clouds and the incoming radiation at the same
temperature, the cloud stack is in both thermal and radiative equilibrium. The total flux,
indicated by the dashed green line, is zero above and below the stack. It is also zero for all
of the internal gaps. So 

Z(0)

Z(1)

Z(2)

Z(3)

 =


Ż(0) + Z̈(0)

Ż(1) + Z̈(1)

Ż(2) + Z̈(2)

Ż(3) + Z̈(3)

 =


0
0
0
0

Z0. (306)
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In view of (306) and (293) we see that there is neither radiative heating nor cooling of the
clouds,  R{1}

R{2}

R{3}

 =

 Z(0) − Z(1)

Z(1) − Z(2)

Z(2) − Z(3)

 =

 0
0
0

Z0. (307)

Because the clouds have the same single-scattering albedo, ω̃ = 0.5, and the same
Rayleigh scattering-phase matrix p̂ of (64), the equivalent cloud is like a single, homoge-
neous Rayleigh-scattering cloud with an optical thickness of τ = τ {1} + τ {2} + τ {3} = 11.1.
The scattering matrix of the cloud stack is

S = W [3] = S{3}*S{2}*S{1} =

[
Sdd Sdu

Sud Suu

]
≈

[
0̆ Sdu

Sud 0̆

]
(308)

Because of its large optical depth, τ = 11.1, the scattering matrix of the cloud stack hardly
differs from that of an infinitely thick cloud with τ = ∞. Optically thick clouds have
no upward or downward transmission through them, and therefore have the block matrix
elements Sdd = Sdd = 0̆. There is about 15% reflection from the top and bottom of the
stack as described by the non-zero block elements Sdu and Sud.

Fig. 9 shows the same stack of clouds as for Fig. 8, but with no downward incoming
radiation. The Planck intensity (305) changes to

|B{in}⟩ =

[
B

{in}
d

B
{in}
u

]
=

[
0
1

]
B0, (309)

but the Planck intensity |B] of (304) remains the same. Solving (291) with the Planck
intensities (309) and (304) gives the scalar fluxes

Z(0)

Z(1)

Z(2)

Z(3)

 =


1.54× 10−5

0.2411
0.7448
0.8499

Z0. (310)

Since the bottom cloud is so optically thick, τ {1} = 10, and has the same Planck intensity
as the flux coming up from below, B{1} = B

{in}
u = B0, the scalar flux below the stack almost

vanishes. Upward incoming radiation onto the bottom of the stack is almost balanced by
thermally emitted and reflected downward radiation.

The continuous red line of Fig. 9 shows the gap fluxes Ż(g) due to thermal emission of
cloud particulates and gas molecules. Above the bottom cloud, in the gaps g > 1, the thermal
flux Ż(g) is nearly equal to the total flux Z(g), as one can see from the near coincidence of
the continuous red line and the dashed green line. The nearly optically thick bottom cloud
attenuates the incoming flux Z̈(in)

u from below, shown as the dotted cyan line, to negligibly
small values in the gaps g > 1 above the bottom cloud.
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Figure 9: The same three clouds as for Fig. 8 but with no downward incoming radiation. A
negligible fraction of the upward incoming radiation, incident onto the bottom of the stack
and shown as the dotted cyan line, penetrates the bottom cloud, with its large optical depth
τ {1} = 10. Some 15% is reflected and 85% is absorbed and converted to heat. Because there
is no downward incoming radiation to heat them, all of the clouds are radiatively cooled.
See the text for a more detailed discussion of the figure.

There is radiative cooling of all three clouds of Fig. 9. The numerical values, R{1}

R{2}

R{3}

 =

 Z(0) − Z(1)

Z(1) − Z(2)

Z(2) − Z(3)

 = −

 0.2411
0.5037
0.1051

Z0, (311)

are the lengths of the horizontal segments of the dashed green lines of Fig. 9. It is interesting
to compare the cooling rates −R{c} of (311) of the individual clouds in the stack of Fig. 9
with the cooling rates Ċ{c} of (299) for the clouds if they had the same temperatures but
were isolated and could radiate freely to empty space. The cooling rate −R{1} = 0.2411Z0

of the bottom cloud in the stack of Fig. 9 is only 14% of the isolated-cloud cooling rate
Ċ{1} = 1.6998Z0 of (299). The reason is the heating of the bottom cloud of Fig. 9 by in-
coming radiation from below, and the heating from above by thermal radiation and reflected
radiation of the two higher clouds. Because of heating from above and below, the cooling
rate −R{2} = 0.5037Z0 of the middle cloud in the stack of Fig. 9 is 45% of the isolated-
cloud cooling rate Ċ{2} = 1.1136Z0 of (299). Because of heating from below, the cooling
rate −R{3} = 0.1051Z0 of the top cloud in the stack of Fig. 9 is 57% of the isolated-cloud
cooling rate Ċ{3} = 0.1840Z0 of (299).
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Figure 10: The fluxes of cloud stack of Fig. 9 after the clouds have cooled to radiative
equilibrium. The clouds neither heat nor cool, but they are not in thermal equilibrium
like those of Fig. 8, since they have different temperatures, corresponding to the Planck
intensities of (312). See the text for a more detailed discussion of the figure.

Without some non-radiative source of energy, for example the vertical convection that
often characterizes the daytime atmosphere of the Earth, or the ultraviolet solar heating of
the stratosphere, the temperatures of the clouds of Fig. 9 would decrease until the radiative
cooling from emission is exactly balanced by heating from absorption. Fig. 10 shows what
happens if the clouds of Fig. 9 cool to radiative equilibrium. Then (296) implies that the
Planck intensities of the clouds will be

|B] =

 B{1}

B{2}

B{3}

 =

 0.6251
0.2994
0.1623

B0. (312)

From inspection of (312) we see that the top cloud cools the most, with the Planck intensity
dropping to B{3} = 0.1623B0. Very little incoming radiation gets through the bottom
two clouds to keep the top cloud warm. The bottom cloud, which is heated directly by
the incoming radiation, cools the least, and maintains a relatively large Planck intensity
B{1} = 0.6251B0.
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Figure 11: A stack of ten isothermal clouds in thermal equilibrium with incoming radiation.
Each cloud has the same optical depth, τ {c} = 1. The color coding is the same as for Fig. 8;
the continuous red lines are relative flux produced by thermal emission of cloud particulates
and gas molecules, the continuous cyan lines are the relative flux due to incoming radiation,
and the dashed green line is the net flux. The small black circles give the relative Planck
intensities, B{c}, of the clouds. For this example where all the clouds are assumed to have
the same temperature as the incoming radiation, B{c} = 1. See the text for a more detailed
discussion of the figure.

Substituting (312) into (291) we find
Z(0)

Z(1)

Z(2)

Z(3)

 =


0.3186
0.3186
0.3186
0.3186

Z0. (313)

The gap fluxes Z(g) are identical for radiative equilibrium, and the net absorption R{c} of
each cloud vanishes.  R{1}

R{2}

R{3}

 =

 Z(0) − Z(1)

Z(1) − Z(2)

Z(2) − Z(3)

 =

 0
0
0

Z0. (314)
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Figure 12: Like Fig. 11 but with the downward incoming radiation removed. Above the fifth
cloud, little remains of the incoming radiation incident on the cloud bottom, and denoted by
the continuous cyan line. The radiation in the higher gaps is almost all thermally emitted
by cloud particulates and gas molecules, denoted by the continuous red line. The top few
clouds have large radiative cooling rates which are equal to the horizontal discontinuity of
the net flux, denoted by the dashed green line. The bottom few clouds are nearly in thermal
equilibrium with the incoming radiation incident from above and below, so the net flux in
the lowest gaps, and below the cloud, is nearly zero. The cooling rates of the lower clouds,
the horizontal discontinuities of the dashed green line, are also very small compared to the
cooling rate of the top cloud. See the text for a more detailed discussion of the figure.

3.8 10-cloud examples

Some final examples of radiation transfer in cloud stacks are shown in Fig. 11 to Fig. 13. To
minimize clutter, the small circles used to indicate cloud layers in earlier figures have been
omitted from the figures. The stacks are composed of m = 10 Rayleigh-scattering clouds,
with single-scattering albedos ω̃ = 0.5 as in the previous examples, but with each cloud in
the stack having the same unit optical depth, τ {c} = 1.

Fig. 11 shows full thermal equilibrium. Each cloud has a Planck intensity B{c} equal
to the reference intensity B0 of (199), B{c} = B0. The upward and downward parts of the

the half-isotropic incoming radiation are also both equal to the reference intensity, B
{in}
u =

B
{in}
d = B0. Most of the incoming radiation, shown as the continuous cyan lines, is attenuated

by the middle of the stack, between clouds c = 5 and c = 6. In accordance with thermal
equilibrium, the total flux, shown as the dashed green line, is zero in all the gaps and above
or below the stack. The flux out of the top or bottom of the stack is about 85% from thermal
emission, the continuous red lines, and about 15% from reflection, the dashed cyan lines.
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Figure 13: Like Fig. 12 but the ten clouds have cooled to radiative equilibrium. The relative
Planck intensities B{c} decrease nearly linearly from the bottom cloud to the top cloud. Just
below the bottom cloud, the net flux is the difference between upward incoming radiation,
indicated by the dotted cyan line, reflected incoming radiation, indicated by the dashed cyan
line, and downward thermal radiation, indicated by the red continuous line. The radiation to
space from the top cloud is almost all thermally generated since so little incoming radiation
(the continuous cyan line) is transmitted from below through the optically thick stack, with
τm = 10. See the text for a more detailed discussion of the figure.

The small black circles are the relative Planck intensities B{c} = B{c}/B0 of the 10 clouds.
Fig. 12 shows what happens to the situation of Fig. 11 if the incoming radiation onto

the top of the stack is removed. Below the bottom of the cloud and in the lower gaps there
is still almost complete mutual cancellation of negative flux due to thermal emission, shown
as the continuous red line, and positive flux due to the transmission of upward incoming
radiation, and shown as the continous cyan line. For gaps above the middle of the stack,
the cyan incoming radiation from the bottom has been attenuated to negligible values, but
the flux from thermal emission of cloud particulates and gas molecules gets larger, as there
is less and less cancellation of upward and downward thermal flux in the gaps. The flux
emerging from the top of the stack is about 85% (the Planck emissivity εu) of the flux from
a blackbody of the same temperature as the cloud stack.

The horizontal discontinuities of the green dashed line, representing the total flux, give
the net cloud cooling rates −R{c}. The cooling maximizes for the top cloud, c = 10, which
thermally radiates to cold space above, with no downward back radiation to compensate for
the losses. The cooling rate of the next highest cloud, c = 9, is much smaller than that of
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the top cloud, because of heating by back radiation from the top cloud. The cooling rates
of lower clouds are progressively smaller and almost negligible for c ≤ 5.

Fig. 13 shows what happens when the clouds of Fig. 12 are allowed to cool to radiative
equilibrium, where the thermal emissive cooling rate of each cloud is exactly counterbalanced
by absorption of radiation coming in from above and below. The relative Planck intensities,
B{c} = B{c}/B0, decrease very nearly linearly from the bottom to the top of the stack.

4 A Double Cloud

In this final section, we show that the fundamental equation (254) for the unknown inten-
sities |U ] can be written in closed form for m = 2. That expression permits a recursive
determination of the equivalent scattering matrix S{ev} and thermal source vector |J̇{ev}} for
a stack of m > 2 clouds, for which the scattering matrices S{c} and thermal source vectors
|J̇{c}} for each cloud c of the stack are known.

4.1 The matrix (1̂−X)−1 for m = 2

The inverse matrix, (1̂ − X)−1, needed to evaluate (256) and (264), can be written as the
geometric series

(1̂−X)−1 =
∞∑
k=0

Xk = 1̂ +X +X2 +X3 + · · · . (315)

For m = 2 we will evaluate (1̂−X)−1 by summing the series (315) in closed form. X becomes
the 4× 4 block matrix (239). We write the zeroth power of X as an identity matrix

X0 = 1̂ =


Md 0̆ 0̆ 0̆

0̆ Mu 0̆ 0̆

0̆ 0̆ Md 0̆

0̆ 0̆ 0̆ Mu

 . (316)

Squaring (239) we find

X2 =


S{2}
du S{1}

ud 0̆ 0̆ 0̆

0̆ S{1}
ud S{2}

du 0̆ 0̆

0̆ S{1}
dd S{2}

du 0̆ 0̆

S{2}
uu S{1}

ud 0̆ 0̆ 0̆

 . (317)

Cubing (239) we find

X3 =


0̆ S{2}

du S{1}
ud S{2}

du 0̆ 0̆

S{1}
ud S{2}

du S{1}
ud 0̆ 0̆ 0̆

S{1}
dd S{2}

du S{1}
ud 0̆ 0̆ 0̆

0̆ S{2}
uu S{1}

ud S{2}
du 0̆ 0̆

 . (318)
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The fourth power of (239) is

X4 =


S{2}
du S{1}

ud S{2}
du S{1}

ud 0̆ 0̆ 0̆

0̆ S{1}
ud S{2}

du S{1}
ud S{2}

du 0̆ 0̆

0̆ S{1}
dd S{2}

du S{1}
ud S{2}

du 0̆ 0̆

S{2}
uu S{1}

ud S{2}
du S{1}

ud 0̆ 0̆ 0̆

 . (319)

The fifth power of (239) is

X5 =


0̆ S{2}

du S{1}
ud S{2}

du S{1}
ud S{2}

du 0̆ 0̆

S{1}
ud S{2}

du S{1}
ud S{2}

du S{1}
ud 0̆ 0̆ 0̆

S{1}
dd S{2}

du S{1}
ud S{2}

du S{1}
ud 0̆ 0̆ 0̆

0̆ S{2}
uu S{1}

ud S{2}
du S{1}

ud S{2}
du 0̆ 0̆

 . (320)

The sixth power of (239) is

X6 =


S{2}
du S{1}

ud S{2}
du S{1}

ud S{2}
du S{1}

ud 0̆ 0̆ 0̆

0̆ S{1}
ud S{2}

du S{1}
ud S{2}

du S{1}
ud S{2}

du 0̆ 0̆

0̆ S{1}
dd S{2}

du S{1}
ud S{2}

du S{1}
ud S{2}

du 0̆ 0̆

S{2}
uu S{1}

ud S{2}
du S{1}

ud S{2}
du S{1}

ud 0̆ 0̆ 0̆

 . (321)

From inspection of (239) and (316) – (321) we see that the sum (315) becomes

∞∑
k=0

Xk = (1̂−X)−1 =


Q{21}

d S{2}
du Q{12}

u 0̆ 0̆

S{1}
ud Q{21}

d Q{12}
u 0̆ 0̆

S{1}
dd Q{21}

d S{1}
dd S{2}

du Q{12}
u Md 0̆

S{2}
uu S{1}

ud Q{21}
d S{2}

uu Q{12}
u 0̆ Mu

 . (322)

The reverberation matrices that occur in (322),

Q{21}
d =

∞∑
q=0

(
S{2}
du S{1}

ud

)q
=
(
Md − S{2}

du S{1}
ud

)−1

, (323)

and

Q{12}
u =

∞∑
q=0

(
S{1}
ud S{2}

du

)q
=
(
Mu − S{1}

ud S{2}
du

)−1

. (324)

account for multiple reflections of radiation in the gap between the two clouds. The matrices
Q{21}

d and Q{12}
u are similar to the quality factor or “Q” of a resonant electromagnetic or

mechanical system [21]. The elements of the reverberation matrices can become much larger
than 1 for clouds that are optically thick enough and lossless enough to permit large numbers
of up and down reflections of radiation in the gap between a lower and upper cloud before
the radiation is absorbed or transmitted. The rightmost terms of (323) and (324) denote
pseudoinverse matrices, like those discussed in Section 2.1 of reference [3].
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Reverberation matrices satisfy pushthrough identities [22]

Q{21}
d S{2}

du = S{2}
du Q{12}

u , (325)

and
S{1}
ud Q{21}

d = Q{12}
u S{1}

ud . (326)

The indices of the scattering matrices S{2}
du or S{1}

ud do not change as they are “pushed

through” the reverberation matrices Q{12}
u or Q{21}

d . The indices of Q{12}
u or Q{21}

d toggle

between their two possible values when the matrices S{2}
du or S{1}

ud are pushed through them.
From (323) and (324) we see that[

Q{21}
d

Q{12}
u

]
→
[
Md

Mu

]
if S{2}

du → 0̆ and/or S{1}
ud → 0̆, (327)

If the gap-facing side of one or both clouds is non-reflective, there is no enhancement of the
gap intensity by reverberation.

4.2 Discrete Green’s matrices

We use (322) and (243) to write the block matrix G of (256) for the discrete Green’s matrices
as

G = (1̂−X)−1P

=


Q{21}

d S{2}
du Q{12}

u 0̆ 0̆

S{1}
ud Q{21}

d Q{12}
u 0̆ 0̆

S{1}
dd Q{21}

d S{1}
dd S{2}

du Q{12}
u Md 0̆

S{2}
uu S{1}

ud Q{21}
d S{2}

uu Q{12}
u 0̆ Mu




0̆ 0̆ 1̂ 0̆

0̆ 1̂ 0̆ 0̆

1̂ 0̆ 0̆ 0̆

0̆ 0̆ 0̆ 1̂



=


0̆ S{2}

du Q{12}
u Q{21}

d 0̆

0̆ Q{12}
u S{1}

ud Q{21}
d 0̆

Md S{1}
dd S{2}

du Q{12}
u S{1}

dd Q{21}
d 0̆

0̆ S{2}
uu Q{12}

u S{2}
uu S{1}

ud Q{21}
d Mu


=

[
G[11} G[12}

G[21} G[22}

]
. (328)

The reverberation matrices Q{21}
d and Q{12}

u of (328) were given by (323) and (324). From
inspection of (328) we see that the elements of the Green’s coefficient matrix are

G[11} =

[
0̆ S{2}

du Q{12}
u

0̆ Q{12}
u

]
G[12} =

[
Q{21}

d 0̆

S{1}
ud Q{21}

d 0̆

]
, (329)

and

G[21} =

[
Md S{1}

dd S{2}
du Q{12}

u

0̆ S{2}
uu Q{12}

u

]
G[22} =

[
S{1}
dd Q{21}

d 0̆

S{2}
uu S{1}

ud Q{21}
d Mu

]
. (330)
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From (258) and (330) we see that the thermal source vector of the equivalent cloud is

|J̇} = |U̇ [2]} = G[21}|J̇{1}}+G[22}|J̇{2}} (331)

or [
|U̇ [2]

d }
|U̇ [2]

u }

]
=

[
|J̇{1}

d }+ S{1}
dd S{2}

du Q{12}
u |J̇{1}

u }+ S{1}
dd Q{21}

d |J̇{2}
d }

S{2}
uu Q{12}

u |J̇{1}
u }+ S{2}

uu S{1}
ud Q{21}

d |J̇{2}
d }+ |J̇{2}

u }

]
. (332)

The thermal source vector |J̇} = |U̇ [2]} = |İ(out)} of the equivalent cloud, given by (331), is
a linear combination of the thermal source vectors, |J̇{1}} and |J̇{2}} of the two component
clouds.

4.3 Scattering coefficients

We can use (322) and (246) to write the block matrixW of (264) for the scattering coefficients
as

W = (1̂−X)−1Y =

[
W [1]

W [2]

]

=


Q{21}

d S{2}
du Q{12}

u 0̆ 0̆

S{1}
ud Q{21}

d Q{12}
u 0̆ 0̆

S{1}
dd Q{21}

d S{1}
dd S{2}

du Q{12}
u Md 0̆

S{2}
uu S{1}

ud Q{21}
d S{2}

uu Q{12}
u 0̆ Mu




S{2}
dd 0̆

0̆ S{1}
uu

0̆ S{1}
du

S{2}
ud 0̆

 ,

=


Q{21}

d S{2}
dd S{2}

du Q{12}
u S{1}

uu

S{1}
ud Q{21}

d S{2}
dd Q{12}

u S{1}
uu

S{1}
dd Q{21}

d S{2}
dd S{1}

du + S{1}
dd S{2}

du Q{12}
u S{1}

uu

S{2}
ud + S{2}

uu S{1}
ud Q{21}

d S{2}
dd S{2}

uu Q{12}
u S{1}

uu

 . (333)

We see that the scattering coefficients for the internal gap between the first and second cloud,
the top half of the 4× 2 block matrix on the last line of (333), is

W [1] =

[
Q{21}

d S{2}
dd S{2}

du Q{12}
u S{1}

uu

S{1}
ud Q{21}

d S{2}
dd Q{12}

u S{1}
uu

]
. (334)

Eqs. (333) and (268) give the scattering coefficient of the equivalent cloud as the star product
of the scattering matrices S{2} and S{1} of the individual clouds

W [2] = S{ev} = S{2}*S{1}. (335)

4.4 Star products

We see from inspection of (335) and (333) that the star product of the two scattering matrices
S{2} and S{1} of individual clouds is given by the explicit formula

S{2}*S{1} =

[
S{1}
dd Q{21}

d S{2}
dd S{1}

du + S{1}
dd S{2}

du Q{12}
u S{1}

uu

S{2}
ud + S{2}

uu S{1}
ud Q{21}

d S{2}
dd S{2}

uu Q{12}
u S{1}

uu

]
. (336)
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The function (336) of two 2× 2 block matrices, S{2} and S{1} is often called a Redheffer star
product after R. Redheffer[19], who first introduced it. For three arbitrary matrices, A, B
and C, the Redheffer star product obeys the associative law of multiplication,

A*B*C = (A*B)*C = A*(B*C), (337)

but not the distributive or commutative laws. To our knowledge, the star product rule (336)
for calculating the equivalent scattering matrix for two clouds in series was first given Eq.
(235) of reference [1]. There it was used to prove Eq. (254) of reference [1], which we rewrite
as

((µi|S|µi′) ≥ 0. (338)

The elements of the scattering matrix in µ-space are nonnegative.

5 Summary

We have shown how to use 2n-stream multiple scattering theory to analyze radiation transfer
through a stack of m clouds. This is a long paper which uses unfamiliar but powerful
notation. To help those who are interested, we summarize the contents here.

After a brief review of prior work in Section 1, we begin Section 2 with a discussion
of the equation of transfer, the integro-differential equation (1) that describes the rate of
change of the monochromatic intensity I(µ, τ) with vertical optical depth τ , defined by
(2). We assume axial symmetry, so there is no dependence of quantities on the azimuthal
angle ϕ, but there can be arbitrary dependence on the zenith angle θ, or the corresponding
direction cosine µ = cos θ. The fundamental parameters of the equation of transfer (1)
are the single-scattering albedo ω̃, the scattering phase function p(µ, µ′), and the Planck
intensity B = B(τ) of (5) which describes the local intensity of thermally emitted radiation.

In Section 2.1 we review the 2n-stream method for solving the equation of radiative
transfer. As illustrated in Fig. 1, we represent axially symmetric radiation with 2n streams,
directed along the colatitude angles, θi = cos−1 µi. In accordance with (6), the Gauss-
Legendre direction cosines, µi = cos θi, are the zeros of the Legendre polynomial P2n(µ).
These are illustrated in Fig. 2, where we also show the stream weights wi, which can be
evaluated with (13). To simplify notation, we think of the weighted intensity wiI(µi) =
((µi|I} of the ith stream as an element of the 2n× 1 intensity vector |I} of (15).

It is convenient to describe the intensity vector and related radiation-transfer vectors and
matrices with the aid of stream basis functions, |µi) and ((µi| of (16) and (17). As shown in
(18) – (20), these are 2n-dimensional, orthonormal right and left eigenvectors of the direction
cosine matrix µ̂ of (21). The Gauss-Legendre direction cosines µi are the eigenvalues of µ̂.
The upward and downward parts, µ̂u and µ̂d of µ̂, are defined by (30) and (31).

In Section 2.2 we review the multipole basis ((l| and |l) for describing the directional
properties of radiation transfer in terms of the intensity multipole moments Il = ((l|I} of
(38). The overlap coefficients ((l|µi) = Pl(µi) and ((µi|l) = wi(2l + 1)Pl(µi), needed to
transform vector amplitudes from the stream basis to the multipole basis, and vice versa, are
given by (39) and (40). We also review the 2n-stream approximations E

{n}
q (τ) of (49) to the

exponential integral functions Eq(τ) of (50). The exponential integral functions conveniently
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account for the contribution of slant paths to vertical radiation transfer of heat in purely
absorptive atmospheres.

The abstract vector form of the equation of transfer for the 2n-stream model. is given in
Section 2.3 by (55). This can be written as a set of 2n coupled linear equations. These are
much easier to solve than the integro-differential equation (1) for the full continuum of direc-
tion cosines µ. The equation of transfer (55) is parameterized by the 2n×2n exponentiation
rate matrix, κ̂, of (57), the product of the direction secant matrix ς̂ of (22) and the multipole
damping matrix η̂ of (58). For the 2n-stream model, the scattering phase function p(µ, µ′) of
(3) is replaced by the scattering phase matrix, p̂ = 2

∑2n−1
l=0 pl|l)((l|, of (61) which is diagonal

in multipole space and parameterized by 2n multipole coefficients pl = p0, p1, p2, . . . , p2n−1.
Phase matrices for isotropic scattering, Rayleigh scattering, forward and backward scattering
are given by (63) – (67).

In Section 2.4 we discuss the vector flux |Z} = 4πµ̂|I} of (68), which describes the
contributions of each of the 2n streams to vertical radiative heat flow. The scalar flux,
Z = ((0|Z} = Zd + Zu, is the sum of of a negative downward part Zd = ((0|Md|Z} of (73)
and a positive upward part Zu = ((0|Mu|Z} of (74).

In Section 2.5 we discuss how the intensity vector |I(in)} of incoming radiation, and
the intensity vector |I(out)} of outgoing radiation are related to the intensity vector |I(0)}
of radiation below the cloud stack and the intensity vector |I(m} for radiation above. The
relationships are given by (76), (78), (80) and (81). The corresponding relations for vector
and scalar fluxes, |Z} and Z are reviewed in the final paragraphs of the section.

In Section 2.6 we discuss the partitioning of cloud intensities, |I} = |İ} + |Ï}, into a
part |İ}, produced by thermal emission of cloud particulates and gas molecules, and a part
|Ï}, produced by external radiation incident onto the top and bottom of the cloud stack.
We denote thermally generated parts with a single dot, and externally generated parts by a
double dot. In Eq. (104), |Ï(out)} = S|Ï(in)}, the scattering matrix S for a cloud is defined
as the matrix coefficient of proportionality between incoming intensity vector |Ï(in)} from
external sources and the scattered outgoing intensity vector |Ï(out)}. Similarly, in Eq. (106),
|Z̈(out)} = Ω|Z̈(in)}, the albedo matrix Ω is defined as the matrix coefficient of proportionality
between the incoming flux vector |Z̈(in)} from external sources and the scattered, outgoing
flux vector |Z̈(out)}. The albedo matrix is a similarity transformation (107) of the scattering
matrix, Ω = (µ̂u − µ̂d)S(µ̂u − µ̂d)

−1.
Eq. (110) shows that for a non isothermal cloud, the source vector, |J̇} = |İ(out)} =∫ τ

0
dτ ′G(τ ′)|0)B(τ ′), is the superposition contributions from infinitesimal isotropic sources,

the products of the infinitesimal optical depths of the source dτ ′, the monopole basis vector
|0) of (45), and the Planck intensities B(τ ′) at optical depth τ ′ of the source above the
bottom of the cloud. Before reaching the top or bottom surface of the cloud, of total optical
depth τ , the infinitesimal contributions are multiplied by the Green’s matrix G(τ ′). For
isothermal clouds, with constant Planck intensity B, the source vector simplifies to (109),
|J̇} = E|0)B, where the emissivity matrix E is related to the scattering matrix by Kirchhoff’s
radiation law of (111), E = 1̂− S.

In Section 2.8 we review how to calculate the scattering matrix S for a single homoge-
neous cloud, that is, a cloud with an exponentiation-rate matrix κ̂ that is independent of
optical depth τ ′ above the bottom. In (121) we define the inverse of the exponentiation-rate
matrix κ̂ as the penetration-length matrix λ̂ = κ̂−1 =

∑2n
i=1 λi|λi)((λi|. The eigenvalues of λ̂
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are λi and the right and left eigenvectors are |λi) and ((λi|, the λ-space bases. The eigen-
vectors are used to construct the overlap matrix C of (131) between µ-space bases ((µi′ | and
λ-space bases |λi). We use C together with the eigenvalues λi = 1/κi to construct incoming
and outgoing matrices I and O of (133) and (134). In turn, these are used in (120) to write
the scattering matrix as S = OI−1.

In Section 2.9 we show that the continuous Green’s matrix G(τ ′) for homogeneous clouds
is a linear combination (136) of the matrices R(τ ′) of ( 137) and Q(τ ′) of (138), which are
constructed from the overlap matrix C of (131) in much the same way as I and O.

In Section 2.10 we discuss the simple properties of black clouds, with vanishing scat-
tering matrices, S = 0̆. The emissivity matrices of black clouds are identity matrices,
E = 1̂. For black clouds, the upward and downward Planck emissivities are both unity,
εu = εd = 1. In Section 2.11 we discuss the upward and downward Planck emissivity,
εu = ((0|µ̂uE|0)/((0|µ̂u|0) of (152) and εd = ((0|µ̂dE|0)/((0|µ̂d|0) of (154), for non-black clouds.
Fig. 3 shows how the Planck emissivities εu = εd of an optically thick, homogeneous cloud
depend on the single-scattering albedo ω̃ and on the scattering phase matrices of p̂ of (63) –
(67).

In Section 2.13 we discuss half isotropic incoming radiation (172), |Ï(in)} = Md|0)B{in}
d +

Mu|0)B{in}
u , which is parameterized by only two numbers, the Planck intensities B

{in}
d and

B
{in}
u of downwelling and upwelling half-isotropic intensity incident on the top and bottom

of the cloud stack.
In Section 2.14 we show that external radiation incident on the top and bottom of an

isolated cloud c causes the radiative heating, Ḧ{c} = Z̈(in)− Z̈(out) = ((0|A{c}|Z̈(in)}, of (190).
According to (191), the absorptivity matrix, A{c} = 1̂−Ω{c}, is the complement of the albedo
matrix, Ω{c}. The absorptivity matrix is a similarity transformation of the emissivity matrix,
A{c} = (µ̂u− µ̂d)E{c}(µ̂u− µ̂d)

−1. Thermal emission by particulates and gas molecules of the
isolated cloud causes the radiative cooling Ċ{c} = Ż(1) − Ż(0) of (193). According to (189),
the net heating rate of a isolated cloud is R{c} = Ḧ{c} − Ċ{c}, the excess of the heating rate
Ḧ{c} over the cooling rate Ċ{c}.

In Section 2.15 we show that for a fixed intensity |Ï(in)} of incoming radiation, a cloud can
heat or cool until the net heating rate vanishes, R{c} = 0, a state of radiative equilibrium. For
an isolated homogeneous and isothermal cloud, heated by half isotropic incoming radiation
of (172), we showed in (198) that the Planck intensity of a cloud in radiative equilibrium is

B{1} = (B
{in}
u +B

{in}
d )/2, the average Planck intensity of the upward and downward incoming

radiation.
Fig. 4 of Section 2.16 shows a single cloud in complete thermal equilibrium with incoming

radiation of the same temperature. In Fig. 5 the downward incoming radiation of Fig. 4 has
been removed. This diminishes the heating rate Ḧ{c} by a factor of 2 but does not affect the
cooling rate Ċ{c}. So the cooling rate Ċ{c} becomes twice as large as the heating rate Ḧ{c},
and the net heating R{c} = Ḧ{c}− Ċ{c} of (189) is negative. There is net cooling of the cloud
and unless non radiative heating sources are present, the temperature and Planck intensity
of the clould will decrease. Fig. 6 shows what happens if the cloud of Fig. 5 is allowed
to cool to radiative equilibrium. Then the Planck intensity B{1} of the cloud is halved, in
accordance with (198). The cooling rate Ċ{c} becomes equal to the one-sided heating rate
Ḧ{c} and the net heating rate vanishes, R{c} = Ḧ{c} − Ċ{c} = 0.
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In Section 3 we discuss stacks of m > 1 clouds. The generalization of thermal source
vectors |J̇} for a single cloud to |J̇{c}} for cloud c in the stack is given by (219) for an
arbitrary temperature distribution inside each cloud, or by (220) if each cloud is isothermal.
The gap intensities |I(g)} are defined by (223). The intensity vectors |I(0)} and |I(m)} for the
gaps below and above the stack are special cases given by (80) and (81). The basic equations
of radiative transfer, (224) – (231), for a stack of m > 1 clouds are illustrated by Fig. 7.

In Section 3.1 we write the basic equations (224) – (231) as the formally simpler stack
equation, |U ] = X|U ] + P |J̇ ] + Y |Ï{in}} of (232). The unknown intensity stack vector |U ]
of (233) has m block elements, the 2n× 1 vectors |U [x]}, indexed by x = 1, 2, 3, . . . ,m. For
x = 1, 2, 3, . . . ,m − 1, the unknown intensity element |U [x]} describes intensity in the gap
between the cloud x and the cloud x+ 1 and is equal to the gap intensity element of (223),
|U [x]} = |I(x)}. For the special case of x = m, the element |U [x]} is the same as the outgoing
intensity vector (78) of |I(out)} or the equivalent thermal source vector |J̇{ev}} of the stack,
|U [m]} = |I(out)} = |J̇{ev}}.

The generation matrix X that occurs in (232) is constructed from the scattering matrices
S{c} of the individual clouds, as shown by (237). The permutation matrix P that occurs
in (232) determines how the upward and downward parts of the stack vector |J̇ ] of thermal
sources, given by (241), contribute to the unknown intensities |U [x]} in accordance with
(240). As shown in (241) |J̇ ] is simply a concatenation of the thermal source vectors |J̇{c}}
of the individual clouds. The structure of P is shown by (242). In accordance with (244), the
insertion matrix Y of (232) describes how much of the incoming radiation |Ï(in)} contributes
to the intensity in the gaps g = 1 above the bottom cloud and g = m − 1 below the top
cloud, and also to the intensities scattered from the bottom and top of the stack. As shown
by (245), Y is constructed from the scattering matrices S{1} and S{m} and is independent
of the scattering matrices S{c} of any interior clouds with 1 < c < m.

As described in Section 3.2, for thermal equilibrium, with the same Planck intensity B for
all the clouds and for the external radiation, the stack vector |U ] for “unknown” intensities is
actually known exactly from basic thermodynamics and given by, |U ] = |0]B. The monopole
stack vector |0] is defined by (248) as a concatenation ofm copies of the 2n×1 monopole stack
vectors |0) of (45). The thermal equilibrium limit of the stack equation provides a simple
identity, (1̂−X−P [E ])|0] = Y |0) of (252) that can be used as a numerical consistency check
of the matrices X, P , Y and the stack emission matrix [E ] of (250).

In Section 3.3 we discuss formal solutions for the unknown intensity |U ] of the stack
equation (232). According to (254), the solution is |U ] = G|J̇ ] +W |Ï(in)}. The first term,
G|J̇ ], which represents thermally generated radiation, is the product of the Green’s matrix
G of (256), a concatenation of the discrete Green’s matrices of (256), and the thermal source
stack vector |J̇ ] of (241). The second term, W |Ï(in)}, is the product of the scattering-
coefficient matrix W of (264) and the incoming intensity |I{in}}.

The Green’s coefficients G[x,c} of (255) quantify how much the thermal source vector
|J̇{c}} contributes to |U̇ [x]}. In accordance with (258), the equivalent thermal source vector
of the entire cloud stack is |J̇{ev}} =

∑m
c=1 G

[m,c}|J̇{c}}, a weighted average of the thermal
source vectors of the individual clouds.

The scattering coefficient W [x] of (263) can be thought of as a generalized scatter-
ing matrix that quantifies how much the incoming radiation |Ï(in)} contributes to |Ü [x]},
the intensity in the internal gap x, where 1 ≤ x ≤ m − 1. According to (235) and
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(104), for x = m, the unknown intensity vector is simply the outgoing, scattered in-
tensity, |Ü [m]} = W [m]|Ï{in}} = |Ï(out)} = S{ev}|Ï{in}}. Therefore the scattering coef-
ficient W [m] is equal to the equivalent scattering matrix S{ev} of the entire cloud stack,
W [m] = S{ev} = S{m}*S{m−1}* · · · *S{2}*S{1}, in accordance with (269). S{ev} is the Red-
heffer star product of the scattering matrices of the individual clouds, as we discuss in the
later Section 4. The Kirchhoff identity

∑m
c=1G

[mc}E{c}+S{m}*S{m−1}* · · · *S{2}*S{1} = 1̂ of
(271) provides a useful consistency check for the cloud scattering matrices S{c}, emissivity
matrices, E{c} = 1̂− S{c}, and Green’s matrices G[mc} of the cloud stack.

In Section 3.4 we review how the the elements of the unknown-intensity stack vector |U ]
can be used to construct the stack vector |I) for gap intensities |I(g)} of (274). |I) has m+1
block elements, one more than the m elements of the stack vector |U ] of (233).

In Section 3.5 we outline one of the simplest ways to characterize a stack of clouds. We
assume each cloud c is isothermal, with the Planck intensity B{c}. We concatenate these to
form them×1 scalar stack vector |B] of (290). We assume the incoming intensity |Ï(in)} is the
half isotropic radiation of (172) with the downward and upward Planck intensities, B

{in}
d and

B
{in}
u , which we concatenate as the 2× 1 stack vector |B{in}⟩ of (183). Then the stack vector

|Z) of scalar fluxes is given by the formally simple equation |Z) = 4πṀ |B] + 4πN̈ |B{in}⟩ of
(291). The relatively small coupling matrices Ṁ and N̈ are given by (283), (286) and (289).

In Section 3.6 we show that for the simple model of Section 3.5 the net heating rates
R{c} of the clouds c, concatenated as the m × 1 stack vector |R] of (293), are given by the
formally simple expresssions of (186) and (295), |R] = −∆|Z) = −4π∆Ṁ |B]−4π∆N̈ |B{in}⟩.
The differencing matrix ∆ is given by (294). In radiative equilibrium, when all heating rates
vanish and |R] = 0̆, the Planck brightnesses of the isothermal clouds are given by (296) as
|B] = −(∆Ṁ)−1∆N̈ |B{in}⟩.

Numerical examples of radiation transport by 3-cloud stacks are discussed in Section 3.7.
Fig. 8 shows a 3-cloud stack in complete thermal equilibrium with incoming radiation. In
Fig. 9 the downward incoming radiation of Fig. 8 has been removed. This diminishes the
heating rates for all the clouds, but the intrinsic cooling rates Ċ{c} remain the same. So all
three clouds have a net cooling, R{c} < 0. Fig. 10 shows what happens if the clouds of Fig.
9 are allowed to cool to radiative equilibrium, when R{c} = 0. The Planck intensities B{c} of
(312) for radiative equilibrium are calculated with (296). In Section 3.8 we show examples
of radiation transfer in a 10-cloud stack. Figs. 11 – 13, are similar to the corresponding
figures Fig. 8 – Fig. 10 of a 3-cloud stack.

In Section 4 we give closed-form expressions for the properties of the equivalent cloud
made up of m = 2 single clouds. We show explicitly in (335) that the scattering matrix
S{ev} for the double cloud is the Redheffer star product S{ev} = S{2}*S{1} of the scattering
matrix S{1} of the lower cloud and S{2} of the upper cloud. The elements of star-product
matrices include factors of the reverberation matrices Q{21}

d of (323) and Q{12}
u of (324),

which quantify the buildup of intensity due to multiple upward and downward scattering in
the gap between the clouds.

The numerical methods described in this paper are computationally efficient and readily
model cloud stacks with m ≫ 10. Each cloud of the stack can have its own, temperature
T {c}, single-scattering albedo ω̃{c}, scattering phase matrix p̂{c} and optical depth τ {c}. For
thermal radiation, some “clouds” can have transmission, absorption and emission but neg-
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ligible scattering, like layers of clear air containing the main greenhouse gases, water vapor
and carbon dioxide. Clouds which also include water droplets, ice crystallites, or other
particulates can have transmission, absorption, scattering and emission.

Inspection of satellite images of the Earth shows that half or more of Earth’s atmosphere
can be approximated as stacks of clouds. The 2n-stream methods outlined here can be used
to model radiation transfer, including the heating or cooling of the various clouds. Regions of
Earth’s atmosphere which are well approximated as stacks of clouds are equivalent to a single
inhomogeneous cloud, with its bottom at the Earth’s surface and its top at the mesopause,
above which changes in the radiation flux are neglible. The scattering matrix S{ev} of the
equivalent cloud tells how much of the radiation generated at the surface is transmitted to
space without absorption or reflection back to the surface. The thermal source vector |J̇{ev}}
of the equivalent cloud tells how much of the thermal radiation generated inside the clouds
is emitted to space above or to the surface below.
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