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Abstract

We analyze thermal emission of radiation in homogeneous clouds. The clouds have
negligible horizontal variation, but the temperature can vary in the vertical direction.
The radiation at the optical depth τ above the bottom of the cloud is characterized by
the intensity values I(µi, τ) at 2n Gauss-Legendre direction cosines µi, the roots of the
2n-th Legendre polynomial, P2n(µi) = 0. Scattering matrices are used to describe the
fraction of intensity with incoming direction cosine µi′ that is scattered to intensity with
outgoing direction cosine µi. Green’s-function matrices are used to describe radiation
generated by infinitesimally thin layers of cloud particulates, thermally emitting at the
source optical depth τ ′. For thin isothermal clouds of optical thickness τc ≤ 1, thermal
emission is mainly determined by the single scattering albedo ω̃. The emitted intensity
of thin clouds is limb brightened and depends little on the scattering phase function.
For optically thick isothermal clouds, with τc ≫ 1, purely absorbing clouds with ω̃ = 0
become perfect blackbodies and emit isotropic Planck intensity, and have neither limb
brightening nor darkening. Thick isothermal clouds with moderate single scattering
albedos emit substantially less thermal radiation than black bodies, and the emission
depends strongly on the anisotropy of the scattering phase function. Clouds with strong
forward scattering are “blackest” and emit the most thermal radiation. There is limb
darkening, which is most pronounced for strongly forward-scattering phase functions.
The limb darkening in thick, isothermal, scattering clouds is not due to temperature
gradients, as it is for the Sun. With scattering, nearly vertical radiation produced by
thermal emission escapes through the surface more efficiently than nearly horizontal
radiation. For isothermal clouds, the scattered and emitted intensities obey Kirchhoff’s
laws of thermal radiation. For clouds with hot interiors, there is limb darkening even
for purely absorbing particulates. Radiative conduction of heat inside optically thick
clouds is orders of magnitude faster than conduction due to molecular diffusion.
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1 Introduction

In a previous paper, 2n-Stream Radiative Transfer [1] we outlined how to use operator and
matrix methods, similar to those of quantum mechanics, to accurately and efficiently analyze
radiative transfer with highly anisotropic scattering, like the scattering of sunlight by cloud
particulates. To facilitate subsequent discussions, we will refer to this paper as WH and to
equation (x) in it as (WH-x). The basic ideas of the 2n-stream method were first published
in 1943 by G. C. Wick in connection with his analysis of neutron diffusion, Über ebene
Diffusionsprobleme [2]. In their paper, The Penetration of Diffuse Ultraviolet Radiation into
Stellar Clouds, Flannery, Roberge and Rybicki [3], described one of the earliest applications
of Wick’s methods to light scattering in clouds. The thermal emission of clouds was only
briefly mentioned in Section 8 of WH. Here we discuss thermal emission in more detail.

2 The Intensity

As in WH, we assume that the intensity I(µ, τ, ν) is axially symmetric and depends only on
the cosine, µ = cos θ, of the angle θ between direction of propagation and the zenith direction,
and on the vertical optical depth, τ , above the bottom of the cloud. A representative unit
of intensity is W m−2 cm sr −1. The spatial frequency ν of the radiation has units of cm−1

or wave numbers. Most of this paper is focussed on monochromatic radiation, so we will
omit the argument ν of the intensity function, except in Section 6, where we discuss the
contribution of radiation to heat conduction in optically thick clouds. For axially symmetric
radiation an increment of solid angle, in steradians (sr), is dΩ = 2πdµ. The optical depth
τ = τ(z) at an altitude z above the bottom of the cloud is

τ =

∫ z

0

dz′ α(z′), (1)

where α = α(z) is the attenuation rate, in units of e-foldings per altitude increment. Both
absorption and scattering contribute to α. We assume that the cloud is homogeneous in the
sense that neither the single scattering albedo ω̃, nor the scattering phase function p(µ, µ′)
depend on τ . The probability that a collision with a cloud particulate scatters a photon,
propagating with direction cosine µ′, to a photon with a direction cosine between µ and
µ+ dµ is dµ p(µ, µ′)/2.

As in WH, we characterize angular dependence of the intensity with 2n sample values,
I(µi, τ) ≥ 0, along the directions of the streams i = 1, 2, 3, . . . , 2n. As sketched in Fig. 1,
the ith stream makes an angle θi = cos−1 µi to the zenith. The Gauss-Legendre direction
cosines, µi, are the zeros of the Legendre polynomial P2n of degree 2n,

P2n(µi) = 0. (2)

We will choose the indices i = 1, 2, 3, · · · , 2n such that

µ1 < µ2 < µ2 < · · · < µ2n. (3)

Because the Legendre polynomial P2n is even, with P2n(µ) = P2n(−µ), the values of µi occur
as equal and opposite pairs,

µi = −µr(i), (4)
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where the index reflection function is

r(i) = 2n+ 1− i. (5)

The weighted sample values of the intensity, wiI(µi, τ), will be denoted with the symbol
((µi|I(τ)},

((µi|I(τ)} = wiI(µi, τ) ≥ 0. (6)

A formula for the Gauss-Legendre weights, wi > 0, was given by (WH-72) as

1

wi

=
2n−1∑
l=0

2l + 1

2
P 2
l (µi). (7)

To simplify equations, we denote the intensity as an abstract vector |I} = |I(τ)}. We can
represent the abstract vector |I} with a 2n× 1 column vector

|I} =
2n∑
i=1

|µi)((µi|I} =


((µ1|I}
((µ2|I}

...
((µ2n|I}

 . (8)

We will call the column vector on the right of (8) the µ-space representation of the abstract
vector |I}. We will use other 2n× 1 arrays of numbers to represent the same abstract vector
|I} in other bases. Examples discussed below are the multipole basis |l) or the penetration-
length basis |λi).

The stream basis vectors |µi) of (8) can be represented with the unit column vectors

|µ1) =


1
0
...
0

 , |µ2) =


0
1
...
0

 , · · · , |µ2n) =


0
0
...
1

 . (9)

Corresponding left basis vectors can be represented as the unit row vectors

((µ1| = [1 0 · · · 0],

((µ2| = [0 1 · · · 0],
...

((µ2n| = [0 0 · · · 1].

(10)

We use a double left parenthesis, ((µi|, as a reminder that the row (or left) basis vectors
need not be Hermitian conjugates of the column (or right) basis vectors. The row basis
vectors ((µi| are like reciprocal lattice vectors of a crystal. The column basis vectors, |µi) are
like direct lattice vectors. Just as low-symmetry crystals can have oblique, non-orthogonal
lattice vectors, the right basis vectors for intensity need not be orthogonal [5].
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Figure 1: Sample directions of 2n = 4 streams of axially symmetric radiation. The radiation
is centered on conical surfaces with opening angles θi to the zenith. The cosines of the
opening angles, µi = cos θi are the roots of the Legendre polynomial P2n(µ) = P4(µ), that
is, P4(µi) = 0 for µ1, µ2, µ3, µ4 = −0.8611,−0.3400, 0.3499, 0.8611.

As discussed in connection with (WH-105), the stream basis vectors are right and left
eigenvectors of the direction cosine matrix µ̂

µ̂|µi) = µi|µi), and ((µi|µ̂ = ((µi|µi. (11)

The eigenvectors are chosen to have the orthonormality property

((µi|µi′) = δii′ . (12)

They have the completeness property

2n∑
i=1

|µi)((µi| = 1̂. (13)

In (13) and elsewhere, we will use the symbol 1̂ to denote a square identity matrix with
ones along the main diagonal and zeros elsewhere. It has the same dimensions as any square
matrices that are added to, subtracted from, or equated to it.

Multiplying (13) on the left or right by µ̂ and using (11) we find an expression for the
direction-cosine operator,

µ̂ =
2n∑
i=1

µi|µi)((µi|. (14)

The direction secant matrix ς̂ is the inverse of the direction cosine matrix µ̂. We can use
(14) to write

ς̂ = µ̂−1 =
2n∑
i=1

ςi|µi)((µi|. (15)
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The eigenvalues of the direction secant matrix are the inverses of the eigenvalues µi of the
direction cosine matrix

ςi =
1

µi

. (16)

The direction secant matrix ς̂ has the same left and right eigenvectors as the direction cosine
matrix µ̂,

ς̂|µi) = ςi|µi), and ((µi|ς̂ = ((µi|ςi. (17)

In accordance with (WH-117) we define a reflection operator

r̂ =
2n∑
i=1

|µi)((µr(i)|, (18)

where the index reflection function r(i) was defined by (5). From (18) we see that the
reflection operator transforms the stream basis vector |µi) to a basis vector for the opposite
direction |µr(i)), where µr(i) = −µi.

r̂|µi) = |µr(i)), and ((µi|r̂ = ((µr(i)|. (19)

In µ-space the matrices representing r̂ of (18) are unit anti-diagonal matrices. For example,
we can write the matrices ((µi|r̂|µi′) representing r̂ in µ-space of 2n = 2 or 2n = 4 dimensions
as

r̂ =

[
0 1
1 0

]
, or r̂ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (20)

The reflection matrices are their own inverses

r̂2 = 1̂. (21)

In accordance with (WH-88), it is convenient to use the stream basis vectors to define a
projection matrix Md for downward streams with indices j ≤ n and µj < 0, and a projection
matrix Mu for upward streams with indices k > n and µk > 0.

Md =
n∑

j=1

|µj)((µj| and Mu =
2n∑

k=n+1

|µk)((µk|. (22)

The projection matrices of (22) have the simple algebra

Md +Mu = 1̂ (23)

M2
d = Md and M2

u = Mu (24)

MdMu = 0̆ and MuMd = 0̆ (25)

r̂Mdr̂ = Mu and r̂Mur̂ = Md. (26)

Here and elsewhere, the symbol 0̆ denotes a matrix, not necessarily square, for which all the
elements are zero. The dimensions of 0̆ are the same as the dimensions of other matrices to
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which it is added, subtracted or equated. We can use (18) to show that reflections change
the signs of the direction-cosine operator of (14) and the direction secant operator of (15)

r̂µ̂r̂ = −µ̂, or r̂µ̂ = −µ̂r̂, (27)

and
r̂ς̂ r̂ = −ς̂ , or r̂ς̂ = −ς̂ r̂. (28)

In accordance with (WH-109) and (WH-110), we write the direction-cosine matrix µ̂ as the
sum of a downward part µ̂d and an upward part µ̂u

µ̂ = µ̂d + µ̂u. (29)

Expressions for the downward and upward parts are

µ̂d = Mdµ̂ = µ̂Md =
n∑

j=1

µj|µj)((µj|, (30)

µ̂u = Muµ̂ = µ̂Mu =
2n∑

k=n+1

µk|µk)((µk|. (31)

Reflections transform the matrices of (30) and (31) into the negatives each other

r̂µdr̂ = −µu, and r̂µur̂ = −µd. (32)

In like manner, we write the direction-secant matrix ς̂ as the sum of a downward part ς̂d and
an upward part ς̂u

ς̂ = ς̂d + ς̂u. (33)

Expressions for the downward and upward parts are

ς̂d = Mdς̂ = ς̂Md =
n∑

j=1

ςj|µj)((µj|, (34)

ς̂u = Muς̂ = ς̂Mu =
2n∑

k=n+1

ςk|µk)((µk|. (35)

Reflections transform the matrices of (34) and (35) into the negatives of each other

r̂ςdr̂ = −ςu and r̂ςur̂ = −ςd. (36)
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2.1 Pseudoinverse matrices

To simplify notation for the analysis of cloud scattering it will be convenient to use pseu-
doinverse matrices. From (12), (16), (30) and (34) we find

µ̂dς̂d =
n∑

j=1

µj|µj)((µj|
n∑

j′=1

ςj′ |µj′)((µj′|

=
n∑

j=1

µjςj|µj)((µj|

=
n∑

j=1

|µj)((µj|

(37)

or in view of (22),
µ̂dς̂d = Md. (38)

It is therefore convenient to write

µ̂−1
d = ς̂d and ς̂−1

d = µ̂d. (39)

The determinants of the 2n × 2n matrices representing µ̂d and ς̂d are both zero, so neither
has a true inverse matrix. But both have pseudoinverses in the sense that the product of
the matrix with its pseudoinverse gives a projection operator Md. Using pseudoinverse
notation simplifies several important equations in subsequent sections. We will use the same
superscript, −1, to denote both true inverse matrices like r̂−1 = r̂, where det(r̂) = (−1)n ̸= 0,
and pseudoinverse matrices like µ̂−1

d , where det(µ̂d) = 0. The context will normally make
clear which type of inverse is meant.

2.2 Multipoles

Describing the angular distribution of the axially symmetric intensity I(µ, τ) with the 2n
samples values, I(µi, τ), at the Gauss-Legendre direction cosines µi of (2), is equivalent to
approximating the intensity as a superposition of the first 2n Legendre polynomials,

I(µ, τ) =
2n−1∑
l=0

(2l + 1)Pl(µ)Il(τ). (40)

The intensity multipoles are

Il(τ) = ((l|I(τ)}

=
2n∑
i=1

((l|µi)((µi|I(τ)}. (41)

Projections ((l|µi) of the left multipole basis vector ((l| onto the right stream vector |µi), and
vice versa, were given by (WH-84) and (WH-85) in terms of Legendre polynomials Pl, and
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weights wi of (7) as

((l|µi) =
1

2
Pl(µi), (42)

and
((µi|l) = wi(2l + 1)Pl(µi). (43)

Substituting (42) and (6) into (41), and noting from (40) that I(µ, τ) can be written as a
superpositon of the first 2n Legendre polynomials, we can use the Gauss-Legendre quadra-
ture [4] to write the l-th multipole moment of the intensity as

Il(τ) =
1

2

2n∑
i=1

wiPl(µi)I(µi, τ)

=
1

2

∫ 1

−1

dµPl(µ)I(µ, τ). (44)

In analogy to (12) the multipole basis vectors |l′) and ((l| have been chosen to have the
orthonormality property

((l|l′) = δll′ . (45)

In analogy to (13), they have the completeness property

2n−1∑
l=0

|l)((l| = 1̂. (46)

Using (45) we can write the intensity vector as

|I(τ)} =
2n−1∑
l=0

|l)((l|I(τ)} =
2n−1∑
l=0

|l)Il(τ) (47)

The expansion coefficients ((l|I(τ)} = Il(τ) were given by (44).
From (43) we see that the elements ((µi|0) of the right monopole basis vector |0) are the

weights wi of (7)

|0) =
2n∑
i=1

|µi)((µi|0) =


w1

w2
...

w2n

 , (48)

From (42) we see that the elements ((0|µi) of the left monopole basis vector ((0| are all equal
to 1/2,

((0| =
2n∑
i=1

((0|µi)((µi| =
2n∑
i=1

1

2
((µi| =

1

2
[1 1 · · · 1]. (49)

In multipole space (l-space) the reflection operator r̂ of (18) becomes

r̂ =
2n−1∑
l=0

(−1)l|l)((l|. (50)
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The matrices representing r̂ have alternating 1’s and -1’s along the main diagonal and zeros
elsewhere. For example, in l-space of 2n = 2 or 2n = 4 dimensions we can write the matrices
((l|r̂|l′) representing r̂ as

r̂ =

[
1 0
0 −1

]
or r̂ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (51)

A simple consequence of (50) is

r̂|l) = (−1)l|l), and ((l|r̂ = ((l|(−1)l. (52)

Some useful identities for the multipole basis that follow from (WH-17) are

((0|µ̂ = ((1| and µ̂|0) = 1

3
|1), (53)

and

((1|µ̂ =
1

3
((0|+ 2

3
((2| and µ̂|1) = |0) + 2

5
|2). (54)

Expansions like (47) of the intensity vector onto the basis functions |l), or expansions of
operators, like the reflection operator r̂ of (50) onto the basis dyadics |l)((l′| will be called
l-space representations.

2.3 Equation of radiative transfer

The change of the intensity vector |I} = |I(τ)} with optical depth τ in a cloud is described
by the equation of radiative transfer, given by (WH-62) as

d

dτ
|I} = κ̂ (|B} − |I}) . (55)

The Planck intensity vector |B} = |B(τ)} of (WH-53) is

|B} = |0)B. (56)

The isotropic thermal emission of (56) is proportional to |0), the right monopole basis vector
of (48). For monochromatic radiation of spatial frequency ν the Planck intensity B = B(ν, T )
for the absolute temperature T is

B(ν, T ) =
2hPc

2ν3

eνc hP/(kBT ) − 1
. (57)

Here hP is Planck’s constant, c is the speed of light and kB is Boltzmann’s constant. Inte-
grating the upward flux, µB over 2π solid-angle increments, dΩ = 2πdµ, gives a factor of π.
The Stefan-Boltzmann flux, the frequency-integrated and solid-angle-integrated flux is

ZSB(T ) =

∫ ∞

0

dν πB(ν, T ) = σSBT
4, (58)
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The Stefan-Boltzmann constant is

σSB =
2π5k4

B

15h3
Pc

2
= 5.67× 10−8W m−2 K−4. (59)

If the temperature depends on optical depth, T = T (τ), the Planck intensity (57) will also
be a function of optical depth, B = B(τ).

The exponentiation-rate matrix κ̂ of (55) was given by (WH-63) as

κ̂ = ς̂ η̂, (60)

the product of the direction-secant matrix ς̂ of (15), and the efficiency matrix η̂ of (WH-54),

η̂ = 1̂− 1

2
ω̃p̂. (61)

The single scattering albedo ω̃ of (61) is the probability that a photon that collides with a
cloud particulate is scattered, rather than being absorbed and converted to heat. Probabil-
ities must be nonnegative and no larger than 1. So ω̃ must be bounded by

0 ≤ ω̃ ≤ 1. (62)

The symbol p̂ of (61) denotes the phase-function matrix (basically, the differential scattering
cross section) of the particulates. The matrix elements ((µi|p̂|µi′) = wip(µi, µi′) give the
representation of p̂ in µ-space as a 2n× 2n array of numbers. The matrix p̂ is defined such
that a photon in the stream i′ that is not absorbed in a collision with a cloud particulate
has a probability ((µi|p̂|µi′)/2 to be scattered into the stream i. Therefore we must have

2n∑
i=1

1

2
((µi|p̂|µi′) = 1 and 0 ≤ 1

2
((µi|p̂|µi′) ≤ 1. (63)

In accordance with (WH-40), for a cloud of randomly oriented scattering particulates the
scattering operator can be written in terms of the right and left multipole basis vectors |l)
and ((l| of (42) and (43) as

p̂ = 2
2n−1∑
l=0

pl|l)((l|, (64)

where the multipole scattering coefficients are pl. Substituting (64) into (61) we see that the
efficiency matrix is

η̂ =
2n−1∑
l=0

ηl|l)((l|. (65)

In view of (64) and (61), we see that the coefficients ηl (or the eigenvalues of η̂) are

ηl = 1− ω̃pl. (66)

In accordance with the discussion in Section 3.2.1 of WH, for anisotropic intensity, with no
dependence on optical depth τ in a spatially infinite cloud, the lth multipole moment of the
intensity, Il = ((l|I}, decays with relative time θ as

Il(θ) = Il(0)e
−θηl . (67)
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One unit of relative time is the mean time between collisions of a photon with a cloud
particulate. The total number of photons must decay at the rate

η0 = 1− ω̃. (68)

Comparing (68) with (66) we see that the monopole scattering coefficient must be unity,

p0 = 1. (69)

Even for hypothetical, non-absorbing particulates, with ω̃ = 1, successive scatterings must
randomize anisotropies of the intensity. So (67) implies that we must have

ηl = 1− pl > 0 or pl < 1 for l > 0. (70)

Multipole coefficients pl = ϖ
{p}
l for the maximum forward scattering phase functions that

can be constructed from the first 2p Legendre polynomials were listed in Table 1 of Section
5 of WH [1].

In discussions of thermal emission, we will have occasion to use the identity

κ̂|0) = (1− ω̃)ς̂|0), (71)

which follows from (60), (65) and (68).
The scattering-phase operator p̂ of (64) and the efficiency operator η̂ of (65) are diagonal

in l-space, so they commute with the reflection operator r̂ of (50), which is also diagonal.
Therefore p̂ and η̂ are even under reflections,

r̂p̂r̂ = p̂ or r̂p̂ = p̂r̂, (72)

and
r̂η̂r̂ = p̂ or r̂η̂ = η̂r̂. (73)

We can use (72) and (73) together with the fact that r̂r̂ = 1̂ to show that the exponentiation-
rate operator κ̂ of (60) is odd under reflections,

r̂κ̂r̂ = r̂ς̂ r̂r̂η̂r̂

= −ς̂ η̂

= −κ̂ or r̂κ̂ = −κ̂r̂. (74)

2.4 Penetration modes

For homogeneous clouds the penetration modes are a convenient basis for representing the
intensity vector |I}. According to (WH-150), these are the left and right eigenvectors, ((λi|
and |λi), of the exponentiation-rate matrix κ̂ of (60),

((λi|κ̂ = ((λi|κi and κ̂|λi) = κi|λi) where λi = 1/κi. (75)

The eigenvalues of κ̂ are

κi =
1

λi

. (76)
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Following (WH-154), we assume indices i are chosen such that

λ1 < λ2 < λ3 < · · · < λ2n. (77)

In accordance with (74), the exponentiation-rate operator κ̂ has odd reflection symmetry,
r̂κ̂r̂ = −κ̂, so the values of κi or λi occur as equal and opposite pairs,

λi = −λr(i). (78)

The index reflection function r(i) was given by (5). A reflection transforms an upward
penetration mode into a downward mode, and vice versa,

r̂|λi) = |λr(i)), (79)

From (77) and (4) it follows that the first half of the eigenvalues λi are negative and the
second half are positive,

λi < 0 for i ≤ n,

λi > 0 for i > n. (80)

Following (WH-145) we assume that right eigenvectors are normalized such that

((0|λi) =
1

2
or

2n∑
i′=1

((µi′ |λi) = 1. (81)

The elements of the ith column of the overlap matrix ((µi′|λi) sum to 1. The left eigenvectors
((λi| are chosen to ensure the orthonormality condition,

((λi|λi′) = δii′ . (82)

The left and right penetration-mode bases have the completeness property

2n−1∑
l=0

|λi)((λi| = 1̂. (83)

Vectors expanded on the basis vectors |λi) or operators expanded on the basis dyadics
|λi)((λi′| will be said to be represented in λ-space.

The projection operators for the lower and upper halves of λ-space are analogous to the
projection operators (22) of µ space,

Ld =
n∑

j=1

|λj)((λj| and Lu =
2n∑

k=n+1

|λk)((λk|. (84)

The projection matrices of (84) have the simple algebra, analogous to (23) – (26),

Ld + Lu = 1̂ (85)

L2
d = Ld and L2

u = Lu (86)

LdLu = 0̆ and LuLd = 0̆ (87)

r̂Ldr̂ = Lu and r̂Lur̂ = Ld. (88)
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In accordance with (WH-151), we write the exponentiation-rate matrix κ̂ = κ̂(τ) as the sum
of a downward part κ̂d and an upward part κ̂u

κ̂ = κ̂d + κ̂u. (89)

Expressions for the downward and upward parts are

κ̂d = Ldκ̂ = κ̂Ld =
n∑

j=1

κj|λj)((λj|, (90)

κ̂u = Luκ̂ = κ̂Lu =
2n∑

k=n+1

κk|λk)((λk|. (91)

Reflections transform the matrices of (90) and (91) as

r̂κ̂dr̂ = −κ̂u and r̂κ̂ur̂ = −κ̂d. (92)

In like manner, we write the penetration-length matrix λ̂ as the sum of a downward part
λ̂d and an upward part λ̂u

λ̂ = λ̂d + λ̂u. (93)

Expressions for the downward and upward parts are

λ̂d = Ldλ̂ = λ̂Ld =
n∑

j=1

λj|λj)((λj|, (94)

λ̂u = Luλ̂ = λ̂Lu =
2n∑

k=n+1

λk|λk)((λk|. (95)

Reflections transform the matrices of (94) and (95) into the negatives of each other

r̂λ̂dr̂ = −λ̂u and r̂λ̂ur̂ = −λ̂d. (96)

In accord with (WH-162) we define overlap operators Cqq′ between the projection oper-
ators Mq of (22) and the projection operators Lq′ of (84) by

Cqq′ = MqLq′ . (97)

The variable indices q and q′ in (97) can take on the values u and d. In accord with (WH-
163), when represented by matrices in µ-space, λ-space or l-space, the overlap operators sum
to the identity operator 1̂,

1̂ =
∑
qq′

Cqq′ = Cdd + Cud + Cdu + Cuu. (98)

In the pure absorption limit, ω̃ → 0, limiting values of variables for λ-space are equal to
the corresponding values for µ-space. Examples are

η̂ → 1̂

λ̂ → µ̂

κ̂ → ς̂

|λi) → |µi)

((λi| → ((µi|
Lq → Mq. (99)
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2.5 External metrics

One can remotely measure the radiation emitted from the top of a cloud with instruments
on satellites, or from the bottom of a cloud with ground-based instruments. The upwelling
intensity at the cloud top will consist of upward radiation that has been thermally gener-
ated in the cloud, plus backscattered downward radiation from external sources above or
transmittted radiation from external sources below. Similarly, the downwelling intensity at
the cloud bottom will consist of downward radiation that has been thermally generated in
the cloud, plus backscattered upward radiation from external sources below or transmitted
downward radiation The boundary radiation can be characterized with the intensity vector
|I(τc)} at the cloud top and by the intensity vector |I(0)} at the cloud bottom. As discussed
in (WH-174) and (WH-175), it is convenient to characterize radiation that can be observed
externally with the outgoing intensity vector,

|I{out}} = Mu|I(τc)}+Md|I(0)}. (100)

The incoming intensity vector is

|I{in}} = Md|I(τc)}+Mu|I(0)}. (101)

The inverses of (100) and (101) are

|I(0)} = Mu|I{in}}+Md|I{out}}, (102)

and
|I(τc)} = Md|I{in}}+Mu|I{out}}. (103)

The vertical flux vector is given by (WH-210) as

|Z(τ)} = 4πµ̂|I(τ)}. (104)

Unlike the vector intensity |I} , for which all elements in µ space are nonnegative, ((µi|I} ≥ 0,
the upward elements of |Z} are nonnegative, ((µk|Z} = 4πµk((µk|I(τ)} ≥ 0 for µk > 0, and
the downward elements are nonpositive ((µj|Z} = 4πµj((µj|I(τ)} ≤ 0 for µj < 0. In analogy
to (100) we can write the outgoing flux vector as

|Z{out}} = Mu|Z(τc)} −Md|Z(0)}
= 4π(µ̂u − µ̂d)|I{out}}. (105)

In analogy to (101) the incoming flux vector is

|Z{in}} = −Md|Z(τc)}+Mu|Z(0)}
= 4π(µ̂u − µ̂d)|I{in}}. (106)

The negative signs of (105) and (106) ensure that all elements of the outgoing and incoming
flux vectors are nonnegative, ((µi|Z{out}} ≥ 0 and ((µi|Z{in}} ≥ 0 The inverses of (105) and
(106) are

|Z(0)} = Mu|Z{in}} −Md|Z{out}}, (107)

and
|Z(τc)} = −Md|Z{in}}+Mu|Z{out}}. (108)
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2.6 Externally incident and thermally emitted radiation

The radiation intensity |I} = |I(τ)} of the equation of transfer (55) is the sum of a part
|Ï} = |Ï(τ)} from external radiation, incident on the top and bottom of the cloud, and a
part |İ} = |İ(τ)} that is created by thermal emission of particulates inside the cloud.

|I} = |Ï}+ |İ} (109)

The dot and double dot above the intensity symbols I should not be confused with Newton’s
notation for the first and second time derivatives. Earth’s atmosphere is too cool to emit
visible light, so for optical frequencies, ν ∼ 20,000 cm−1, thermal emission intensity vanishes,
|İ} = 0 and there is only externally generated intensity |Ï} from sunlight.

Thermal radiation, with frequencies ν ∼ 1,000 cm−1 is readily generated by cloud partic-
ulates, by greenhouse-gas molecules and by Earth’s surface. A cloud can contain externally
generated thermal radiation |Ï}, for example, the upward radiation from Earth’s surface or
from lower-altitude clouds, or downward radiation from higher-altitude clouds and the Sun.
The Sun emits long-wave infrared radiation with frequencies, ν ∼ 1,000 cm−1 similar to the
thermal radiation of the Earth. But except for the strongly collimated long-wave infrared
radiation coming directly from the Sun, locally generated radiation is much more intense.

Particulates inside a cloud emit thermal radiation |İ} in much the same way as incandes-
cent soot particles emit yellow light from a hot candle flame. Before escaping from the cloud,
the emitted thermal radiation can be reabsorbed by either the particulates or greenhouse-gas
molecules, and it can be scattered by particulates. A negligibly small fraction of radiation is
scattered by greenhouse-gas molecules. The lack of scattering facilitates the calculation of
thermal radiation transfer in cloud-free air [6].

The intensity vector |Ï} for external radiation satisfies the cold-cloud version of the
equation of transfer (55), with vanishing Planck intensity |B} = 0̆,

d

dτ
|Ï} = −κ̂|Ï}. (110)

To provide a unique solution to (110), boundary conditions must be given. A commonly
used boundary condition is the value of the input intensity |Ï{in}}, given by (101). Then the
solution of (110) gives the scattering operator S, which is defined by

|Ï{out}} = S|Ï{in}}. (111)

The intensity vector |İ} = |İ(τ)} of thermally emitted radiation satisfies the full version
of the equation of transfer (55) with a non-zero Planck intensity |B} of (56). There can be
no emitted radiation coming into the top or bottom of the cloud so the boundary condition
that defines a unique solution of (55) is

|İ{in}} = 0̆. (112)

The intensity vector |İ{out}} of outgoing thermal radiation has contributions from particu-
lates in all optical depth intervals dτ ′ inside the cloud and can be written as

|İ{out}} =

∫ τc

0

dτ ′|G{out}(τ ′)}B(τ ′). (113)
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We will discuss the Green’s-function vector |G{out}(τ ′)} for outgoing thermal radiation in the
following sections. For the special case of an isothermal cloud, where the Planck intensity B
is constant, B(τ ′) = B, the outgoing thermal intensity (113) simplifies to

|İ{out}} = E|0)B. (114)

In accordance with Kirchhoff’s laws of thermal radiation, the isothermal emissivity operator
E of (114) and the scattering operator S of (111) sum to the identity operator 1̂,

S + E = 1̂. (115)

We will prove (115) in Section 4.1 below. Multiplying both sides of (115) on the left by ((µi|
and on the right by |0), and recalling from (43) that ((µi|0) = wi we find

((µi|S|0) + ((µi|E|0) = wi. (116)

Since both terms on the left of (116) are nonnegative, it implies the bounds

0 ≤ ((µi|S|0) ≤ wi and 0 ≤ ((µi|E|0) ≤ wi. (117)

3 Green’s Functions for Intensity

The intensity |İ} of thermally emitted radiation inside a cloud depends on the optical depth
profile of the Planck intensity, B = B(τ), or equivalently, on the temperature profile, T =
T (τ), of the cloud. A convenient way to solve (55) for |I} = |İ} is with a Green’s function,
|G(τ, τ ′)}. As discussed in (WH-256), the thermally emitted radiation can be written as

|İ(τ)} =

∫ τc

0

dτ ′|G(τ, τ ′)}B(τ ′). (118)

The thermally emitting particulates in a optical-depth interval dτ ′, centered on the source
optical depth τ ′, make a contribution dτ ′|G(τ, τ ′)}B(τ ′) to the intensity |İ(τ)} at the ob-
servation optical depth τ . To be consistent with the equation of transport (55) the Green’s
function must satisfy the differential equation(

∂

∂τ
+ κ̂

)
|G(τ, τ ′)} = δ(τ − τ ′) κ̂|0). (119)

To fully determine the Green’s function |G(τ, τ ′)} from the differential equation (119), we
use the boundary condition corresponding to (112).

|G{in}(τ ′)} = Md|G(τc, τ
′)}+Mu|G(0, τ ′)} = 0̆. (120)

It is convenient to write the Green’s function as the sum of a part |∞G(τ − τ ′)} for an
unbounded cloud, and a part |∆G(τ, τ ′)} that accounts for the cloud particulates that are
missing for optical depths τ < 0 below the cloud bottom, and τ > τc above the cloud top,

|G(τ, τ ′)} = |∞G(τ − τ ′)}+ |∆G(τ, τ ′)}. (121)
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Figure 2: The radiation intensity İ(µi, τ) of (128) at the observation optical depths τ in a
cloud of vertical optical depth τc = 1. At the source optical depth τ ′ = 0.2 above the bottom,
there is an infinitesimally thin emitting layer with the Planck intensity B(τ ′′) = δ(τ ′′ − τ ′).
See the text following (128) for details.

Figure 3: Like Fig. 2 but with the source optical depth τ ′ = 0.8 of the emitting layer an
equal distance below the cloud top as the emitting layer of Fig. 2 was above the bottom.
In accordance with the reflection symmetry (144) Fig, 2 and Fig. 3 are mirror images with
respect to midcloud optical depth, τ = τc/2 = 0.5.
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According to (WH-260), the Green’s function |∞G(τ)} for an unbounded, homogeneous
cloud can be written as

|∞G(τ)} =
[
H(τ)e−κ̂uτ −H(−τ)e−κ̂dτ

]
κ̂|0). (122)

The Heaviside unit step function is

H(τ) =


0, if τ < 0,

1/2, if τ = 0,
1, if τ > 0.

(123)

The upward and downward parts κ̂u and κ̂d of the exponentiation-rate matrix κ̂ were given
by (90) and (91).

According to (WH-273) the boundary contribution |∆G(τ, τ ′)} of (121) to the Green’s
function is

|∆G(τ, τ ′)} = U(τ)I−1R(τ ′)κ̂|0). (124)

The first factor on the right of (124) is the propagation operator U(τ), which is given by
(WH-193) as

U(τ) = e−κ̂d(τ−τc) + e−κ̂uτ . (125)

The propagation operator U(τ), which is diagonal in λ-space, gives the intensity at the
optical depth τ within a cloud. The intensity consists of downward penetration modes that
start at the top of the cloud where the optical depth is τ = τc, and upward modes that start
at the bottom where the optical depth is τ = 0. The second factor I−1 of (124) is the inverse
of the incoming operator I, which is given by (WH-199) as

I = MuU(0) +MdU(τc)
= Cudeκ̂dτc + Cuu + Cdd + Cdue−κ̂uτc . (126)

The overlap operators Cqq′ were given by (97). The third factor R(τ ′) on the right of (124)
is the retro operator, given by (WH-270) as

R(τ ′) = Mue
κ̂dτ

′ −Mde
−κ̂u(τc−τ ′)

= Cudeκ̂dτ
′ − Cdue−κ̂u(τc−τ ′). (127)

In Fig. 2 and Fig. 3 we show the intensities

İ(µi, τ) = w−1
i ((µi|G(τ, τ ′)} (128)

that follow from (118) and from an infinitesimal emission layer at the optical depth, τ ′, with
the Planck intensity

B(τ ′′) = δ(τ ′′ − τ ′). (129)

Here it is understood that the dummy variable of integration τ ′ of (118) is to be replaced
by the dummy variable τ ′′, since we use τ ′ in (129) to denote the source optical depth of
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the emitting particulates in the cloud. In both figures the emitted radiation is Rayleigh
scattered, with a single scattering albedo of ω̃ = 0.9, until it is absorbed or leaves the top
or bottom of the cloud. The intensities for τ > τ ′ are proportional to the lengths of the
green rays, and the intensities for τ < τ ′ are proportional to the lengths of the blue rays. In
Fig. 2 the infinitesimal emission layer at τ ′ = 0.2 is closer to the bottom, where τ = 0, than
at the top where τ = τc = 1. So more radiation comes out of the bottom than out of the
top. For both Fig. 2 and Fig. 3 there are only upward streams at the cloud top, and only
downward streams at the cloud bottom. Because of scattering from cloud particulates, there
are both upward and downward streams for optical depths between the top and bottom of
the cloud. Close to the source optical depth τ ′, the nearly horizontal streams with long slant
paths are more intense than the near-vertical streams with short slant paths. The intensity is
limb-brightened near the source. At the cloud top, the nearly horizontal streams with longer
slant paths from the source are more attenuated and weaker than the intensities of nearly
vertical streams with shorter slant paths and less attenuation. The intensity is increasingly
limb-darkened for increasing distances from the source layer.

3.1 Pure absorption

An important special case is a cloud with absorption and emission but no scattering. A layer
of clear air with only greenhouse gases but no condensed water droplets, ice crystallites or
other particulates is an example of a purely absorbing “cloud” for Earth’s thermal radiation.
It would not be a purely absorbing cloud for visible or ultraviolet sunlight, which is Rayleigh
scattered by nitrogen and oxygen, the main constituents of the atmosphere.

For a purely absorbing cloud, the single scattering albedo vanishes, ω̃ → 0, and we can
use the limiting values of (99) together with (127) and (124) to show that

R(τ ′) → 0̆, and |∆G(τ, τ ′)} → 0̆. (130)

From (130) and (121) we see that for the pure absorption limit

|G(τ, τ ′)} → |∞G(τ − τ ′)}, (131)

where (99) and (122) imply that

|∞G(τ)} =
[
H(τ)e−ς̂uτ −H(−τ)e−ς̂dτ

]
ς̂|0). (132)

3.2 Scattering operator S
Although this paper is focussed on radiation intensity generated by thermal emission of
particulates inside clouds, it turns out that the internal emission is closely related to the
scattering of external intensity. The scattering operator S was defined by (111) as the
“ratio” of outgoing external intensity |Ï{out}} to incoming external intensity |Ï{in}} . For a
homogeneous cloud, (WH-206) showed that the scattering operator can be written as

S = OI−1. (133)
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We already discussed the incoming operator, I of (126). We can use (125) and (97) to write
the outgoing operator of (WH-201) as

O = MuU(τc) +MdU(0))
= Mu

[
Ld + e−κ̂uτc

]
+Md

[
eκ̂dτc + Lu

]
= Cud + Cuue−κ̂uτc + Cddeκ̂dτc + Cdu. (134)

Of particular interest is the scattering operator for a purely absorbing cloud, with ω̃ → 0.
The we can use the limiting expressions of (99) to write the limiting values of the input
operator I of (126) and the output operator O of (134) as

I → 1̂ and O → e−ς̂uτc + eς̂dτc . (135)

Using (133) and (134) we write the scattering matrix for a purely absorbing cloud as

S = e−ς̂uτc + eς̂dτc , if ω̃ = 0. (136)

3.3 Reflection symmetries

A reflection transforms the Green’s function (121) for a homogeneous cloud in a relatively
simple way that can facilitate numerical calculations and give physical insight. Multiplying
the Green’s function (122) for an unbounded cloud on the left by r̂, and recalling that r̂r̂ = 1̂,
we can use (52), (74) and (92) to write

r̂ |∞G(τ)} = r̂
[
H(τ)e−κ̂uτ −H(−τ)ê−κ̂dτ

]
r̂r̂κ̂r̂r̂|0)

=
[
H(τ)e−(r̂κ̂ur̂)τ −H(−τ)ê−(r̂κ̂dr̂)τ

]
[−κ̂] |0)

=
[
H(−τ)eκ̂uτ −H(τ)eκ̂dτ

]
κ̂|0)

= |∞G(−τ)}. (137)

Multiplying (125) on the left and right by r̂ and using (92) we find

r̂U(τ)r̂ = r̂
[
e−κ̂d(τ−τc) + e−κ̂uτ

]
r̂

= e−r̂κ̂dr̂(τ−τc) + e−r̂κ̂ur̂τ

= eκ̂u(τ−τc) + eκ̂dτ

= U(τc − τ). (138)

Multiplying (126) on the left and right by r̂, inserting factors of r̂r̂ = 1̂, and using (26) with
(138), we find

r̂I r̂ = r̂ [Mur̂r̂U(0) +Mdr̂r̂U(τc)] r̂
= MdU(τc) +MuU(0)
= I. (139)

and therefore
r̂I−1r̂ = I−1. (140)
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Multiplying (134) on the left and right by r̂, inserting factors of r̂r̂ = 1̂, and using (26) with
(138), we find

r̂Or̂ = r̂ [Mur̂r̂U(τc) +Mdr̂r̂U(0)] r̂
= MdU(0) +MuU(τc)
= O. (141)

Multiplying (127) on the left and right by r̂ and using (92) with (26) we find

r̂R(τ ′)r̂ = r̂
[
Mur̂r̂e

κ̂dτ
′ −Mdr̂r̂e

−κ̂u(τc−τ ′)
]
r̂

= Mde
−κ̂uτ ′ −Mue

κ̂d(τc−τ ′)

= −R(τc − τ ′). (142)

From (52), (74), (138), (140) and (142) we see that a reflection transforms the boundary
contribution (124) to the matrix Green’s function as

r̂|∆G(τ, τ ′)} = r̂U(τ)r̂r̂I−1r̂r̂R(τ ′)r̂r̂κ̂r̂r̂|0)
= −U(τc − τ)I−1R(τc − τ ′)κ̂|0)
= |∆G(τc − τ, τc − τ ′)}. (143)

Adding (137) and (143) we see that a reflection transforms the total Green’s function (121)
into

r̂|G(τ, τ ′)} = |G(τc − τ, τc − τ ′)}. (144)

Fig. 2 and Fig. 3 give one example of the reflection symmetry (144) of Green’s functions.
Multiplying (133) on the left and right by r̂, inserting factors of r̂r̂ = 1̂, and using (140)

with (141), we find

r̂S r̂ = r̂Or̂r̂I−1r̂

= OI−1

= S. (145)

The scattering operator of a homogeneous cloud is invariant to reflections. Inhomogeous
clouds, where the single scattering albedo ω̃(τ) and scattering phase operator p̂(τ) vary with
optical depth τ in the cloud, do not have the reflection symmetry (145).

4 Outgoing Intensity

The outgoing thermal intensity can be written as

|İ{out}} =

∫ τc

0

dτ ′|G{out}(τ ′)}B(τ ′). (146)

From (100), (118) and (121) we see that the Green’s function for outgoing intensity in (146)
is
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|G{out}(τ ′)} = Mu|G(τc, τ
′)}+Md|G(0, τ ′)}

= |∞G{out}(τ ′)}+ |∆G{out}(τ ′)}. (147)

Using (122) we write the contribution to (147) from an infinite cloud as

|∞G{out}(τ ′)} = Mu|∞G(τc − τ ′)}+Md|∞G(−τ ′)}
= Q(τ ′)κ̂|0)

=
∂

∂τ ′
Q(τ ′)|0). (148)

Here the matrix Q(τ ′) is

Q(τ ′) = Mue
−κ̂u(τc−τ ′) −Mde

κ̂dτ
′

= Cuue−κ̂u(τc−τ ′) − Cddeκ̂dτ
′
. (149)

Using (124) with (133) and (134), and noting from (127) that ∂R(τ ′)/∂τ ′ = R(τ ′)κ̂, we
write the contribution from the cloud boundaries as

|∆G{out}(τ ′)} = Mu|∆G(τc, τ
′)}+Md|∆G(0, τ ′)}

= OI−1R(τ ′)κ̂|0)
= SR(τ ′)κ̂|0)

=
∂

∂τ ′
SR(τ ′)|0). (150)

Adding (148) and (150) we find

|G{out}(τ ′)} = [Q(τ ′) + SR(τ ′)] κ̂|0)

=
∂

∂τ ′
[Q(τ ′) + SR(τ ′)] |0). (151)

We can use (127) and (149) to factor out the τ ′-independent thermal emission operator

T = (Mu − SMd)Lu + (Md − SMu)Ld. (152)

and to write (151) as

|G{out}(τ ′)} = T X (τ ′)κ̂|0)

= T ∂

∂τ ′
X (τ ′)|0). (153)

The τ ′-dependent operator X (τ ′) of (153) is diagonal in λ-space, and it can be written as

X (τ ′) = e−κ̂u(τc−τ ′) − eκ̂dτ
′

(154)

Using (153) in (146) we see that the outgoing thermal radiation from a cloud can be
written as

|İ{out}} = T |B̃}. (155)
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The Planck source vector can be written as

|B̃} =

∫ τc

0

dτ ′X (τ ′)κ̂|B(τ ′)}

=

∫ τc

0

dτ ′
∂

∂τ ′
X (τ ′)|B(τ ′)}

= |B̃u}+ |B̃d}. (156)

As indicated in the last line of (156) we write |B̃} as the sum of upward and downward parts
in λ-space. The upward part of |B̃} is

|B̃u} =

∫ τc

0

dτ ′e−κ̂u(τc−τ ′)κ̂u|B(τ ′)}

=
2n∑

k=n+1

|λk)((λk|B̃}. (157)

The upward coefficients are

((λk|B̃} = ((λk|0)
∫ τc

0

dτ ′B(τ ′)κke
−κk(τc−τ ′). (158)

The downward part of |B̃} is

|B̃d} = −
∫ τc

0

dτ ′B(τ ′)eκ̂dτ
′
κ̂d|0)

=
n∑

j=1

|λj)((λj|B̃d}. (159)

The downward coefficients are

((λj|B̃} = −((λj|0)
∫ τc

0

dτ ′B(τ ′)κje
κjτ

′
. (160)

As shown in Fig. 7 of WH, the least attenuated intensity modes have penetration lengths
λ2n = −λ1. From inspection of (158) and (160) we see that for source optical depths τ ′

deep inside optically thick clouds, τ ′ ≫ λ2n and τc − τ ′ ≫ λ2n, the Planck intensity B(τ ′)
will make negligible contributions to the Planck source vector |B̃}. The emitted radiation is
absorbed before it can escape from the top or bottom surface. For most scattering conditions
λ2n ≈ 1. Then only regions within about 1 optical depth from the top or bottom contribute
to the thermal emission |İ{out}} from the cloud.

For nearly conservative scattering, with ω̃ → 1, the quasi-isotropic penetration length can
be many optical depths in magnitude, λ2n ≫ 1, as shown in Fig. 7 of WH [1] . Earth’s clouds
can have nearly conservative scattering for visible sunlight. Modifications to the theory of
WH needed to account for exact conservative scattering, with ω̃ = 1, are discussed in the
paper 2n-Stream Conservative Scattering [7]. For nearly conservative scattering, a photon
thermally generated many optical depths from the top or bottom of a cloud can have a good
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chance of escape, since it can undergo many scattering collisions and make a random walk
to the nearest surface before it is lost in an absorptive collision. But negligibly few visible
photons are generated inside Earth’s clouds. For the photons of thermal radiation that are
copiously generated inside clouds, representative values of the single scattering albedo are
ω̃ ≈ 0.5. So a thermal-radiation photon has a good chance of being absorbed and converted
to heat on each collision with a cloud particulate.

4.1 Isothermal clouds

For an isothermal cloud, with a τ ′-independent Planck intensity, B, we can take the factor,
|B(τ ′)} = |0)B, outside the integral and use (154) to write the second line of (156) as

|B̃} =

[ ∫ τc

0

dτ ′
∂

∂τ ′
X (τ ′)

]
|B}

= [X (τc)−X (0)] |B}
= [1̂− eκ̂dτc − e−κ̂uτc ]|B} (161)

Using (161) and (152) in (155) we find

|İout} = [(Mu − SMd)Lu + (Md − SMu)Ld] [1̂− eκ̂dτc − e−κ̂uτc ]|B}
=

[
(Mu − SMd)(Lu − e−κ̂uτc) + (Md − SMu)(Ld − eκ̂dτc)

]
|B}

= Cuu − Cuue−κ̂uτc + Cdd − Cddeκ̂dτc

−S
[
Cdu − Cdue−κ̂uτc + Cud − Cudeκ̂dτc

]
|B}

=
[
1̂−O − S(1̂− I)

]
|B}, (162)

The last line of (162) follows from (98), (126) and (134). Since SI = O according to (133),
we can write (162) as

|İout} = E|B}. (163)

The isothermal emissivity operator of (163) is

E = 1̂− S. (164)

Eq. (164) is one version of Kirchhoff’s law of thermal radiation [11] . The total outgoing
intensity from an isothermal cloud, the sum of internally emitted intensity |İout} and reflected
and transmitted external intensity |Ïout}, is therefore

|I{out}} = |İ{out}}+ |Ï{out}}
= E|B}+ S|Ï{in}}. (165)

The last line of (165) follows from (163) and (111).
In accordance with (112), thermal emission makes no contribution to the incoming radi-

ation, so the total incoming radiation is

|I{in}} = |Ï{in}} (166)
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The excess of outgoing over incoming intensity vectors for an isothermal cloud, the difference
between (165) and (166), is

|I{out}} − |I{in}} = E|B}+ (S − 1̂)|Ï{in}}

= E
(
|B} − |Ï{in}}

)
. (167)

We used (164) to get the last line of (167) from the previous one. From (167) we see that there
will be thermal equilibrium, with equal outgoing and incoming intensities and no heating
or cooling of the isothermal cloud if the incoming intensity is equal to the τ ′-independent
Planck intensity |B} = |0)B of the cloud,

|I{in}} = |Ï{in}} = |B}. (168)

Substituting (168) into (165) and using (164) we see that the total outgoing intensity from
the isothermal cloud, the sum of thermally emitted and reflected or transmitted external
intensity, is

|I{out}} = (E + S) |B}
= |B}. (169)

The incoming intensity will equal the Planck intensity as in (168) if the cloud of interest is
irradiated from above and below by Planck radiation of the same temperature, for example,
from optically thick, purely absorbing clouds of the same temperature below and above the
cloud of interest.

In the conservative scattering limit there will be no thermal emission, |İ{out}} = 0̆, so
(163) and (164) imply that

E|0) → 0̆, and S|0) → |0), as ω̃ → 1. (170)

For a purely absorptive cloud with ω̃ = 0 we can use (136) with (164) to write

E = 1̂− e−ς̂uτc − eς̂dτc , for ω̃ = 0. (171)

4.2 Optically thin clouds

For an optically thin cloud, the total optical depth τc is small enough that

|κi|τc ≪ 1 for i = 1, 2, 3, . . . , 2n. (172)

We recall from (WH-184) that the scattering matrix for an optically thin cloud can be
written, to order τc ≪ 1, as

S = 1̂− τc(ς̂u − ς̂d)η̂. (173)

From (173) and (164) we see that the isothermal emissivity operator of the thin cloud is

E = 1̂− S = τc(ς̂u − ς̂d)η̂. (174)
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Figure 4: Upward (green) and downward (blue) relative outgoing intensities İ{out}(µi, τ) of
(180) from an optically thin cloud. The direction secant of the stream is ςi. The intensity
of the ith stream is proportional to |ςi| or to the slant distance through the thin cloud. For
τc ≪ 1, the pattern is independent of τc, ω̃, p̂ or B.

For the thin-cloud limit we can write the operator X of (154) to order τc ≪ 1 as

X (τ ′) = Lu − Ld − κ̂u(τc − τ ′)− κ̂dτ
′. (175)

We can use (71) and (175) to write the Planck source vector (156), to order τc ≪ 1 as

|B̃} = Bτc(Lu − Ld)κ̂|0)
= (1− ω̃)Bτc(Lu − Ld)ζ̂|0), (176)

where the average Planck intensity of the thin cloud is

B =
1

τc

∫ τc

0

dτ ′B(τ ′). (177)

We can substitute (152) and (176) into (155) to find that the outgoing intensity for a thin
cloud is

|İ{out}} = (1− ω̃)Bτc [(Mu − SMd)Lu + (Md − SMu)Ld] (Lu − Ld)ζ̂|0)
= (1− ω̃)Bτc [(Mu −Md)Lu − (Md −Mu)Ld] ζ̂|0)
= (1− ω̃)Bτc [Mu(Lu + Ld)−Md(Lu + Ld)] ζ̂|0)
= (1− ω̃)Bτc [Mu −Md] ζ̂|0), (178)

To get the second line from the first, we noted from (173) that SMq = Mq to order τc ≪ 1,
and we used (86) and (87). We used (85) to get the final line. Using (34) and (35) we write
(178) in final form as

|İ{out}} = (1− ω̃)Bτc

[
ζ̂u − ζ̂d

]
|0). (179)
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The intensity of the ith outgoing, thermally emitted stream is

İ{out}(µi) = w−1
i ((µi|İ{out}} = (1− ω̃)Bτc|ςi|. (180)

Not surprisingly, in view of Kirchhoff’s laws of thermal radiation, the radiation intensity
İ{out}(µi) of the ith stream is proportional to the single scattering absorption probability,
1− ω̃, to the mean Planck intensity B of (177), and to the slant optical thickness, τc|ςi| ≪ 1.
The relative intensities İ{out}(µi) of (180) are illustrated in Fig. 4. Nearly horizontal streams
have much larger intensities than nearly vertical streams.

4.3 Optically thick clouds

Consider a homogeneous cloud with some absorption and ω̃ < 1. As the optical thickness
approaches infinity, τc → ∞, the magnitudes of all of the mode attenuation factors also
approach infinity, |κiτc| → ∞. Therefore

e−κ̂uτ → 0̆ and eκ̂dτ → 0̆ as τc → ∞. (181)

Then the incoming operator (126) becomes a block diagonal matrix in µλ-space. That is,
for a 2n× 2n matrix with elements ((µi|I|λi′),

I =

[
Idd Idu

Iud Iuu

]
=

[
Cdd 0̆

0̆ Cuu

]
. (182)

We can therefore write the inverse of the incoming operator as a block diagonal matrix in
λµ-space. That is, for a 2n× 2n matrix with elements ((λi′|I−1|µi),

I−1 =

[
(I−1)dd (I−1)du
(I−1)ud (I−1)uu

]
=

[
(Cdd)−1 0̆

0̆ (Cuu)−1

]
. (183)

Here the n×n inverse matrix (Cuu)−1, which can also be thought of as a 2n×2n pseudoinverse
matrix analogous to those of Section 2.1, has the properties

Cuu (Cuu)−1 = Mu, and (Cuu)−1 Cuu = Lu. (184)

Similarly, the n× n inverse operator (Cdd)−1 has the properties

Cdd (Cdd)−1 = Md, and (Cdd)−1 Cdd = Ld. (185)

For the optically thick limit (181), the outgoing operator (134) becomes the block anti-
diagonal matrix in µλ-space,

O =

[
Odd Odu

Oud Ouu

]
=

[
0̆ Cdu
Cud 0̆

]
. (186)

Substituting (186) and (183) into (133) we see that the scattering matrix for an optically
thick cloud can be written as a block anti-diagonal matrix in µ space

S = OI−1 =

[
Sdd Sdu

Sud Suu

]
=

[
0̆ Cdu (Cuu)−1

Cud (Cdd)−1 0̆

]
. (187)
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Figure 5: Angular dependence of emission from isothermal clouds of optical thickness τc = 1,
modelled with 2n = 10 streams. The green circle is the blackbody limit, when all of the
sample intensities İ{out}(µi) would be equal to the Planck intensity B of (57). Upward rays
come from the cloud top and downward rays from the cloud bottom. For the moderate
optical depth of these examples, all of the intensities are limb-brightened. Nearly horizontal
outgoing streams have intensity contributions from longer slant paths through the cloud than
nearly vertical streams. The upper right panel, labeled “Forward,” has the scattering phase
function p(µ) = ϖ{5}(µ) of (WH-134) and the lower right panel labeled “Backward” has the
scattering phase function p(µ) = ϖ{5}(−µ). The scalar emissivities ε of (229) for all clouds
are much less than the maximum possible value, ε = 1. The maximum penetration lengths
for radiation in the clouds with pure absorption, forward, isotropic, and backward scattering
are λ2n = 0.9739, 2.6649, 1.4076, and 1.2627.

We recall from (25), (97) and (99) that Cud → 0̆ and Cdu → 0̆ as the scattering vanishes and
ω̃ → 0. The scattering matrix of a homogeneous, optically thick cloud vanishes as ω̃ → 0,
and the cloud becomes purely absorbing,

S → 0̆, as ω̃ → 0, and τc → ∞. (188)

From (188) and (174) we see that the emission operator E of a homogeneous, optically thick,
purely absorbing cloud becomes the identity operator

E = 1̂. (189)

Such a cloud is an ideal blackbody which absorbs all incident external radiation and scatters
none. As we shall show in the next section, an isothermal, optically thick, purely absorbing
cloud also becomes an ideal Lambertian emitter of blackbody radiation.

29



Figure 6: Like Fig. 5 but for optically thick, isothermal clouds with optical depths τc = 20.
The purely absorbing cloud with ω̃ = 0 shown in the upper left panel has become an ideal
blackbody with a Lambertian (uniform) angular distribution of intensities, İ{out}(µi), all
equal to the Planck intensity B of (57). The emission intensities of the three scattering
clouds with ω̃ = 0.8 are limb-darkened because of preferential attenuation of more nearly
horizontal rays as they emerge from the bottoms and tops of the clouds. For the scattering
clouds, the scalar emissivities ε of (229) remain substantially less than the maximum possible
value, ε = 1.

30



4.4 Directions of thermal emission

According to (114) the intensity of the ith stream of outgoing radiation from an isothermal
cloud is

İ{out}(µi) = w−1
i ((µi|İ{out}}

= w−1
i ((µi|E|0)B

= w−1
i ((µi|1̂− S|0)B

= B
[
1− w−1

i ((µi|S|0)
]
. (190)

Using (117) with (190) we conclude that the outgoing intensity from an isothermal cloud
must have values bounded by

0 ≤ İ{out}(µi) ≤ B. (191)

For the blackbody limit of an optically thick cloud with ω̃ = 0, the outgoing thermal intensity
is equal to the Planck intensity B of (57) for all emission angles,

İ{out}(µi) = B, if S = 0̆. (192)

Equal emitted intensity for all outward directions from the surface is called Lambertian
emission [13].

For a transparent cloud with S = 1̂, or for the conservative scattering limit, ω̃ → 1, when
S|0) → |0) but S ≠ 1̂, the outgoing thermal intensity vanishes

İ{out}(µi) = 0̆, if S|0) = |0). (193)

Some representative outgoing thermal intensities İ{out}(µi) calculated with (190) for
clouds with a moderate optical depth, τc = 1, are shown in Fig. 5. The intensities of
the purely absorbing cloud, with ω̃ = 0, are moderately close to the Planck blackbody limit
B, denoted by the green circle. For the scattering clouds with ω̃ = 0.8 the intensities are
much less than B. Limb brightening similar to that of the infinitesimally thin cloud of Fig.
4 can be seen. Also shown in the figure are the scalar emissivities ε of (229) , which we
discuss in Section 5.3. All of the emissivities are less than the blackbody limit, ε = 1.

Fig 6 shows what happens when the isothermal clouds of Fig. 5 become optically thick
with τc = 20. The purely absorbing cloud becomes an ideal blackbody with İ{out}(µi) = B
and a Lambertian angular distribution of intensities. For the optically thick scattering clouds
with ω̃ = 0.8, the outgoing thermal intensities İ{out}(µi) remain smaller than the blackbody
limit B, and the scalar emissivities ε remain less than the maximum possible value of ε = 1.
The cloud with forward scattering comes closest to the blackbody limit. There is limb
darkening for all three scattering clouds.

4.5 Clouds with hot interiors

There is little scattering of light in the surface layers of the Sun. Most of the opacity is
absorptive[16] and due to photodetachment of electrons from negative hydrogen ions, H−.
To good approximation, the photosphere of the Sun is a purely absorptive cloud, like that
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Figure 7: Like the optically thick isothermal clouds of Fig. 6 but for clouds with a hot
interiors, described by (194) with f = 0.1. The green circle is the Planck intensity B0 at
the cool surfaces of the cloud. There is limb darkening for the purely absorbing cloud with
ω̃ = 0, as well as for scattering clouds with ω̃ = 0.8.

modeled on the upper left panel of Fig. 6. But unlike the example of Fig. 6, the Sun is
strongly limb darkened due to the increase of temperature below the emitting surface.

A simple model for the Planck intensity in a cloud with a hot interior and cooler surfaces
at the top and bottom is

B(τ ′) =

{
B0e

fτ ′/λ2n if τ ′ < τc/2,
B0e

f(τc−τ ′)/λ2n if τ ′ > τc/2.
(194)

The heating parameter f , determines the exponential growth rate (for f > 0) or attenuation
rate (for f < 0) of the Planck intensity (194) toward the hot center of the cloud, at the
optical depth τ = τc/2. Using (194) to evaluate (158) for upward streams, we find

((λk|B̃} = ((λk|0)B0κk

∫ τc

−∞
dτ ′e−(κk−f/λ2n)(τc−τ ′)

=
((λk|0)B0

1− fλk/λ2n

. (195)

In (195) we have assumed that f < 1 and that that the cloud is so optically thick that

|λi|
1− f

≤ λ2n

1− f
≪ τc. (196)

If (196) is true, we can replace the lower limit 0 of the integral of (158) by −∞. In like
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manner we use (194) to evaluate (160) for downward streams to find

((λj|B̃} = −((λj|0)B0κj

∫ ∞

0

dτ ′e(κj+f/λ2n)τ ′

=
((λk|0)B0

1 + fλj/λ2n

. (197)

We use (195) and (197) to write the Planck source vector of (156) as

|B̃} =
∑
k

|λk)((λk|B̃}+
∑
j

|λj)((λj|B̃}

=

(∑
k

|λk)((λk|
1− fλk/λ2n

+
∑
j

|λj)((λj|
1 + fλj/λ2n

)
|0)B0

=
[
(Lu − fλ̂u/λ2n)

−1 + (Ld + fλ̂d/λ2n)
−1
]
|0)B0. (198)

The projection matrices Ld and Lu were defined by (84) and the upward and downward
penetration operators λ̂d and λ̂u were given by (94) and (95). The meaning of the pseudoin-
verse matrices (Ld + fλ̂d/λ2n)

−1 and (Lu − fλ̂u/λ2n)
−1 of (198) was discussed in Section

2.1. Using (152) and (198), we write the outgoing radiation of (155) as

|İ{out}} = (Mu − SMd)(Lu − fλ̂u/λ2n)
−1|0)B0 +

(Md − SMu)(Ld + fλ̂d/λ2n)
−1|0)B0. (199)

Representative evaluations of (199) for clouds with hot interiors are shown in Fig. 7
for a heating parameter f = 0.1. As mentioned in the caption of Fig. 5, for 2n = 10
streams the maximum penetration length is that for forward scattering, with λ2n = 2.66.
The condition (196) that the cloud be optically thick is satisfied for forward scattering, where
λ2n/(1−f) = 2.96 ≪ τc = 20. For the examples of Fig. 6 the clouds are even more optically
thick for isotropic, backward, or purely absorptive scattering, where the penetration lengths,
λ2n = 1.4076, 1.2627 and 0.9739, are smaller. The most striking change between Fig. 6
and Fig. 7 is limb darkening of emission from the cloud with pure absorption. For heating
parameters f much larger than the value f = 0.1 of Fig. 7, the vertically emitted intensities
of all of the clouds with hot interiors, with or without scattering, exceed the surface Planck
intensity B0.

5 Flux

To facilitate discussions of vertical heat transport by radiation, we use the upward flux vector
|Z(τ)} of (WH-210). The flux vector |Z(τ)} at an observation optical depth τ in the cloud
is related to the intensity vector |I(τ)} by

|Z(τ)} = 4πµ̂|I(τ)}

=

∫ τc

0

dτ ′|F (τ, τ ′)}B(τ ′). (200)
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The Green’s function |F (τ, τ ′)} for the flux is related to the Green’s function |G(τ, τ ′)} of
(118) by

|F (τ, τ ′)} = 4πµ̂|G(τ, τ ′)}. (201)

In analogy to (121), we write |F (τ, τ ′)} as a part |∞F (τ − τ ′)} from an unbounded cloud,
and a part |∆F (τ, τ ′)} that accounts for the cloud boundaries

|F (τ, τ ′)} = |∞F (τ − τ ′)}+ |∆F (τ, τ ′)}. (202)

The contribution for an infinite cloud follows from (122) and is

|∞F (τ)} = 4πµ̂|∞G(τ)}
= 4πµ̂

[
H(τ)e−κ̂uτ −H(−τ)e−κ̂dτ

]
κ̂|0). (203)

The contribution from the cloud boundaries follows from (124) and is

|∆F (τ, τ ′)} = 4πµ̂|∆G(τ, τ ′)}
= 4πµ̂U(τ)I−1R(τ ′)κ̂|0). (204)

5.1 Scalar flux

In accordance with (WH-209), we can write the scalar flux as the scalar

Z(τ) = ((0|Z(τ)}

=

∫ τc

0

dτ ′F (τ, τ ′)B(τ ′). (205)

Unlike the vector flux |Z(τ)}, which must be specified by 2n real numbers, the scalar flux
Z(τ) of (205) is specified by a single real number, which can be positive, negative or zero.
Representative units of the (spectral) scalar flux are W m−2 cm. In (205) we have used (200)
to write the scalar flux as an integral transform of the Planck intensity profile B(τ). The
kernel of the transform is the scalar Green’s function

F (τ, τ ′) = ((0|F (τ, τ ′)}
= ∞F (τ − τ ′) + ∆F (τ, τ ′). (206)

We can use (203) and (71) to write the part of (206) for an infinite cloud as

∞F (τ) = ((0|∞F (τ)}
= 4π((0|µ̂|∞G(τ)}
= 4π(1− ω̃)((0|µ̂

[
H(τ)e−κ̂uτ −H(−τ)e−κ̂dτ

]
ς̂|0). (207)

Inserting factors of r̂r̂ = 1 into the second line of (207) and using (27), (52) and (137) we
find

∞F (τ) = 4π((0|r̂r̂µ̂r̂r̂ |∞G(τ)}
= −4π((0|µ̂ |∞G(−τ)}
= −∞F (−τ). (208)
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Figure 8: Green’s function of (209) for the scalar flux in an infinite cloud in which the dipole

scattering phase coefficient p1 = ϖ
{n}
1 = 0.8182 = (2n − 1)/(2n + 1) corresponds to the

maximum possible forward scattering phase function, p(µ) = ϖ{n}(µ) of (WH-134), that
can be constructed from the first 2n = 10 Legendre polynomials. For this phase function
the forward-scattering amplitude is p(1) = ϖ{5}(1) = n(n + 1) = 30. The curve with
p1 = −0.8182 corresponds to the maximum possible backward scattering, and the curve
with p1 = 0 corresponds to isotropic scattering.
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For an infinite cloud the Green’s function ∞F (τ) for the scalar flux is antisymmetric in the
difference τ between the observation and source optical depths.

In view of the symmetry (208), we can write the last line of (207) as

∞F (τ) = 4π(1− ω̃) sgn(τ)((0|µ̂e−κ̂u|τ |ς̂|0)

= 4π(1− ω̃) sgn(τ)
2n∑

k=n+1

((0|µ̂|λk)e
−κ̂k|τ |((λk|ς̂|0). (209)

The summation indices of the upward modes with κk > 0 are k = n+ 1, n+ 2, . . . , 2n. The
sign function sgn(τ) is related to the Heaviside function H(τ) of (123) by

sgn(τ) = H(τ)−H(−τ) =


−1, if τ < 0,
0, if τ = 0,
1, if τ > 0.

(210)

At an infinitesimal optical depth τ = 0+ above the emitting layer, (209) simplifies to

∞F (0+) = 4π(1− ω̃)
2n∑

k=n+1

((0|µ̂|λk)((λk|ς̂|0)

= 2π(1− ω̃). (211)

To prove (211) we use (84), (88), (27), (32) and (52) to write the sum as

2n∑
k=n+1

((0|µ̂|λk)((λk|ς̂|0) = ((0|µ̂Luς̂|0)

= ((0|µ̂r̂Ldr̂ς̂|0)
= ((0|(−r̂µ̂)Ld(−ς̂ r̂)|0)
= ((0|µ̂Ldς̂|0). (212)

Averaging the two equivalent expressions on the right of (212) and using (85) and (15) we
find

2n∑
k=n+1

((0|µ̂|λk)((λk|ς̂|0) =
1

2
((0|µ̂ [Lu + Ld] ς̂|0)

=
1

2
((0|µ̂ς̂|0)

=
1

2
. (213)

This completes the proof of (211).
Some representative Green’s functions ∞F (τ) of (209) for the scalar flux in an infinite

cloud are shown in Fig. 8. For pure absorption and a vanishing single scattering albedo,
ω̃ = 0, the Green’s function just above the scattering layer has the maximum possible value
∞F (0+) = 2π, in accordance with (211). For non-zero scattering, in this example ω̃ = 0.8,
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the peak values are reduced to ∞F (0+) = 2π(1 − ω̃) = 0.4π, and the Green’s function is
broadened. At a given value of ω̃, forward scattering (p1 > 0), allows the Green’s function
to extend to greater optical depths from the emission layer at τ = 0 than for phase functons
with no forward-backward asymmetry and with a vanishing dipole coefficient, p1 = 0, like
isotropic or Rayleigh scattering. Backward scattering (p1 < 0), decreases the extent of the
Green’s function. As shown in Section 6.1 below, the value of the important first moment
⟨τ⟩ = 4π[3(1 − ω̃p1)]

−1 of ∞F (τ) depends only on the single scattering albedo ω̃ and on
the dipole coefficient p1 of the scattering phase matrix (64). The higher multpole moments
p2, p3, p4, . . . have no influence on ⟨τ⟩.

5.2 Exponential integral functions E
{n}
q for pure absorption

An important limiting case is the scalar flux for pure absorption, discussed in Section 3.1,
when ω̃ → 0 and the other radiation transfer parameters take on limiting values of (99).
Then according to (206), (204) and (130),

∆F (τ, τ ′) = ((0|∆F (τ, τ ′)}
= 4π((0|µ̂|∆G(τ, τ ′)}
→ 0. (214)

Then (206) implies that

F (τ, τ ′) → ∞F (τ − τ ′), as ω̃ → 0. (215)

We can use (42) and (43) to write (209) as

∞F (τ) = 4π sgn(τ)
∑
k

((0|µk)e
−ς̂k|τ |((µk|0)

= 2π sgn(τ)
∑
k

wke
−ς̂k|τ |

= 2π sgn(τ)E
{n}
2 (|τ |). (216)

Here we have introduced the n-exponential approximation

E{n}
q (τ) =

2n∑
k=n+1

wkµ
q−2
k e−τ/µk

= 2((0|µ̂q−2
u e−ς̂uτ |0). (217)

to the exponential integral function

Eq(τ) =

∫ 1

0

dµµq−2e−τ/µ. (218)

The exponential integral functions of (218) are discussed in Appendix 1 of Chandrasekhar[8],
or 5.1.4 of Abramowitz and Stegun[9]. In Eq. (31) of their paper Dependence of Earth’s
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Figure 9: A comparison of the exact exponential-integral functions Eq(τ) of (218) with the

n-exponential approximations E
{n}
q (τ) of (217). Even for the modest number of stream pairs

of this example, n = 5, the difference between the two functions is hardly perceptible.

Thermal Radiation on the Five Most Abundant Greenhouse Gases[6], van Wijngaarden and

Happer used the Green’s function (209) with E
{n}
2 (τ) → E2(τ). Fig. 9 shows that even for

a modest number of stream pairs, n = 5, one can hardly tell the difference between E
{n}
2 (τ)

and E2(τ). Many familiar identities of the exponential integral functions (218) have exactly
analogous forms for the n-stream approximations (217) or are limiting expressions for large
n. For example, one can readily verify that

d

dτ
E{n}

q (τ) = −E
{n}
q−1(τ). (219)∫ τ

0

dτ ′E{n}
q (τ ′) = E

{n}
q+1(0)− E

{n}
q+1(τ), (220)

E{n}
q (0) =

1

q − 1
, for q = 0, 2, 4, ... (221)

lim
n→∞

E{n}
q (0) =

1

q − 1
, for q = 3, 5, ... (222)∫ ∞

0

dτ ′ τ ′E{n}
q (τ ′) =

1

q + 1
, for q = 0, 2, 4, ... (223)

lim
n→∞

∫ ∞

0

dτ ′ τ ′E{n}
q (τ ′) =

1

q + 1
, for q = 1, 3, 5, ... (224)

(225)

Some representative values of E
{n}
q (0) versus n are shown in Table 1. The function E

{n}
1 (0)

increases slowly with n. The exact exponential function E1(τ) diverges as − ln(τ) as τ → 0.
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n 1 2 3 4 5 6 7 8 9 10

E
{n}
1 (0) 1.7321 2.3321 2.6903 2.9587 3.1700 3.3444 3.4929 3.6221 3.7365 3.8392

1E
{n}
2 (0) 1 1 1 1 1 1 1 1 1 1

2E
{n}
3 (0) 1.1547 1.0425 1.0199 1.0115 1.0075 1.0053 1.0039 1.0030 1.0024 1.0020

3E
{n}
4 (0) 1 1 1 1 1 1 1 1 1 1

4E
{n}
5 (0) 0.7698 0.9910 0.9982 0.9994 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000

Table 1: Numerical values of the exponential-integral functions, E
{n}
q (τ) of (217) at τ = 0

for q = 1, 2, 3, 4, 5 and n = 1, 2, 3, . . . , 10.

For τ = 0 we find the useful special case of (217)

((0|µ̂q
u|0) =

1

2
E

{n}
q+2(0). (226)

5.3 Scalar emissivity ε of an isothermal cloud

For an isothermal cloud, we can use (105) and (163) to write the outgoing flux that is
generated by thermal emission of the cloud particulates as

Ż{out} = ((0|Ż{out}}
= 4π((0|(µ̂u − µ̂d)|İ{out}}
= 4πB((0|(µ̂u − µ̂d)E|0). (227)

Of special interest is a black cloud, for which the emissivity operator becomes the identity
operator, E = 1, in accordance with (189). Then we can use (226) to write (227) as

Ż{out} = 4πB((0|(µ̂u − µ̂d)|0)
= 8πB((0|µ̂u|0)
= 4πBE

{n}
3 (0). (228)

We define the emissivity of an isothermal cloud as the ratio of the output flux (227) to the
output flux of an ideal black cloud (228),

ε =
Z{out}

4πBE
{n}
3 (0)

=
((0|(µ̂u − µ̂d)E|0)

E
{n}
3 (0)

. (229)

For a purely absorptive cloud, with ω̃ = 0, we can can use the expression (171) for E to write
(229) as

ε = ((0|(µ̂u − µ̂d)[1̂− e−ς̂uτc − eς̂dτc ]|0)/E{n}
3 (0)

= 2((0|[µ̂ue
−ς̂u0 − µ̂ue

−ς̂uτc ]|0)/E{n}
3 (0)

= 1− E
{n}
3 (τc)/E

{n}
3 (0). (230)

39



Figure 10: The thermal emissivity ε of (229) as a function of the optical thickness τc of
clouds. The scattering parameters of the clouds are the same as those of Fig. 8. Evaluations
for 2n = 10 are shown as smooth lines and evaluations for 2n = 32 are shown as small
circles. With respect to isotropic scattering, forward scattering increases the emissivity and
backward scattering decreases it. The emissivity values for 2n = 10, τc = 1 and τc = 20 were
cited in Fig. 5 and Fig. 6.
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Representative scalar emissivities ε of (229) are shown in Fig. 10 as a function of the optical
thicknesses τc of isothermal clouds. For clouds with relatively large single scattering albedos,
ω̃ = 0.8, the limiting emissivities for optically thick clouds are substantially less than unity,
especially for clouds with isotropic scattering or backscattering particulates. Fig. 10 also
shows that the number n of stream pairs used to model the cloud makes little difference.
One can barely notice the differnce between n = 5 and n = 16.

5.4 Flux from clouds with hot interiors

We use (105), (199) and (205) to write the scalar flux from a cloud with a hot interior as

Ż{out} = ((0|Ż{out}} = 4π((0|(µ̂u − µ̂d)|İ{out}}
= 4π((0|µ̂u(Mu − SMd)(Lu − fλ̂u/λ2n)

−1|0)B0

−4π((0|µ̂d(Md − SMu)(Ld + fλ̂d/λ2n)
−1|0)B0. (231)

An interesting special case of (231) is an optically thick, purely absorptive (black) cloud with
a vanishing scattering matrix, S = 0̆

Ż{out} = 4π((0|µ̂u(Mu − fµ̂u/µ2n)
−1 − µ̂d(Md + fµ̂d/µ2n)

−1|0)B0. (232)

To order f , the pseudoinverse matrices of (232) become

(Mu − fµ̂u/µ2n)
−1 = Mu + fµ̂u/µ2n

(Md + fµ̂d/µ2n)
−1 = Md − fµ̂d/µ2n. (233)

The two terms of (232) give equal amounts of outgoing flux from the top and bottom of the
cloud. So we can use (233) and (226) to write (232), to order f , as

Ż{out} ≈ 8π((0|µ̂u + fµ̂2
u/µ2n|0)B0

= 4π

[
E

{n}
3 (0) +

fE
{n}
4 (0)

µ2n

]
B0

≈ 2π

[
1 +

2f

3µ2n

]
B0. (234)

To get the last line of (234), we noted from Table 1 that E
{n}
3 (0) = 1.0075/2 ≈ 1/2 and

E
{n}
4 (0) = 1/3. For small values of fτ ′/µ2n ≪ 1, we can write the Planck brightness (194)

near the bottom of the black cloud as

B(τ ′) = B0e
fτ ′/µ2n

≈
[
1 +

τ ′f

µ2n

]
B0. (235)

We can therefore use (234) and (235) to write the radiative flux coming out of the top or
bottom of a purely absorptive cloud with a hot interior as

1

2
Ż{out} ≈ πB(2/3). (236)
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The flux from the top or bottom of the cloud is the same as the flux from a blackbody
with the Planck intensity B(τ ′) = B(2/3) at an optical depth τ ′ = 2/3 into the cloud from
the effectively emitting surface. Eq. (236) is called the Eddington-Barbier relation for the
emergent flux. For example, see Eq. (7.28) of Owocki [14]. As we discussed in Section 4.5,
the angular distribution of radiation from purely absorptive clouds with hot interiors is not
Lambertian, but is limb darkened.

6 Heat Conduction

For very optically thick clouds, with τc ≫ 1, the incremental scalar radiative flux Z(ν, z)dν
carried by radiation with spatial frequencies between ν and ν + dν, at the altitude z above
the bottom of the cloud, is well approximated by Fourier’s law of heat conduction,

Zdν = −dνq
dT

dz
. (237)

Here q = q(ν, z) is the monochromatic conductivity coefficient. The temperature gradient at
the altitude z is dT/dz = dT (z)/dz. The total heat flux J = J(z) carried by all frequencies
ν is

J =

∫ ∞

0

Z(ν)dν = −k
dT

dz
, (238)

where the frequency-integrated conductivity coefficient is

k = k(z) =

∫ ∞

0

q(ν, z)dν. (239)

In the next section, we discuss moments of the Green’s function ∞F (τ). It turns out that the
monochromatic conductivity coefficient q is proportional to the first moment ⟨τ⟩ of ∞F (τ).

6.1 Moments of ∞F (τ)

We define the qth moment of the Green’s function (207) for the scalar flux in an infinite
cloud as

⟨τ q⟩ =
∫ ∞

−∞
dτ τ q ∞F (τ). (240)

Because ∞F (τ) is antisymmetric in τ , in accordance with (208), all the even moments vanish

⟨τ q⟩ = 0, for q = 0, 2, 4, . . . . (241)
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Figure 11: The integrands, τ ∞F (τ), for the first moments ⟨τ⟩ of (240) for the Green’s
function ∞F (τ) of Fig. 8. The areas of the integrands depend on the single scattering
albedo ω̃ and on the dipole moment p1 of the scattering phase function, as given by (249).
The radiative heat flux (253) is proportional to ⟨τ⟩. See the text for more detail.

For odd q = 1, 3, 5, . . ., we can use ∞F (τ) of (209) to write (240) as

⟨τ q⟩ = 2

∫ ∞

0

dτ τ q ∞F (τ)

= 8πη0((0|µ̂
∫ ∞

0

dτ τ q
∑
k

|λk)((λk|e−κkτ ς̂|0)

= 8πη0((0|µ̂
∑
k

q!λq+1
k |λk)((λk|ς̂|0)

= 4πη0q!((0|µ̂
[∑

k

λq+1
k |λk)((λk|+

∑
j

λq+1
k r̂|λj)((λj|r̂

]
ς̂|0). (242)

In the last line of (242) we used the reflection symmetry, r̂|λj) = |λk) and ((λj|r̂ = ((λk|,
of (79). The indices of downward modes, with j = 1, 2, 3, . . . , n are related to the indices
k = n+ 1, n+ 2, . . . , 2n of the upward modes by the index reflection function of (5),

j = r(k) = 2n+ 1− k, and k = r(j) = 2n+ 1− j. (243)

The penetration lengths and basis vectors are related by

λj = −λk, r̂|λj) = |λk), and ((λj|r̂ = ((λk|. (244)

Since q is an odd integer, we can set

λq+1
k = (−λj)

q+1 = λq+1
j , (245)
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and write (242) as

⟨τ q⟩ = 4πη0q!((0|µ̂
[∑

k

λq+1
k |λk)((λk|+

∑
j

λq+1
j r̂|λj)((λj|r̂

]
ς̂|0). (246)

Since µ̂r̂ = −r̂µ̂, r̂ς̂ = −ς̂ r̂, r̂|0) = |0) and ((0|r̂ = ((0|, we can write the last factor of (246)
as

((0|µ̂
∑
j

λq+1
j r̂|λj)((λj|r̂ς̂|0) = ((0|µ̂

∑
j

λq+1
j |λj)((λj|ς̂|0), (247)

so that (246) becomes

⟨τ q⟩ = 4πη0q!((0|µ̂
[∑

k

λq+1
k |λk)((λk|+

∑
j

λq+1
j |λj)((λj|

]
ς̂|0)

= 4πη0q!((0|µ̂λ̂q+1ς̂|0). (248)

For our purposes, the most important moment is the first, with q = 1. In this case we
note that λ̂ = κ̂−1 = η̂−1µ̂, and ((l|η̂−1 = ((l|η−1

l or η̂−1|l) = η−1
l |l), and we use the identity

(53) to write (248) as

⟨τ⟩ = 4πη0((0|µ̂λ̂2ς̂|0)
= 4πη0((1|η̂−1µ̂η̂−1|0)

=
4π

3η1

=
4π

3(1− ω̃p1)
. (249)

Examples of first moment integrands from (240) are shown in Fig. 11. The areas between
the vertical axis and the curves τ ∞F (τ) shown in Fig. 11 give the same numerical values as
the algebraic formula (249).

Algebraic formulas for higher odd moments can be found in analogous ways. For example,
if q = 3 we can use (53) and (54) write (248) as

⟨τ 3⟩ = 4πη03!((0|µ̂λ̂4ς̂|0)

=
8π

η21
((1|µ̂ η̂−1µ̂|1)

=
8π

3η21

(
1

η0
+

4

5η2

)
. (250)

6.2 Thermal conductivity

Inside a very optically thick cloud, with total optical depth τc ≫ 1, we can ignore contribu-
tions ∆F (τ, τ ′) of the cloud boundaries to the Green’s function of (206), and approximate
the flux (205) by

Z(τ) =

∫ τc

0

dτ ′ ∞F (τ − τ ′)B(τ ′). (251)

44



As shown in Fig. 8, ∞F (τ − τ ′) has a sharp, positive peak for τ − τ ′ → 0+ and a sharp
negative peak for τ − τ ′ → 0−. For |τ − τ ′| ≫ 1, ∞F (τ − τ ′) rapidly goes to zero. We can
therefore approximate the Planck intensity B(τ ′) in the integrand of (205) by the first two
terms of a Taylor series

B(τ ′) = B + (τ ′ − τ)
dB

dτ
. (252)

Here B and dB/dτ are the values of the Planck intensity and its first derivative at the optical
depth τ . Then we can use (240) and (249) to write the scalar flux (251) as

Z(τ) =

∫ ∞

−∞
dτ ′ ∞F (τ − τ ′)

[
B + (τ ′ − τ)

dB

dτ

]
= −⟨τ⟩dB

dτ
. (253)

Here we noted from (208) that ∞F (τ − τ ′) = −∞F (τ ′ − τ). Setting

dB

dτ
=

(
∂B

∂T

)(
dT

dz

)
dz

dτ
. (254)

in (253) and comparing to (237), we can use (249) to write the monnochromatic heat con-
ductivity coefficient q as

q =
⟨τ⟩
α

(
∂B

∂T

)
=

4π

3(1− ω̃p1)α

(
∂B

∂T

)
. (255)

The spatial attenuation rate α, defined by (1), is

α =
dτ

dz
. (256)

The rate of change of the Planck intensity (57) with temperature T is

∂B

∂T
=

(
2k3

BT
2

h2
Pc

)
x4ex

(ex − 1)2
. (257)

The ratio x of the photon energy hPνc to the characteristic thermal energy kBT is

x =
hPνc

kBT
. (258)

The function ∂B/∂T is plotted versus the radiation frequency ν in Fig. 12 for a represen-
tative surface temperature of T = 288.7 K. There is negligible thermal heat conduction for
frequencies above ν = 3000 cm−1, including the dominant frequencies of sunlight. Clouds
glow in the dark and transport heat with thermal infrared radiation, not visible light.
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Figure 12: (∂/∂T )πB, the rate of change of the Planck surface flux, πB, with temperature,
T , from (257). The spatial frequency (in cm−1) of the radiation is ν. The cloud interior has
a temperature T = 288.7 K, a representative temperature of Earth’s surface.

Figure 13: The dependence of the relative heat conductivity, q(ω̃)/q(0) = 1/η1 = 1/(1−ω̃p1),
on the single scattering albedo ω̃ and on the dipole coefficient p1 of the scattering phase
function. The absolute heat conductivity, q = q(ω̃), is given by (255) and (259). See the
text for more details.
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It is instructive to define the relative (dimensionless) monochromatic heat conductivity

q(ω̃)

q(0)
=

1

1− ω̃p1
. (259)

Eq. (259) is the ratio of the absolute conductivity (255) for a finite scattering probability,
ω̃ ≥ 0, to the value for a purely absorptive cloud with ω̃ = 0. As shown in Fig. 13, for a
positive dipole coefficient p1 of the scattering phase function, which implies predominantly
forward scattering, the heat conductivity of (255) will increase with an increasing fraction
ω̃ of scattering, even though the emission per particle decreases as 1 − ω̃. For a negative
dipole coefficient p1 of the scattering phase function, which implies predominently backward
scattering, the heat conductivity of (255) will decrease as the scattering fraction increases.
For strong forward scattering, with ω̃ not much less than its maximum possible value of 1,
and for p1 close to its maximum possible value of

p1 ≤
2n− 1

2n+ 1
< 1, (260)

for a 2n-stream model, the heat conductivity is significantly enhanced compared to that of
a cloud with pure absorption, ω̃ = 0, or compared to particulates with p1 = 0 and equal
forward and backward scattering fluxes. The higher multipole coefficients pl of the scattering
phase, with l ≥ 2 have no influence on the heat conductivity.

6.3 Gray clouds

Substituting (255) into (239) we find that the frequency-integrated heat conductivity is

k =

∫ ∞

0

dν
4π

3(1− ω̃p1)α

(
∂B

∂T

)
. (261)

For a homogeneous grey cloud, where none of the scattering parameters α, ω̃ or p1 depend
on frequency ν, the only factor in the integrand of (261) that depends on ν is ∂B/∂T .
Differentiation both sides of (58) with respect to temperature we find

∂

∂T

∫ ∞

0

dν πB(ν, T ) = 4σSBT
3

= 5.46 W m−2 K−1. (262)

The numerical value on second line, for a representative temperature T = 288.7 K of Earth’s
surface, is important. It says that a surface warming of 1 K for a blackbody Earth would
increase the flux to space by 5.46 W m−2.

Using (262) in (261) we see that the conductivity coefficient becomes

k = krad =
16σSBT

3

3(1− ω̃p1)α
. (263)

At a representative atmospheric temperature of T = 288.7 K and a cloud attenuation rate
of α = 0.01 m−1, a single scattering albedo, ω̃ = 0.5 and a dipole coefficient p1 = 0.8 for
anisotropic scattering, the radiative heat conduction coefficient (263) becomes

krad = 1.2× 103 W m−1 K−1. (264)
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For comparison, the molecular heat conductivity of air at a temperature of 300 K is more
than four orders of magnitude smaller. A representative value [15] is

kair = 2.5× 10−2 W m−1 K−1. (265)

For the conductivity coefficient (264), and for the radiative flux for a typical moist adia-
batic lapse rate of dT/dz = −6.5× 10−3 K m−1, the total radiative flux (238) is

J = −krad
dT

dz
= 8 W m−2, (266)

about 2.7% of the typical flux, Z ≈ 300 W m−2, at the top of the cloud-free atmosphere.
We can also write the heat flux (238) in the form familiar from gas kinetic theory

J = − λradc

3

(
du

dz

)
. (267)

Here λrad is the effective mean free path for heat transport by photons in the gray cloud.
The mean energy density, u, of the photons can be written in terms of the Planck intensity
B of (18) as

u =
4π

c

∫ ∞

0

dνB

=
4σSBT

4

c
. (268)

For (267) to give the same flux J as (238) and (261) we must have

λrad =
1

η1α
=

1

(1− ω̃p1)α
. (269)

For single scattering albedos ω̃ not much less than 1, and for strong forward scattering, with
dipole scattering-phase coefficients p1 also not much less than 1, the effective mean free path
λrad of (269) for radiative energy transport can be much greater than the mean free path 1/α
for photon collisions with particulates. For strong forward scattering, most photons continue
in approximately the same direction as before the collision.

7 Summary

We have given a quantitative overview of the thermal emission of radiation by clouds. In
Section 2, we reviewed the vector and matrix methods for analyzing radiation transfer that
were presented in an earlier paper, 2n-Stream Radiative Transfer[1]. We consider homoge-
neous clouds with negligible horizontal variation. The single scattering albedos ω̃ of the
cloud particulates, and the phase functions p(µ, µ′), for scattering axially symmetric radia-
tion of direction cosine angle µ′ to radiation of direction cosine µ, are constant within the
cloud. The cloud temperature can vary in the vertical direction. The radiation at the optical
depth τ above the bottom of the cloud is characterized by the intensity values I(µi, τ) at 2n
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Gauss-Legendre direction cosines µi, the roots of the 2n-th Legendre polynomal, P2n(µi) = 0.
The products of the sample intensities I(µi, τ) and the Gauss-Legendre weights wi of (7) are
equal to the elements, ((µi|I(τ)} = wiI(µi, τ), of 2n× 1 intensity vectors |I(τ)}.

As outlined in Section 2.6, it is useful to write the intensity I(µi, τ) as a part İ(µi, τ) that
has been spontaneously emitted inside the cloud, and a part Ï(µi, τ) that comes from external
radiation incident onto the top and bottom of the cloud. The first externally or internally
generated photon to appear in the cloud may be scattered one or more times before escaping
from the top or bottom, or being absorbed and converted to heat. Scattering operators
S and their matrix representations ((µi|S|µi′) are used to describe the fraction of external
incoming intensity Ï{in}(µi′) with direction cosine µi′ that is scattered to outgoing intensity
Ï{out}(µi) along the direction cosine µi.

Green’s-function operators G(τ ′) and their matrix representations ((µi|G(τ ′)|µi′) are used
to describe radiation İ(µi) that is thermally emitted by cloud particulates in infinitesimally
thin layers at the source optical depth τ ′. The analogous Green’s functions for the electro-
static fields generated by point charges q in the space between conductors can be written as
the sum of the central field q r/r3 generated by the point charge in conductor-free space at
a vector displacement r from the charge, and a second part that accounts for the fields from
surface charges induced on the conductors. Similarly, the Green’s function G for a cloud is
the sum of a part ∞G for an infinite cloud and a part ∆G that accounts for modifications
due to the boundaries at the top and bottom of the cloud.

In Section 4.1 we derive Kirchhoff’s law of emission and scattering of thermal radiation,
the sum of the scattering matrix S and the thermal emission matrix E of an isothermal cloud
is the identity matrix 1̂, that is, S + E = 1̂.

For isothermal clouds with small optical thickness, τc = 1 or less, thermal emission is
mainly determined by the single scattering absorption, 1 − ω̃. As shown in Fig. 5 for
ω̃ = 0.8, the emitted intensity is less than half of the blackbody limit, İ(µi) = B. The
emitted intensity is limb brightened and depends little on the scattering phase function
p(µ, µ′). There is much more emission for a purely absorbing cloud with ω̃ = 0, but there is
still substantial limb brightening because the cloud is not optically thick.

Shown in Fig. 6 is the emission of isothermal clouds that are optically thick, with
τc = 20 ≫ λ2n, where λ2n = −λ−1 is the maximum penetration length of radiation streams
in the cloud. Purely absorbing clouds with ω̃ = 0 emit at the blackbody limit, İ(µi) =
B. Optically thick isothermal clouds with substantial scattering, for example, with single
scattering albedos, ω̃ = 0.8, emit substantially less thermal radiation than the blackbody
limit. The emission depends strongly on the anisotropy of the scattering phase function.
Clouds with strong forward scattering are “blackest” and emit the most thermal radiation.
There is limb darkening, which is most pronounced for strongly forward-scattering phase
functions.

The limb darkening of isothermal clouds in Fig. 6 is not due to temperature gradients
inside the cloud, as it is for the Sun. Photodetaching collisions of visible photons with
negative hydrogen ions H− dominate the opacity of the Sun’s photosphere [16]. Scattering
collisions are negligible in comparison. So there would be no limb darkening of the Sun if the
temperature did not increase substantially with depth below the surface of the photosphere.
In contrast, for optically thick, isothermal, scattering clouds, there is limb darkening because
nearly vertically directed photons escape through the surface more efficiently than nearly
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horizontally directed ones.
The directional dependence of outgoing radiation from optically thick clouds with hot

interiors is shown in Fig. 7. A purely absorbing cloud with a hot interior has limb darkening,
like the Sun. A hot interior increases the intensity of all emitted streams, with or without
scattering, in comparison to isothermal clouds with the same surface temperature.

Finally, in Section 6 we show that for typical optically thick clouds in Earth’s atmosphere
radiative conduction of heat is orders of magnitude faster than conduction due to molecular
diffusion.

We have shown that the 2n-stream matrix method of reference [1] is a graphic, efficient
and accurate mathematical tool for calculating thermal emission from isothermal or non-
isothermal clouds with constant values of the single scattering albedo ω̃ and the scattering
phase function p(µ, µ′).
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