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Abstract

We use 2n = 2, 4, 6, . . . “ streams” of axially symmetric radiation to solve the equation
of transfer for a layered medium. This is a generalization of Schuster’s classic 2-stream
model. As is well known, using only the first 2n Legendre polynomials to describe
the angular dependence of radiation reduces the equation of transfer to a first order
differential equation in a space of 2n dimensions. It is convenient to characterize
the radiation as 2n stream intensities I(µi), propagating at angles close to the zenith
angles θi = cos−1 µi. The 2n Gauss-Legendre cosines µi are defined by P2n(µi) = 0,
where P2n(µ) is the Legendre polynomial of degree 2n. We show how to efficiently and
accurately solve the equation of transfer with vector and matrix methods analogous
to those used to solve Schrödinger’s equation of quantum mechanics. To model strong
forward scattering, like that of visible light by Earth’s clouds, we have introduced a
new family of phase functions ̟{p}(µ). These give the maximum possible forward
scattering, ̟{p}(µ = 1) = p(p + 1), for a phase function constructed from the first
2p = 2, 4, 6, . . . Legendre polynomials. We show illustrative examples of radiative-
transfer phenomena calculated with this new method.

Keywords: radiative transfer, multiple scattering, absorption, emission, phase functions,
equation of transfer, Gaussian quadrature
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1 Introduction

Radiative transfer in semi-transparent media is controlled by absorption, emission and scat-
tering. The equation of transfer which describes these processes has many similarities to the
Schrödinger equation of quantum mechanics. In this paper we show how methods of linear-
algebra, similar to those used to solve the Schrödinger equation, can facilitate the analysis
of radiative transfer, especially for strongly anistropic scattering like that of Earth’s clouds.

An instructive history of radiative transfer theory has been given by Mobley[1]. We will
frequently refer to the authoritative review of radiative transfer in Chandrasekhar’s classic
book, Radiative Transfer[2]. Other useful books on radiative transfer are those of Petty [3]
and Thomas and Stamnes[4].

2 Equation of transfer

For axial symmetry we will characterize monochromatic radiation of spatial frequency ν
at an altitude z above Earth’s surface and at time t with the monochromatic intensity

I(ν, µ, z, t), also called the radiance. One can think of the flux as streams of photons making
various angles, θ = cos−1 µ, with the vertical. I(ν, µ, z, t)dµ dν is the radiative flux carried
by photons with direction cosines between µ and µ+dµ and with spatial frequencies between
ν and ν + dν. A representative unit of I(ν, µ, z, t) is W m−2 cm sr−1, or watts per (square
meter-wave number-steradian). In §1(3) Chandrasekhar uses the symbol Iν to denote our
intensity I. For the remainder of this paper we will discuss only monochromatic radiation
and omit the frequency variable ν.

It will be convenient to specify the altitude z in terms of the optical depth, τ , from the
surface

τ =

∫ τ

0

dτ ′ =

∫ z

0

α(z′)dz′. (1)

The coefficient α gives the attenuation, due to absorption and scattering, of radiation by
molecules and particulates. In §3(22) Chandrasekhar[2] defines a mass attenuation coefficient
κν and a mass density ρ. Our attenuation coefficient is α = κνρ. Our (1) is the same as
§9(62) of Chandrasekhar[2]. For Earth’s atmosphere, the value of α can change rapidly with
z because of changes in temperature, pressure and the density of molecules or particulates
with which the photons collide.

Most of this paper is focused on steady-state, time-independent conditions, but we include
a time variable t in the first few sections to clarify the physical meanings of basic equations.
It is convenient to use a relative time ϑ, defined in analogy to (1), by

ϑ = c αt. (2)

In (2) we have denoted the speed of light by the symbol c. We assume negligible time
dependence of α so an increment dϑ of relative time is related to an increment dt of absolute
time by

∂ϑ = α c ∂t. (3)
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In terms of these dimensionless versions of altitude and time, the intensity, I(µ, τ, ϑ) is a
solution of the equation of transfer[2, 5],

(

µ
∂

∂τ
+

∂

∂ϑ
+ 1

)

I(µ, τ, ϑ) = (1− ω̃)B(τ) +
ω̃

2

∫ 1

−1

dµ′p(µ, µ′)I(µ′, τ, ϑ). (4)

We neglect any variation of the intensity in horizontal spatial directions. The time-dependent
equation of transfer (4) is given by Code[5] as his Eq. (4). The steady-state, time-independent
version of (4), with ∂/∂ϑ → 0, is given by Chandrasekhar[2] as §6(47). He uses the symbol
Jν to denote both source terms on the right of (4). He writes the emissive part of the source,
which is proportional to the Planck intensity B(τ), as §5(42) and the scattering part of the
source, that is proportional to the scattering phase, p(µ, µ′), as in §5(41).

The source terms are characterized by the single-scattering albedo ω̃ and by the scattering
phase function p(µ, µ′). We assume both are independent of position and time. Later, we
will show how to combine the effects of many cloud layers, each with its own optical thickness
τc and values of ω̃ and p(µ, µ′).

The single-scattering albedo ω̃ is the probability that a photon, after being removed from
a stream of radiation by a molecule or cloud-particulate, is elastically scattered into another
direction, rather than being inelastically scattered into a photon of a different frequency (Ra-
man scattering) or absorbed. We neglect Raman scattering and assume that a fraction 1− ω̃
of the attenuated photons is absorbed and converted to atmospheric heat. Chandrasekhar[2]
uses the symbol ̟0, the first term in his multipole expansion §3(33) of the scattering phase
function, to denote the single-scattering albedo ω̃ of (4).

The phase function p(µ, µ′) of (4) is a symmetric and nonnegative function of the direction
cosine, µ = cos θ, of the scattered radiation and the direction cosine, µ′ = cos θ′, of incident
radiation

p(µ, µ′) = p(µ′, µ) ≥ 0. (5)

The probability for scattering radiation with a direction cosine µ′ to radiation with direction
cosines in the interval from µ to µ + dµ is p(µ, µ′) dµ/2. In keeping with its significance as
a conditional probability, the phase function satisfies the identity

1

2

∫ 1

−1

dµ p(µ, µ′) = 1. (6)

The monochromatic Planck intensity B = B(τ) of (4) depends on the local temperature,
T of the scattering medium, and on the spatial frequency ν of the radiation, as described by
Planck’s formula

B =
2hPc

2ν3

eνc hP/(kBT ) − 1
. (7)

We are using cgs units, where hP is Planck’s constant and kB is Boltzmann’s constant. We
assume that the absolute air temperature, T = T (z, t) may depend on altitude z and time
t. Then the Planck intensity, B = B(τ, ϑ), may depend on the optical depth τ , and on the
relative time ϑ. For future reference, we note that the frequency-integrated Planck intensity
is related to the Stefan-Boltzmann flux by

σSBT
4 = π

∫ ∞

0

dνB. (8)
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The Stefan-Boltzman constant has the value σSB = 5.67× 10−5 erg s−1 cm−2 K−4.
In this analysis, we assume that there is negligible difference between the speed of light

in the scattering medium and the speed of light c in vacuum. Some equations need mi-
nor modifications for applications in the ocean or other media where the speed of light is
substantially smaller than the speed in vacuum.

2.1 Multipole moments

There are advantages to describing the intensity I(µ, τ, ϑ) in terms of its multipole moments

Il(τ, ϑ) =
1

2

∫ 1

−1

dµPl(µ)I(µ, τ, ϑ). (9)

Here Pl(µ) is the Legendre polynomial of multipolarity l = 0, 1, 2, . . .∞. The inverse of (9)
is

I(µ, τ, ϑ) =
∞
∑

l=0

(2l + 1)Pl(µ)Il(τ, ϑ). (10)

In terms of Legendre polynomials, we can write the phase function for randomly oriented
scatterers as

p(µ, µ′) =
∞
∑

l=0

Pl(µ)(2l + 1)pl Pl(µ
′). (11)

The phase function (11) is parameterized by the multipole transfer coefficients, pl, for l =
0, 1, 2, . . . ,∞. As implied by (4) and (11), a single scattering converts a component IlPl(µ)
of the intensity to

IlPl(µ) → 1

2

∫ 1

−1

dµ′ p(µ, µ′)Pl(µ
′)Il

=

∫ 1

−1

dµ′

∞
∑

l′=0

p′l
2l′ + 1

2
Pl′(µ)Pl′(µ

′)Pl(µ
′)Il

= plIlPl(µ). (12)

To evaluate the integral of (12) we used the orthogonality property of Legendre polynomials
∫ 1

−1

dµ
2l′ + 1

2
Pl(µ)Pl′(µ) = δll′ . (13)

After n successive scatterings, the amplitude will be multiplied by a factor (pl)
n. To ensure

that a sufficiently large number n of successive scatterings attenuates any initially anisotropic
multipole moment of the intensity to zero, the transfer coefficients pl for nonzero multipoles
must satisfy the constraint

|pl| < 1, for l = 1, 2, 3, . . . ,∞. (14)

Any number of scatterings must have no effect on isotropic radiation so the monopole transfer
coefficient must be

p0 = 1. (15)
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The pl must satisfy constraints in addition to (14) and (15) to ensure that the single-scattering
phase function is nonnegative, as required by (5). Chandrasekhar[2] uses coefficients ̟l =
(2l + 1)pl ω̃ for his expansion §3 (33).

Multiplying both sides of (4) on the left by 1
2

∫ 1

−1
dµPl(µ), and using (9), (10), (11) and

(13), we find the equation of transfer for intensity multipoles,

∞
∑

l′=0

((l|µ̂|l′) ∂
∂τ
Il′(τ, ϑ) +

∂

∂ϑ
Il(τ, ϑ) = (1− ω̃)B(τ)δl0 − (1− ω̃pl)Il(τ, ϑ). (16)

The matrix elements µ̂ll′ of the direction cosine µ are

((l|µ̂|l′) =

∫ 1

−1

dµ
2l + 1

2
µPl(µ)Pl′(µ)

=
(l)δl′,l−1 + (l + 1)δl′,l+1

2l + 1
. (17)

To evaluate (17) we used the orthogonality relation (13) and Bonnet’s recursion formula for
Legendre polynomials,

(2l + 1)µPl(µ) = lPl−1(µ) + (l + 1)Pl+1(µ). (18)

2.2 Conservation of energy

At the vertical optical depth τ and relative time ϑ, the radiant energy density u(τ, ϑ) is
related to the intensity I(µ, τ) by

u(τ, ϑ) =
2π

c

∫ 1

−1

dµ I(µ, τ, ϑ)

=
4π

c

1

2

∫ 1

−1

dµP0(µ)I(µ, τ, ϑ)

=
4π

c
I0(τ, ϑ). (19)

For azimuthal symmetry the increment of solid angle is dΩ = 2π dµ steradians. This is the
source of the factor of 2π in the first line of (19). We noted that P0(µ) = 1, and we used (9)
to write the energy density as 4π/c times the monopole moment I0(τ) of the intensity. The
energy density u of the radiation is many orders of magnitude smaller than the energy density
due to the translation, rotation and vibration of gas molecules. In §2 (19), Chandrasekhar[2]
uses the symbol Jν , which he calls the average intensity, to denote our monopole intensity
I0.

Similarly, the upward monochromatic flux Z(τ), often called the irradiance, is

Z(τ, ϑ) = 2π

∫ 1

−1

dµ µ I(µ, τ, ϑ)

= 4π
1

2

∫ 1

−1

dµP1(µ)I(µ, τ, ϑ)

= 4πI1(τ, ϑ). (20)
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Here we noted that P1(µ) = µ and we used (9) to write the upward flux as 4π times the
dipole moment I1(τ, ϑ) of the intensity. In §2 (13) Chandrasekhar[2] uses the symbol Fν to
denote 4 times our dipole moment I1, that is, Fν = 4I1.

For the special case l = 0, we can use (17) to write (16) as

∂

∂τ
I1(τ, ϑ) +

∂

∂ϑ
I0(τ, ϑ) = (1− ω̃) [B(τ)− I0(τ, ϑ)] . (21)

In terms of the vertical flux Z of (20), the energy density u of (19), the increments ∂ϑ of
relative time from (3), and the increment of optical depth ∂τ = α ∂z, we can write (21) as

∂

∂t
u(z, t) = − ∂

∂z
Z(z, t) + c α(1− ω̃)

[

4πB(z)

c
− u(z, t)

]

. (22)

Multiplying the left and right sides of (22) by the altitude increment dz, we can interpret
the resulting terms as follows:

• dz[∂u(z, t)/∂t] is the rate of increase with time of the thermal radiation energy per
unit area in an infinitesimal layer between the altitude z and the altitude z + dz.

• dz[−∂Z(z, t)/∂z] = Z(z, t)−Z(z+dz, t) is the net flux into the infinitesimal layer, the
flux Z(z) into the bottom minus the flux Z(z + dz) out of the top.

• cα is the rate of collisions of photons with with molecules or particulates.

• dz c α(1 − ω̃)4πB/c is the rate of increase of radiation energy per unit area of the
infinitesimal layer due to thermal emission by molecules and particulates.

• −dz c α(1− ω̃)u is the rate of decrease of radiation energy per unit area of the infinites-
imal layer due to absorption by molecules and particulates.

The last two terms of this list, the rate of increase of radiation energy due to thermal emission
and the rate of decrease due to absorption are both proportional to cα(1− ω̃), the absorption
probability of photons per unit time. In §4(38) and elsewhere, Chandrasekhar[2] calls the
relation between these terms Kirchhoff’s law. Later, we will discuss a closely related version
of Kirchhoff’s law for clouds, where the single-scattering albedo ω̃ is replaced by a cloud
scattering matrix S, and the single-scattering absorption probability 1− ω̃ is replaced by the
emissivity matrix E = 1̂− S of an isothermal cloud.

Eq. (22) describes the conservation of energy. The rate of change of the monochromatic
energy density, u, is equal to the net monochromatic flux, −∂Z/∂z, of radiation into a unit
volume plus the excess of the rate of photon emission over that of absorption by molecules
and particulates, which is described by the last term of the equation.

The total energy density, U =
∫ ν

0
u dν of radiation at all frequencies ν is many orders

of magnitude smaller than the thermal energy density of molecules or particulates in the
atmosphere. For example, at sea level, the thermal energy density stored per cubic centimeter
of dry air is

U(molecules) = NkBcvT = 2.78× 106erg cm−3 (23)
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Here N = 2.69 × 1019 cm−3 is the density of air molecules (Loschmidt’s number per cubic
centimeter), and kB = 1.38 × 10−16erg K−1 is Boltzmann’s constant. In units of kB, the
constant-volume heat capacity per molecule of air is cv = 2.5. Most of the heat is carried
by the diatomic molecules N2 and O2 which have three fully activated translational degrees
of freedom and two rotational degrees of freedom. The atmosphere is not warm enough to
unfreeze the vibrational modes, and their contribution to the heat capacity can be neglected.
A representative absolute temperature, T = 300 K, was chosen to evaluate (23).

The energy density of radiation of all frequencies ν at the same temperature is some 11
orders of magnitude smaller than that of the molecules,

U(radiation) =

∫ ∞

0

dν
4πB

c
=

4σSBT
4

c
= 6.12× 10−5erg cm−3. (24)

The radiant heat capacity of air is negligible compared to that of its molecules and particu-
lates. But radiation can efficiently transfer energy because the speed of light is so large.

3 Vector notation

As is the case for the Schrödinger equation in quantum mechanics, Dirac vector notation
simplifies the appearance of the equation of transfer, makes the physical significance clearer,
and simplifies numerical analysis with contemporary mathematical software like Matlab.
We interpret the intensity I(µ, τ, ϑ) of (4) as the projection of an abstract intensity vector
|I(τ, ϑ)} onto a direction-cosine basis vector 〈µ|,

I(µ, τ, ϑ) = 〈µ|I(τ, ϑ)}. (25)

The intensity |I(τ, ϑ)} at the optical depth τ is analogous to the abstract wave function |ψ(t)〉
of a quantum mechanical particle at time t. Aside from normalization, the basis vector 〈µ|
and its Hermitian conjugate, |µ〉 = 〈µ|†, are defined by the eigenvalue equation

〈µ|µ̂ = 〈µ|µ, and µ̂|µ〉 = µ|µ〉. (26)

The eigenvalues µ can be any of the real numbers |µ| ≤ 1. We normalize the eigenvectors
such that

〈µ|µ′〉 = δ(µ− µ′). (27)

Here δ(µ− µ′) is a Dirac delta function. The eigenvectors have the completeness property
∫ 1

−1

dµ |µ〉〈µ| = 1̂. (28)

In like manner, we will assume that the multipole amplitude Il(τ) of (9) is the projection
of the abstract intensity vector |I(τ, ϑ)} onto a left multipole basis vector, ((l|,

((l|I(τ, ϑ)} = Il(τ, ϑ). (29)

Using (25) and (28) in (29) we find

Il(τ, ϑ) =

∫ 1

−1

dµ ((l|µ〉〈µ|I(τ, ϑ)} =
∫ 1

−1

dµ ((l|µ〉I(µ, τ, ϑ). (30)

7



Comparing (30) to (9) we see that the projection of ((l| onto |µ〉 must be

((l|µ〉 = 1

2
Pl(µ). (31)

In analogy to (27), for each left multipole basis vector, ((l|, we can choose a right basis vector
|l) such that

((l|l′) = δll′ . (32)

The Kronecker-delta coefficient has the values δll′ = 0 if l 6= l′ and δll = 1. The multipole
basis vectors also satisfy the completeness relation, analogous to (28)

∞
∑

l=0

|l)((l| = 1̂. (33)

Here and subsequently we will use the symbol 1̂ to denote a unit operator, which can be
represented by a square unit matrix with 1’s along the main diagonal and zeros elsewhere.
In (33) a square matrix with an infinite number of dimensions is needed to represent 1̂. But
in the later parts of this paper, the symbol 1̂ will often mean a 2n× 2n unit matrix, where
n = 1, 2, 3, . . . is the number of “stream pairs” used to represent the angular distribution of
radiation. The context will normally make the dimension of 1̂ clear. Using (28) and (31)
with (32) we find

δll′ =

∫ 1

−1

dµ ((l|µ〉〈µ|l)

=

∫ 1

−1

dµ
1

2
Pl(µ)〈µ|l′). (34)

Comparing (34) with (13), the orthogonality property of Legendre polynomials, we see that
the projection of |l′) onto 〈µ| must be

〈µ|l′) = (2l + 1)Pl′(µ). (35)

As indicated in (31) and (35), we will often find it convenient to use left (row or bra) basis
vectors like ((l| that are not simple Hermitian conjugates of right (column or ket) basis vectors
like |l). We use the symbols ((· · · | and | · · · ) to denote such basis vectors. They are analogous
to the reciprocal lattice vectors that are often used in crystallography[6].

3.1 Matrix representations

For multipole space, we can use (17) to represent the direction-cosine operator, µ̂ by the
matrix

((l|µ̂|l′) =























0 1/1 0 0 0 0 · · ·
1/3 0 2/3 0 0 0 · · ·
0 2/5 0 3/5 0 0 · · ·
0 0 3/7 0 4/7 0 · · ·
0 0 0 4/9 0 5/9 · · ·
0 0 0 0 5/11 0 · · ·
...

...
...

...
...

...
. . .























(36)
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The indices of the rows and columns have the values l = 0, 1, 2, . . .∞ and l′ = 0, 1, 2, . . . ,∞.
From (26) and (27) we see that the matrix elements of the direction-cosine operator µ̂ in
continuous µ-space are diagonal,

〈µ|µ̂|µ′〉 = µ δ(µ− µ′). (37)

In continuous µ-space the matrix elements of the scattering operator p̂ are

〈µ|p̂|µ′〉 = p(µ, µ′). (38)

Using (11), (13), (31), and (35) with (38) we see that p̂ is diagonal in multipole space

((l|p̂|l′) =

∫ 1

−1

dµ

∫ 1

−1

dµ′((l|µ〉〈µ|p̂|µ′〉〈µ′|l′)

=
2l′ + 1

2

∫ 1

−1

dµ

∫ 1

−1

dµ′Pl(µ)
∑

l′′

pl′′(2l
′′ + 1)Pl′′(µ)Pl′′(µ

′)Pl′(µ
′)

=
2l′ + 1

2

∑

l′′

pl′′(2l
′′ + 1)

22

(2l′′ + 1)2
δl l′′δl′′ l′

= 2plδl l′ (39)

or

p̂ = 2
∞
∑

l=0

pl|l)((l|. (40)

The diagonality of p̂ comes from the assumed random orientation of scattering particles.
The eigenvalues of p̂ are 2pl.

For example, in Section 5.2 we show that the phase matrix ((l|p̂|l′) which describes the
maximum backward-scattering phase function that can be constructed from the first six
Legendre polynomials is

((l|p̂|l′) = 2



























1 0 0 0 0 0 0 · · ·
0 −5/7 0 0 0 0 0 · · ·
0 0 4/7 0 0 0 0 · · ·
0 0 0 −8/21 0 0 0 · · ·
0 0 0 0 5/21 0 0 · · ·
0 0 0 0 0 −25/231 0 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

. . .



























. (41)

All other elements of the ∞×∞ matrix (41) are zero. The six, non-zero diagonal elements,
p0, p1, p2, p3, p4, p5, alternate in sign. Using the six values of pl from (41) in (11) one finds that
the forward scattering phase function vanishes, p(1, 1) =

∑

l pl(2l + 1) = 0. The backward
scattering phase function is p(−1, 1) =

∑

l(−1)lpl(2l + 1) = 12.
The left and right eigenvectors of the direction-cosine operator µ̂ are also left and right

eigenvectors of the direction-secant operator ς̂ = µ̂−1,

〈µ|ς̂ = 〈µ|ς, and ς̂|µ〉 = ς|µ〉, where ς =
1

µ
. (42)
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In continuous µ-space, the matrix elements of the direction-secant operator ς̂ are simply

〈µ|ς̂|µ′〉 = 1

µ
δ(µ− µ′). (43)

Like µ̂ of (36), the matrix elements of ς̂ in multipole space are ratios of integers. The elements
in the first six rows and columns are

((l|ς̂|l′) =

∫ 1

−1

dµ
2l′ + 1

2µ
Pl(µ)Pl′(µ)

=























0 3 0 −14/3 0 88/15 · · ·
1 0 0 0 0 0 · · ·
0 0 0 7/3 0 −44/15 · · ·

−2/3 0 5/3 0 0 0 · · ·
0 0 0 0 0 11/5 · · ·

8/15 0 −4/3 0 9/5 0 · · ·
...

...
...

...
...

...
. . .























(44)

We define the operator for reflections of a basis vector |µ〉, with eigenvalue µ, to a basis
vector | − µ〉, with an equal and opposite eigenvalue, −µ by

r̂|µ〉 = | − µ〉. (45)

The matrix elements of the reflection operator in µ-space are

〈µ|r̂|µ′〉 = δ(µ+ µ′). (46)

The reflection operator r̂ is analogous to the parity operator for a quantum mechanical wave
function. For multipole space one can use (28), (35) and (45) to show that

r̂|l) = (−1)l|l〉, (47)

From (47) we find the matrix elements

((l|r̂|l′) = (−1)lδl l′ . (48)

In l-space, the reflection operator r̂ is diagonal with the elements alternating from 1 to -1
along the main diagonal.

The reflection operator is its own inverse

r̂r̂ = 1̂. (49)

The direction-cosine operator µ̂ and direction-secant operator ς are odd under reflections

r̂µ̂r̂ = −µ̂, and r̂ς̂ r̂ = −ς̂ . (50)

The scattering-phase operator p̂ is even under reflections

r̂p̂r̂ = p̂. (51)
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3.2 Vector equation of transfer

In the notation discussed above, the steady-state version of the equation of transfer (4)
becomes

(

µ̂
∂

∂τ
+

∂

∂ϑ
+ 1̂

)

|I} = (1− ω̃)|B}+ ω̃

2
p̂|I}. (52)

To simplify equations in this section, we will not explicitly show the dependence of variables
on optical depth τ or relative time ϑ. It will be understood that |I} = |I(τ, ϑ)}, |B} =
|B(τ, ϑ)}, etc. In (52) the Planck-intensity vector,

|B} = |0)B, (53)

describes isotropic thermal emission by greenhouse molecules or cloud particulates. Here |0)
is the right basis vector, |l), of (35) for l = 0.

From (52) we see that it is natural to introduce an efficiency matrix

η̂ = 1̂− ω̃

2
p̂. (54)

From (39) we see that the multipole basis vectors |l) and ((l| are eigenvalues of η̂,

((l|η̂ = ((l|ηl, and η̂|l) = ηl|l), where ηl = 1− ω̃pl. (55)

From (15) we note the special case of (55),

((0|η̂ = ((l|(1− ω̃), and η̂|0) = (1− ω̃)|0). (56)

The efficiency matrix (54) is even under reflections

r̂η̂r̂ = η̂ (57)

Using (53), (54), (55) and (56) we write the equation of transfer (52) as

(

µ̂
∂

∂τ
+

∂

∂ϑ
+ η̂

)

|I} = η̂|B}. (58)

3.2.1 Spatially uniform atmosphere

An instructive special case of (58) is a spatially uniform atmosphere, where neither |I} nor
|B} depend on optical depth τ . Then we can set ∂/∂τ = 0 in (58) and write it as

(

d

dϑ
+ η̂

)

|I} = η̂|B}. (59)

If the Planck intensity B is independent of the relative time ϑ, the solution of (59) is

|I(ϑ)} = e−η̂ϑ|I(0)}+
(

1− e−η0ϑ
)

|B}. (60)
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Here |I(0)} is the intensity vector at relative time ϑ = 0. The exponential operator can be
written as

e−η̂ϑ =
∞
∑

l=0

e−ηlϑ|l)((l|. (61)

From (61) we see that the eigenvalues ηl = 1 − ω̃pl of (55) are the decay rates of the
lth multipole ((l|I(0)} of the initial intensity distribution. As the relative time approaches
infinity, ϑ → ∞, we see from (60) that |I(ϑ} → |B}, provided that η0 = 1 − ω̃ > 0. For
ω̃ = 1, we have η0 = 0 and |I(∞)} = |0)((0|I(0)}. Without absorption, that is, with ω̃ = 1,
there can be no coupling between the energy of the radiation and that stored in the scattering
molecules or cloud particulates, which is characterized by the atmospheric temperature T ,
which sets the value of the Planck-brightness B of (7).

3.2.2 Time-independent atmosphere

In practice, a more important limit than that of spatial uniformity, discussed above, is
negligibly slow changes in time. In this limit we can set ∂/∂θ = 0 in (58) and multiply
both sides of the equation on the left by the direction-secant operator ς̂ = µ̂−1 to find the
steady-state equation of transfer

(

d

dτ
+ κ̂

)

|I} = κ̂|B}. (62)

The exponentiation-rate operator κ̂, is

κ̂ = ς̂ η̂, (63)

One can use (50) and (57) to show that κ̂ is odd under reflections

r̂κ̂r̂ = r̂ς̂ r̂r̂η̂r̂ = −ς̂ η̂ = −κ̂. (64)

The solution of (62) has some formal similarities to (60). But there are important differences,
so we postpone further discussion until after we have outlined the properties of the 2n-
dimensional space that we will use to describe radiative transfer.

4 2n-dimensional spaces

For the special case of pure absorption with no scattering (ω̃ = 0), η̂ → 1̂ and κ̂→ ς̂. Then
we can multiply the steady-state equation of transfer (62) on the left with 〈µ| to find

(

∂

∂τ
+ ς

)

I(µ, τ) = ςB(τ). (65)

Equation (65) is often called the Schwarzschild equation. It describes emission and ab-
sorption of radiation in a non-scattering atmosphere, for example, the transfer of thermal
radiation through cloud-free air with greenhouse-gases[7]. It is relatively easy to solve (65).
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It is much harder to solve the more general equation of transfer (62) with arbitrary combi-
nations of scattering and absorption.

A way to accurately calculate radiation transfer with any combination of absorption,
emission and scattering is to use the 2n-stream method described in this paper. Many of
the basic ideas of this method were outlined in Chapter II of Chandrasekhar[2].

Instead of representing the angular dependence of the intensity exactly with an infinite
number of multipole moments, Il, as in (10), one can generalize Schuster’s 2-stream method
[8] and approximate the intensity with the coefficients, I0, I1, . . . , I2n−1, of the expansion
(10). Rather than specifying the value of I(µ) for all direction cosines, |µ| ≤ 1, it is only
necessary to specify 2n values of I(µi) at 2n Gauss-Legendre cosines, µi [9]. As mentioned
in §20 of Chandrasekhar[2], the µi are the roots of the Legendre polynomial P2n, that is,

P2n(µi) = 0. (66)

We assume that the roots of (66) are ordered such that

− 1 < µ1 < µ2 < · · · < µ2n < 1. (67)

Because of the symmetry P2n(−µ) = P2n(µ), we see that the roots (66) occur as equal and
opposite pairs, µ1 = −µ2n, µ2 = −µ2n−1, or in general,

µi = −µr(i), (68)

where the reflection function for the indices, i = 1, 2, . . . , 2n, is

r(i) = 2n + 1− i. (69)

We write the expansion of the abstract intensity vector |I} = |I(τ)} on the first 2n multipole
bases as

|I} =

2n−1
∑

l=0

|l)((l|I} =

2n−1
∑

l=0

|l)Il (70)

The basis vectors |l) of (70) were defined by (35). For l = 0, 1, 2, . . . , 2n − 1, the intensity
multipoles Il of (9) are given by the discrete, Gauss-Legendre quadratures[9]

Il = ((l|I} =

∫ 1

−1

dµPl(µ)I(µ) =
1

2

2n
∑

i=1

wiPl(µi)I(µi). (71)

There are many equivalent formulas for the weights wi of (71). For our purposes, a useful
one, that makes it clear that wi > 0, is

1

wi
=

2n−1
∑

l=0

2l + 1

2
P 2
l (µi). (72)

Chandrasekhar[2] uses the symbol ai to denote the weight wi and he evaluates them with
his formula §20(5), which gives the same numerical value as (72).
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Since Pl(−µ) = (−1)lPl(µ), we see from (72) and (68) that

wi = wr(i), (73)

where the index reflection function r(i) was defined by (69). It is not hard to prove that the
weights sum to 2,

2n
∑

i=1

wi = 2. (74)

See, for example, §25(8) of Chandraskhar[2]. For the limit 2n→ ∞, the weights wi approach
the infinitesimals dµ of the integral (9), wi → dµ. The multipole moments evaluated with
the Gauss-Legendre quadrature (71) are identical to those of the continuous integral (9) if
Il = 0 for l ≥ 2n [9].

Setting µ = µi in (10) we find the inverse of (71),

I(µi) =

2n−1
∑

l=0

(2l + 1)Pl(µi)Il. (75)

Using (25), (70) and (71) we find

I(µ) = 〈µ|I} =
2n
∑

i=1

{

2n−1
∑

l=0

2l + 1

2
Pl(µ)Pl(µi)wi

}

I(µi). (76)

Setting µ = µi′ in (76) implies the identity,

2n−1
∑

l=0

2l + 1

2
Pl(µi′)Pl(µi)wi = δi′ i. (77)

For i′ = i, (77) gives the formula (72) for the weight wi. The inverse of (77) is given later as
(102).

4.1 Index conventions

In our subsequent discussions of the 2n-stream model, many equations will involve sums over
all 2n streams, or separate sums over the n upward streams or the n downward streams. To
simplify notation, we will label the complete set of 2n streams with the indices

i, i′, i′′, . . . = 1, 2, 3, . . . , 2n. (78)

The n downward streams, with µj < 0, will be labeled with the indices

j, j′, j′′, . . . = 1, 2, 3, . . . , n. (79)

The n upward streams, with µk > 0 will be labeled with the indices

k, k′, k′′, . . . = n+ 1, n+ 2, n+ 3, . . . , 2n. (80)
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Figure 1: The red curves are the projections 〈µ|µi) of the direction-cosine basis vectors |µi)
into continuous µ-space, as given by (90) or (95) According to (94), at the sample points
µ = µi the projections have the values 〈µi|µi′) = w−1

i δii′ , which are shown as the small red
circles. There are 2n = 32 streams. The sample points µi are given at the top of the panels.
The corresponding weights are [w32, w26, w21, w17] = [0.0070, 0.0587, 0.0877, 0.0965].

We simplify the summation symbols to

2n
∑

i=1

· · · →
∑

i

· · · ,

n
∑

j=1

· · · →
∑

j

· · ·

2n
∑

k=n+1

· · · →
∑

k

· · · . (81)

In like manner, we will label multipole moments of the 2n-stream model with the indices

l, l′, l′′, . . . = 0, 1, 2, . . . , 2n− 1, (82)

and we simplify the summation symbols to

2n−1
∑

l=0

· · · →
∑

l

· · · . (83)
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Figure 2: Like Fig. 1, but here the red curves are the projections ((µi|µ〉 of the left basis
vectors ((µi| into µ-space, as given by (91) or (96). According to (94), at the sample points
µ = µi, the projections have the values ((µi′|µi〉 = δii′ , which are shown as the small red
circles.

4.2 Stream basis vectors |µi) and ((µi|
In analogy to (31), we define µ-space column vectors |µi′) by

((l|µi′) =
1

2
Pl(µi′). (84)

The multipole components of the corresponding row vector ((µi| are

((µi|l) = wi(2l + 1)Pl(µi). (85)

From (84) and (85) we see that (77) can be interpreted as the orthonormality relation

((µi|µi′) =
∑

l

((µi|l)((l|µi′) = δii′ . (86)

The stream basis vectors |µi) and ((µi| have the completeness property

1̂ =
∑

i

|µi)((µi| = Md +Mu. (87)

Here we have defined projection matrices Md and Mu for the downward and upward parts
of µ-space by

Md =
∑

j

|µj)((µj|, and Mu =
∑

k

|µk)((µk|. (88)

The projection operators have the multiplication property

MqMq′ = Mqδqq′, (89)
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where the indices q and q′ can have the values u or d. We can use (35) and (84) to write the
projection of |µi) onto µ-space as

〈µ|µi) =
∑

l

〈µ|l)((l|µi) =
∑

l

2l + 1

2
Pl(µ)Pl(µi). (90)

In like manner we can use (31) and (85) to write the projection of ((µi| onto µ-space as

((µi|µ〉 =
∑

l

((µi|l)((l|µ〉 = wi

∑

l

2l + 1

2
Pl(µi)Pl(µ). (91)

From (90) we see that 〈µ|µi) has unit area

∫ 1

−1

dµ 〈µ|µi) =
∑

l

∫ 1

−1

dµ
2l + 1

2
Pl(µ)Pl(µi)

=
∑

l

δl0Pl(µi)

= 1. (92)

From (90) and (91) we see that 〈µ|µi) and ((µi|µ〉 are simple multiples of each other

((µi|µ〉 = wi〈µ|µi). (93)

From (77), (90) and (91) we see that for µ = µi′ ,

〈µi′|µi) =
δii′

wi

, and ((µi|µi′〉 = δii′ . (94)

Examples of the projections 〈µ|µj) of (90) are shown in Fig. 1 for an expansion on 2n = 32
Legendre polynomials. The projections, 〈µ|µi), have their largest amplitudes for direction
cosines µ ≈ µi. The corresponding projections ((µi|µ〉 of (91) are shown in Fig. 2.

The direction cosines µi′ are defined by (66) as the roots of the polynomial P2n(µ). The
polynomial 〈µ|µi) of (90) and ((µi|µ〉 of (91) are of degree 2n − 1 in µ. From (94) we see
that both 〈µ|µi) and ((µi|µ〉 have roots at µ = µi′, with the exception of µi′ = µi, for which
P2n(µi) = 0, but for which (94) show that 〈µi|µi) = 1/wi and ((µi|µi〉 = 1. The projections
(90) and (91) of the stream basis states must therefore be given by the formulas

〈µ|µi) =
P2n(µ)

wiP ′
2n(µi)(µ− µi)

, (95)

and

((µi|µ〉 =
P2n(µ)

P ′
2n(µi)(µ− µi)

. (96)

The denominators of (95) and (96) ensure that 〈µi|µi) = 1/wi, and ((µi|µi〉 = 1, in agreement
with (94). Substituting (95) into (92) gives Chandrasekhar’s[2] formula §20(5) for the weight
wi.
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Multiplying the basis vector |µi) on the left by the reflection operator r̂, and recalling
from (47) that r̂|l) = (−1)l|l), we find

r̂|µi) =
∑

l

r̂|l)((l|µi) =
∑

l

(−1)l|l)1
2
Pl(µi) =

∑

l

|l)1
2
Pl(−µi)

=
∑

l

|l)1
2
Pl(µr(i)) =

∑

l

|l)((l|µr(i)), (97)

or
r̂|µi) = |µr(i)). (98)

In like manner we find
((µi|r̂ = ((µr(i)|. (99)

Using (84) and (87) we can write

((l| =
∑

i

((l|µi)((µi| =
1

2

∑

i

Pl(µi)((µi| (100)

and using (85) and (87) we find

|l) =
∑

i

|µi)((µi|l) =
∑

i

|µi)wi(2l + 1)Pl(µi) (101)

Multiplying (101) on the left by (100) and using (86), we find the inverse of the othogonality
relation (77), and the discrete analog of (13),

((l|l′) = δll′ =
∑

i

wi
2l + 1

2
Pl(µi)Pl′(µi). (102)

Setting l = l′ = 0 in (102) gives (74): the weights wi sum to 2.
Useful special cases of (100) and (101) for l = 0 and l = 1 are

((0| = 1

2

∑

i

((µi|, and |0) =
∑

i

|µi)wi. (103)

((1| = ((0|µ̂ =
1

2

∑

i

µi((µi|, and |1) = 3µ̂|0) = 3
∑

i

|µi)µiwi. (104)

4.3 Eigenvectors and eigenvalues of µ̂

The direction-cosine basis-vectors |µi) and ((µi| discussed above are right and left eigenvectors
of the direction cosine operator µ̂, thought of as the 2n× 2n upper left corner of the matrix
(36),

µi|µi)− µ̂|µi) = 0̂, and ((µi|µi − ((µi|µ̂ = 0̂. (105)

Here and subsequently we will use the symbol 0̂ to represent an array of zeros. The dimen-
sions of the array will be given by the context.
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We can verify that the first equation of (105) is true by multiplying it on the left with each
of the 2n left multipole basis vectors ((l| for l = 0, 1, 2, . . . , 2n−1. If the resulting 2n equations
are valid, then so is (105). Multiplying (105) on the left by ((l|, with l = 0, 1, 2, . . . , 2n− 2,
and using (84) and (17) we find

µi((l|µi)− ((l|µ̂|µi) =
1

2
µiPl(µi)−

1

2

2n−1
∑

l′=0

((l|µ̂|l′)P ′
l (µi)

=
1

2

[

µiPl(µi)−
2n−1
∑

l′=0

µ̂ll′P
′
l (µi)

]

=
1

2

[

µiPl(µi)−
lPl−1(µi) + (l + 1)Pl+1(µi)

2l + 1

]

= 0. (106)

The final step follows from Bonnet’s recursion formula (18). Multiplying (105) on the left
by ((2n− 1|, the highest multipole of the 2n-space, we find

µi((2n− 1|µi)− ((2n− 1|µ̂|µi) =
1

2

[

µiP2n−1(µi)−
(2n− 1)P2n−2(µi)

4n− 1

]

=
1

2

[

µiP2n−1(µi)−
(2n− 1)P2n−2(µi) + 2nP2n(µi)

4n− 1

]

= 0. (107)

According to (66), P2n(µi) = 0 for any of the 2n possible values of µi. So we have subtracted
a term 2nP2n(µi)/2(4n − 1) = 0 from the right side of the first line of (107) to get the
second line, which is zero because of Bonnet’s recursion formula (18). One can use similar
arguments to show that the second equation of (105) is also valid. This completes the proof
of (105).

Multiplying (87) on the right or left by µ̂ and using (105) we find that the representation
of µ̂ in µ-space is diagonal,

µ̂ =
∑

i

µi|µi)((µi| = µ̂d + µ̂u. (108)

In analogy to (87) we have written the downward and upward parts of µ̂ by

µ̂d = µ̂Md = Mdµ̂ =
∑

j

µj|µj)((µj| (109)

µ̂u = µ̂Mu = Muµ̂ =
∑

k

µk|µk)((µk|. (110)

Since the 2n× 2n upper left corner of the direction-secant matrix ς̂ of (44) is the inverse
of the 2n× 2n upper left corner direction cosine matrix µ̂ of (36), we can write

ς̂ = µ̂−1 =
∑

i

1

µi
|µi)((µi| =

∑

i

ςi|µi)((µi| = ς̂d + ς̂u, (111)
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where

ς̂d = ς̂Md = Mdς̂ =
∑

j

ςj |µj)((µj| (112)

ς̂u = ς̂Mu = ς̂Mu =
∑

k

ςk|µk)((µk|. (113)

In analogy to (105), the left and right eigenvectors of the direction-secant matrix are defined,
aside from normalization, by

((ςi|ς̂ = ((ςi|ςi, and ς̂|ςi) = ςi|ςi). (114)

We see from (111) and (114) that the left and right eigenvectors of µ̂ and ς̂ can be chosen
to be identical. The eigenvalues are inverses of each other

((ςi| = ((µi|, |ςi) = |µi), and ςi =
1

µi
. (115)

We recall that in l-space, the reflection matrix r̂ has alternating 1’s and -1’s along the
main diagonal and zeros elsewhere,

r̂ =
∑

l

(−1)l|l)((l|. (116)

Multiplying (87) on the right or left by the reflection operator r̂ and using (98) and (99) we
find

r̂ =
∑

i

|µi)((µr(i)|. (117)

In the direction-cosine basis, the reflection matrix (117) is a 2n × 2n anti-diagonal matrix,
for which the non-zero elements, extending from the lower left to the upper right, are all 1’s.

Multiplying (108) on the left and right by r̂, and using (98), (99) and (68), we find

r̂µ̂r̂ =
∑

i

µir̂|µi)((µi|r̂

=
∑

i

µi|µr(i))((µr(i)|

= −
∑

i

µr(i)|µr(i))((µr(i)|. (118)

or since the set of indices r(i) is the same as the set i,

r̂µ̂r̂ = −µ̂. (119)

In like manner we find

r̂ς̂ r̂ = −ς̂ . (120)

The direction-cosine operator µ̂, and its inverse, the direction-secant operator ς̂ = µ̂−1 are
odd under reflection.
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4.4 Weighted and unweighted variables

We can expand variables that depend on the direction cosine µ on the µ-space basis vectors
|µi). For example, multiplying the abstract vector |I} that represents the intensity, I = I(µ),
on the left by (87), we find

|I} =
∑

i

|µi)((µi|I}. (121)

We can use (70), (85) (71) and (77) to write the amplitudes of (121) as

((µi|I} =
∑

l

((µi|l)Il

=
∑

l

wi(2l + 1)Pl(µi)
1

2

∑

i′

wi′Pl(µi′)I(µi′)

= wi

∑

i′

δii′I(µi′)

= wiI(µi). (122)

For any function, f = f(µ) of the direction cosine µ, represented by the abstract vector |f}
we will call

((µi|f} = wif(µi) = the weighted value of |f} at µ = µi,

w−1
i ((µi|f} = f(µi) = the unweighted value of |f} at µ = µi. (123)

5 Phase Functions

We assume that the diagonal elements, 2pl of the scattering phase matrix p̂ of (40) are zero
if l ≥ 2n. Then we can write p̂ as

p̂ = 2
∑

l

pl|l)((l|. (124)

Multiplying (124) on the left and right by the reflection operator r̂, and using (116) we see
that the scattering-phase matrix is even under reflections

r̂p̂r̂ = p̂. (125)

Using (84) and (85) with (124) in (11) we see that the matrix elements of p̂ in µ-space are

((µi|p̂|µi′) = 2
∑

l

pl((µi|l)((l|µi′)

=
∑

l

plwi(2l + 1)Pl(µi)Pl(µi′)

= wip(µi, µi′). (126)
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Using (126), we write the scattering-phase matrix as

p̂ =
∑

ii′

wip(µi, µi′)|µi)((µi′|. (127)

Summing (126) over all stream indices i and using the Gauss-Legendre quadrature property
of (71) with (6) we find

∑

i

((µi|p̂|µi′) =
∑

i

wip(µi, µi′)

=

∫ 1

−1

dµ p(µ, µi′)

= 2. (128)

Since the weights wi of (72) are positive, and the matrix elements p(µi, µi′) are non-negative
according to (5), we see from (126) that ((µi|p̂|µi′) ≥ 0. This limit, together with (128),
implies that the elements of the scattering-phase matrix are bounded by

0 ≤ 1

2
((µi|p̂|µi′) ≤ 1. (129)

From (129) we see that the probability that a photon is scattered from stream i′ to stream
i is ((µi|p̂|µi′)/2. For axially symmetric radiation transfer, the scattering phase functions
p(µ, µ′) of (11) can be fully determined from the simpler phase function p(µ) = p(µ, 1) for
scattering vertically propagating light with µ′ = 1,

p(µ) = p(µ, 1) =
∑

l

Pl(µ)(2l + 1)pl. (130)

The function p(µ, µ′) of two direction cosines and the function p(µ) of a single direction
cosine are so closely related that we will use the same symbol p for both. The context will
make clear which is meant. Here we show that if p(µ) is non-negative for any value of |µ| ≤ 1,
then p(µ, µ′) is also nonnegative for any values of |µ| ≤ 1 and |µ′| ≤ 1,

p(µ, µ′) ≥ 0 if p(µ) ≥ 0. (131)

To be sure a phase function p(µ, µ′) satisfies the nonnegativity constraint (5) for all al-
lowed values of µ and µ′, it is sufficient to verify the second inequality of (131) for the
simpler, one-variable function p(µ) of (130). More discussion of (130) can be found in §48

of Chandrasekhar[2].

5.1 Rayleigh scattering

The phase function (130) for Rayleigh scattering is

p(µ) =
3

4
(µ2 + 1) = P0(µ) +

1

2
P2(µ). (132)
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Figure 3: The lengths of the black rays are the numerical values of the phase functions
p(µi, µi′) of (11) for Rayleigh scattering, discussed in Section 5.1. µi and µi′ are Gauss-
Legendre sample values of the direction cosines, defined by (66). For this example, there are
2n = 32 streams. Left. A nearly vertical incident stream, indicated by red dotted lines,
with zenith angle θ32 = cos−1(.9973) = 4.24◦. Middle. An incident stream, indicated by
red dotted lines, with zenith angle θ23 = cos−1(.5877) = 54.0◦, close to the “magic angle”
θm = cos−1(1/

√
3) = 54.7◦, where the Rayleigh scattering changes from prolate to oblate[10].

Here the phase is slightly prolate. Right. A nearly horizontal incident stream, indicated by
red dotted lines, with zenith angle θ17 = cos−1(.0483) = 87.2◦.

The non-zero coefficients of the multipole expansion are

p0 = 1, and p2 =
1

10
. (133)

Representative examples of the Rayleigh-scattering phase functions, p(µi, µi′) are shown in
Fig. 3. Rayleigh scattering differs little from completely isotropic scattering.

Rayleigh scattering describes the polarization-averaged resonance scattering of radiation
by an atom with electronic angular momentum J = 0 in the ground state and J = 1 in
the excited state. It is an excellent approximation for the scattering of light by polarizable
molecules at frequencies far below their electronic resonance frequencies. Rayleigh scattering
(mostly single scattering) of short-wave sunlight by nitrogen and oxygen molecules makes
Earth’s sky blue. Eq. (132) is also the phase function for Thomson scattering of radiation
by free electrons, and it therefore plays an important role for radiation transfer inside the
Sun and stars. Cloud particulates that are much smaller than the wavelengths of thermal
radiation produce Rayleigh scattering, for example, scattering of radar beams. But cloud
particle sizes can be comparable or larger than wavelengths of thermal radiation. This
is even more true for shorter-wave sunlight, where the scattering phase functions for cloud
particulates are often strongly peaked in the forward direction. In the next section we discuss
how to model phase functions for strong forward or backward scattering in clouds.
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Figure 4: The lengths of the black rays are the values of the forward-scattering phase
functions p(µi, µi′) = ̟{3}(µi, µi′) of (141). The multipole amplitudes of (140) are

[̟
{3}
0 , ̟

{3}
1 , ̟

{3}
2 , ̟

{3}
3 , ̟

{3}
4 , ̟

{3}
5 ] =[1, 5/7, 4/7, 8/21, 5/21, 25/231]. These are listed as dec-

imal fractions in Table 1. There are 2n = 32 sampling streams. The direction cosines µi of
scattered streams and µi′ of the incident stream have the same values as for Fig. 3.

5.2 Maximum forward-scattering

As we prove in the Appendix, the phase function p(µ) of (130) that is constructed from the
first 2p Legendre polynomials, that satisfies the constraint (5) of nonnegativity and the area
constraint (6), and that has the maximum possible forward-scattering value, p(1), is

̟{p}(µ) =
2(1 + µ)

p(p+ 1)

[

dPp

dµ
(µ)

]2

. (134)

The nonnegativity of (134) is obvious, since it is the product of a nonnegative factor (1+µ) ≥
0, and the nonnegative square of a polynomial, [dPp(µ)/dµ]

2. The polynomial ̟{p}(µ) is of
degree 2p − 1 and has 2p − 1 roots. There is a single root at µ = −1. The remaining
2p− 2 roots are double and are defined by dPp/dµ = 0. The double roots lie on the interval
−1 < µ < 1. So the “antenna pattern” of (134) has p nulls for direction cosines starting at
µ = −1 and ending just shy of µ = 1, the direction cosine for maximum scattering. The
forward-scattering lobe is much larger than the sidelobes.

The factor [dPp(µ)/dµ]
2 of (134) is even in µ, so we can write the area as

∫ 1

−1

dµ̟{p}(µ) =
2

p(p+ 1)

∫ 1

−1

dµ

[

dPp

dµ
(µ)

]2

= 2, (135)

as required by (6). In writing (135) we used the identity
∫ 1

−1

dµ

[

dPp

dµ
(µ)

]2

= p(p+ 1), (136)
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Figure 5: The lengths of the black rays are the values of the backward-scattering
phase functions p(µi, µi′) = r̟{3}(µi, µi′) of (142). The multipole amplitudes are

[̟
{3}
0 ,−̟{3}

1 , ̟
{3}
2 ,−̟{3}

3 , ̟
{3}
4 ,−̟{3}

5 ]=[1,−5/7, 4/7,−8/21, 5/21,−25/231]. There are
2n = 32 sampling streams. The direction cosines µi of scattered streams and µi′ of the
incident stream have the same values as for Fig. 3.

which can be proved using elementary properties of Legendre polynomials. It is also not
hard to prove the identity

dPp

dµ
(1) =

p(p+ 1)

2
, (137)

which we can use with (134) to find that the forward-scattering and backward-scattering
values of (134) are

̟{p}(1) = p(p+ 1), and ̟{p}(−1) = 0. (138)

We can write the maximum foward-scattering phase function (134) as the multipole expan-
sion

̟{p}(µ) =
∑

l

Pl(µ)(2l + 1)̟
{p}
l . (139)

From (9) and (134) we see that the multipole coefficients of (139) are

̟
{p}
l =

1

2

∫ 1

−1

dµPl(µ)̟p(µ)

=

∫ 1

−1

dµ
Pl(µ)[1 + µ]

p(p+ 1)

[

dPp

dµ
(µ)

]2

. (140)

The values of the coefficients ̟
{p}
l from (140) are rational numbers, as mentioned in the

caption of Fig. 4. But for convenience, we have listed them as four-place decimal fractions
in Table 1 for p = 1, 2, 3, . . . , 11, and for l = 0, 1, 2, . . . , 2p− 1.
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Figure 6: Phase functions p(µ) of (130) for isotropic scattering, and Rayleigh scattering (132),
compared to representative, forward-scattering basis phase functions ̟{p}(µ) of (134). The
distance from the center, marked by the small black circle, to the curves is p(µ)/p(1). The
forward-scattering phases are: p(1) = 1 for isotropic scatter; p(1) = 1.5 for Rayleigh scatter;
p(1) = ̟{p}(1) = p(p+1) = 2, 20 and 272 for forward-scattering basis phase functions (139)
constructed from the first 2p = 2, 8 and 32 Legendre polynomials.

If the phase function (139) is rotated by the colatitude angle θ′ = cos−1 µ′, and the result
is averaged over all azimuthal angles, the resulting phase function becomes

̟{p}(µ, µ′) =
∑

l

Pl(µ)(2l + 1)̟
{p}
l Pl(µ

′). (141)

The phase function with the maximum possible backscattering is the reflected version of
(141)

r̟{p}(µ, µ′) =
∑

l

Pl(µ)(2l + 1)̟
{p}
l Pl(µ

′)(−1)l. (142)

Fig. 4 shows the forward-scattering basis phase function ̟{3}(µ, µ′) of (141) constructed
from 2p = 6 Legendre polynomials. In accordance with (138), the maximum forward scat-
tering in Fig. 4 from exactly vertical light is ̟{3}(1) = 3(4) = 12. Fig. 5 shows the reflected
version r̟{3}(µ, µ′) of (142). In Fig. 6 we have compared isotropic and Rayleigh scatter-
ing phase functions with forward-scattering basis phase functions ̟{p}(µ) (134) constructed
from 2p = 2, 8, and 32 Legendre polynomials.

One can construct superpositions of phase functions like those of Fig. 4, and their “mirror
images,” to form more complicated phase functions, for example, phase functions strongly
peaked in both the forward and backward directions. If the superposition coefficients are
positive and sum to 1, the compound phase functions will satisfy the two contraints (5)
and (6). For a 2n-stream model, any phase function can contain no more than the first 2n
Legendre polynomials, and this limits how sharp the angular features can be.
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p = 1 2 3 4 5 6 7 8 9 10 11

̟
{p}
0 1 1 1 1 1 1 1 1 1 1 1

̟
{p}
1 .3333 .6000 .7143 .7778 .8182 .8462 .8667 .8824 .8947 .9048 .9130

̟
{p}
2 .4000 .5714 .6667 .7273 .7692 .8000 .8235 .8421 .8571 .8696

̟
{p}
3 .1714 .3810 .5108 .5967 .6573 .7023 .7368 .7643 .7865 .8050

̟
{p}
4 .2381 .3939 .4988 .5734 .6290 .6718 .7059 .7336 .7565

̟
{p}
5 .1082 .2681 .3869 .4747 .5413 .5932 .6348 .6688 .6970

̟
{p}
6 .1632 .2937 .3924 .4682 .5277 .5756 .6148 .6474

̟
{p}
7 .0761 .2016 .3058 .3888 .4553 .5092 .5538 .5911

̟
{p}
8 .1209 .2301 .3194 .3918 .4512 .5005 .5418

̟
{p}
9 .0573 .1586 .2495 .3259 .3896 .4431 .4884

̟
{p}
10 .0943 .1866 .2665 .3342 .3916 .4404

̟
{p}
11 .0451 .1290 .2085 .2782 .3383 .3901

̟
{p}
12 .0762 .1553 .2268 .2895 .3440

̟
{p}
13 .0367 .1076 .1776 .2411 .2973

̟
{p}
14 .0633 .1319 .1961 .2539

̟
{p}
15 .0306 .0915 .1536 .2115

̟
{p}
16 .0536 .1138 .1717

̟
{p}
17 .0260 .0790 .1346

̟
{p}
18 .0462 .0995

̟
{p}
19 .0225 .0692

̟
{p}
20 .0404

̟
{p}
21 .0197

Table 1: Numerical values of the coefficients ̟
{p}
l of (140) for the multipole expansion (139)

of the maximum possible forward-scattering phase functions ̟{p}(µ) (134).

6 Penetration Modes

When scattering cannot be neglected, neither the l-space basis vectors ((l| and |l), nor the µ-
space basis vectors ((µi| and |µi) are convenient for calculations. The natural choice of basis
vectors are the left and right eigenvectors ((λi| and |λi) of the penetration-length matrix

λ̂ = κ̂−1 = η̂−1µ̂. (143)

the inverse of the exponentiation-rate matrix κ̂ of (63). Projections of vectors on the basis
vectors ((λi| and |λi) will be called mode amplitudes. The penetration lengths λi, and the
penetration modes, |λi) and ((λi|, are determined, aside from normalization, by the eigenvalue
equations

((λi|λ̂ = ((λi|λi, and λ̂|λi) = λi|λi). (144)
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Figure 7: The penetration lengths λi of (144) for 2n = 6 penetration modes, |λi), and
for Rayleigh scattering. The results are qualitiatively similar for any other scattering phase
function. For a vanishing single-scattering albedo, ω̃ → 0, the modes become identical to the
direction-cosine basis functions, |λi) → |µi), and the penetration lengths become identical
to the direction cosines, λi → µi. As the single-scattering albedo approaches unity, ω̃ → 1,
the absorption becomes very small and the penetration lengths are “stretched,” |λi| > |µi|.
There is unlimited stretching of the quasi-isotropic modes, with i = 1 and i = 2n, where
λ1 → −∞ and λ2n → +∞. These modes, marked by the letter Q in the figure, consist
of nearly isotropic light, like diffuse sunlight deep inside a cloud. An example is the quasi-
isotropic upward mode shown in the left panel of Fig. 8. As ω̃ → 1 the values of the two
diverging, quasi-isotropic penetration lengths, λ2n = −λ1, are given by the formula (167).
The properties of directional modes, |λi), with 2 ≤ i ≤ 2n − 1, and marked with the letter
D in the figure, are much less dependent on ω̃.

We will call the eigenvector |λi) a penetration mode. Here we assume that the penetration
lengths λi are real numbers, and we will prove this assumption in the next section. For
λk > 0 a penetration mode will be attenuated by a factor of e for an optical-depth increase
∆τ = λk. For λj < 0, a penetration mode will be amplified by a factor of e for an increase
of optical depth ∆τ = |λj|.

Fig. 7 shows how the penetration lengths λi depend on the single-scatter albedo ω̃. For
this simple example, there are 2n = 6 streams and Rayleigh scattering. For ω̃ → 1, the
magnitudes of the first and last penetration lengths become very large, |λ1| = |λ2n| ≫ 1.
We will call the stream with i = 1 the downward quasi-isotropic mode and the stream with
i = 2n the upward quasi-isotropic mode. In the example of Fig. 8, with 2n = 32, the
penetration lengths of the quasi-isotropic modes are |λ1| = |λ2n| = 18.266 ≫ 1 for ω̃ = 0.999
and Rayleigh scattering. The streams, with 2 ≤ i ≤ 2n− 1, will be called directional modes,
since |λi| < 1 for most of them, and they can threfore be described, approximately, as streams
with directions making angles θi = cos−1 λi with the vertical.
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Figure 8: Mode profiles 〈µ|λi) with the same indices i = 32, 26, 21, 17 as the stream profiles
〈µ|µi) of the purely absorbing atmosphere of Fig. 1. There are 2n = 32 streams. But in this
case there is Rayleigh scattering and only weak absorption with ω̃ = 0.999. The penetration
lengths λi (the eigenvalues of λ̂) are shown (where possible) as horizontal green lines. For the
directional modes, with i = 26, 21 and 17 the penetration lengths λi are only slightly larger
than the corresponding direction cosines µi, the penetration lengths for a purely absorbing
atmosphere. The angular distributions 〈µ|λi) and 〈µ|µi) are similar for i = 26, 21 and
17. The quasi-isotropic mode, 〈µ|λ32), differs drastically from the highly forward-directed
stream 〈µ|µ32), that is shown on the left panel of Fig. 1. The blue dots are the analytic
approximation (169) of 〈µ|λ2n).

The eigenvalue equations (144) do not define the normalization of |λi) and ((λi|. We will
let the normalization of |λi) be defined by the conditions

((0|λi) =
1

2
, and ((λi|λi′) = δii′ . (145)

In analogy to (87), the modes are complete, that is,

1̂ =
∑

i

|λi)((λi| = Ld + Lu. (146)

The projection operators for the lower and upper halves of λi-space are

Ld =
∑

j

|λj)((λj|, and Lu =
∑

k

|λk)((λk|. (147)

Here the index j = 1, 2, 3, . . . , n labels the n penetration modes with negative penetration
lengths, λj < 0, and the index k = n + 1, n + 2, n + 3, . . . , 2n labels the penetration modes
with positive lengths, λk > 0. The projection operators have the multiplication property

LqLq′ = Lqδqq′ , (148)
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Figure 9: Mode profiles ((λi|µ〉 with ω̃ = 0.999 and Rayleigh scattering, and with the same
indices i = 32, 26, 21, 17 as the stream profiles ((µi|µ〉 of the purely absorbing atmosphere
of Fig. 2 with ω̃ = 0. These are the left eigenvectors of λ̂, that correspond to the right
eigenvectors of Fig. 8. The profiles ((λi|µ〉 of the upward, directional modes, with i = 26, 21
and 17 are qualitatively similar to the stream profiles 〈µ|λi) with the same indices i. The
profile 〈λ32|µ〉 of the left quasi-isotropic mode is very nearly proportional to µ. It differs
completely from the profile ((λ32|µ〉 of the right quasi-isotropic mode of Fig 8, which is very
nearly independent of µ. The blue dots are the analytic aproximation (173) of ((λ2n|µ〉.

where the indices q and q′ can have the values u or d.
The left and right eigenvectors ((λi| and |λi) of the penetration-length matrix λ̂ can be

chosen to be identical to the corresponding eigenvectors ((κi| and |κi) of the exponentiation-
rate matrix κ̂ = λ̂−1. The eigenvalues λi and κi are inverses of each other, that is,

((λi| = ((κi|, |λi) = |κi), and λi =
1

κi
. (149)

In analogy to (146) we write the exponentiation-rate operator, κ̂, as

κ̂ =
∑

i

κi|λi)((λi| = κ̂d + κ̂u. (150)

As indicated in (150), it is useful to write κ̂ as the sum of a downward part κ̂d and an upward
part κ̂u,

κ̂d =
∑

j

κj |λj)((λj|, and κ̂u =
∑

k

κk|λk)((λk|. (151)

The penetration length matrix (143) is odd under reflection

r̂λ̂ = −λ̂r̂. (152)
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Therefore
λ̂r̂|λi) = −r̂λ̂|λi) = −λir̂|λi) (153)

According to (153), if |λi) is a right eigenvector of λ̂, with the eigenvalue λi, then r̂|λi)
is also a right eigenvector with eigenvalue −λi. The eigenvalues λi occcur as equal and
opposite pairs, corresponding to pairs of reflected eigenvectors |λi) and r̂|λi) = |λr(i)). The
index-reflection function r(i) was defined by (69). We will order the eigenvalues such that

λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λ2n. (154)

Half of the penetration lengths λi and their inverses κi = 1/λi are negative and half are
positive,

λj < 0, and κj < 0, for j = 1, 2, 3, . . . , n,

λk > 0, and κj > 0, for k = n+ 1, n+ 2, n+ 3, . . . , 2n. (155)

6.1 Real penetration lengths

The penetration lengths λi defined by the eigenvalue equations (144) are real numbers be-
cause we can write the penetration-length matrix λ̂ as the similarity transformation

λ̂ = ŝ−1ĥŝ. (156)

The eigenvalues of the Hermitian matrix ĥ = ĥ(ω̃) are real. Eigenvalues are not changed by
a similarity transformation. So the eigenvalues of λ̂ are the same as those of ĥ.

To construct the Hermitian matrix ĥ of (156), we introduce a 2n× 2n statistical-weight
matrix, ĝ, that is diagonal in l-space and has the elements

((l|ĝ|l′) = δll′gl, where gl = 2l + 1. (157)

We use ĝ and the efficiency matrix, η̂ = η̂(ω̃) of (54), which is also diagonal in l-space, to
write

ĥ = η̂−1/2ĝ1/2µ̂ĝ−1/2η̂−1/2. (158)

In l-space, only the elements of ĥ above and below the main diagonal are non-zero, and from
(158) and (17) we find that the values of these elements are

((l|ĥ|l + 1) = ((l + 1|ĥ|l) = l + 1√
ηlηl+1glgl+1

. (159)

The similarity transformation of (156) is effected by the diagonal matrix ŝ = ŝ(ω) with the
elements

ŝ = (ĝη̂)1/2, with ((l|ŝ|l′) = δll′(glηl)
1/2. (160)

Using (159) and (160), or using (143) directly, we find that the non-zero matrix elements in
λ̂ in l-space are

((l|λ̂|l + 1) =
(l + 1)η−1

l

2l + 1
,

((l + 1|λ̂|l) =
(l + 1)η−1

l+1

2l + 3
. (161)

In l-space, the matrix representation of λ̂ is not Hermitian.
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6.2 Overlap operators

For discussions of scattering and thermal emission, it will be convenient to use overlap
operators Cqq′ which we define by the product of a projection operator Mq of µ-space and
a projection operator Lq′ of λ-space,

Cqq′ = MqLq′. (162)

From (162), (146) and (87) we see that the overlap operators satisfy the sum rule

1̂ = 1̂1̂

= (Md +Mu)(Ld + Lu)

= Cdd + Cud + Cdu + Cuu. (163)

6.3 The limit ω̃ → 0

The efficiency matrix η̂ of (54) becomes a 2n × 2n unit matrix 1̂ as the single-scattering
albedo vanishes, ω̃ → 0, and the cloud becomes purely absorptive. Then the penetration-
length matrix λ̂ of (143) becomes the 2n×2n upper left corner of the direction-cosine matrix
µ̂ of (36), and the exponentiation-rate matrix κ̂ of (63) becomes the 2n×2n upper left corner
of the direction-secant matrix ς̂ of (44). The normalization condition (145) ensures that the
penetration-length basis vectors |λi) and ((λi| of (144) approach the direction-cosine basis
vectors |µi) of (84) and ((µi| of (85) as ω̃ → 0. For future reference, we summarize the pure
absorption limits, for ω̃ → 0 as

ω̃ → 0.

η̂ → 1̂,

λ̂ → µ̂,

κ̂ → ς̂ ,

|λi) → |µi),

((λi| → ((µi|,
Lq → Mq

Cqq′ → Mqδqq′ . (164)

In the last lines of (164) the projection operator Lq of λ-space was given by (147) and the
projection operator Mq of µ-space was given by (88).

6.4 The limit ω̃ → 1

In §8(57) Chandrasekhar[2] calls pure scattering, when ω̃ = 1, perfect or conservative scat-
tering. For a unit single-scattering albedo ω̃ = 1, the penetration-length matrix λ̂ of (143)
becomes singular and some of the numerical procedures we have discussed earlier fail. Most
of the numerical methods work well for single-scattering albedos as close to 1 as ω̃ = 1−10−6.
With minor modifications it is possible to adapt the 2n-stream model to ω̃ = 1, as we will
show in a subsequent paper.
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Here we will discuss a few important aspects of scattering in the limit ω̃ → 1. We can
use (36) and (54) to write the penetration-length matrix (143) as

((l|λ̂|l′) =











0 (1− ω̃)−1 0 · · ·
(1− ω̃p1)

−13−1 0 2(1− ω̃p1)
−13−1 · · ·

0 2(1− ω̃p2)
−15−1 0 · · ·

...
...

...
. . .











(165)

From inspection of the left panel of Fig. 8 we see that the quasi-isotropic eigenvector 〈µ|λ2n)
for weak absorption can be written very accurately as the sum of the first two Legendre
polynomials, P0(µ) = 1 and P1(µ) = µ. So to good approximation, the second eigenvalue
equation of (144) must reduce to

0̂ =

[

−λ2n (1− ω̃)−1

(1− ω̃p1)
−13−1 −λ2n

] [

((0|λ2n)
((1|λ2n)

]

(166)

Setting the determinant of the 2 × 2 matrix of (166) equal to zero, we find that for the
weak-absorption limit, ω̃ → 1, the eigenvalue λ2n must approach the limit,

λ2n → [3(1− ω̃p1)(1− ω̃)]−1/2. (167)

For the Rayleigh-scattering example of Fig. 8, where ω̃ = 0.999 and p1 = 0, exact diagonal-
ization of the eigenvalue equations (144) give λ2n = 18.266, and (167) gives λ2n = 18.257.

Using the normalization convention ((0|λ2n) = 1/2 of (145) in (166) we see that for the
weak absorption limit, the right eigenvector |λ2n) approaches the limit

|λ2n) →
[

((0|λ2n)
((1|λ2n)

]

=

[

1/2
(1− ω̃)1/2(12[1− ω̃p1])

−1/2

]

. (168)

In continuous µ-space, (168) becomes

〈µ|λ2n) →
1

2
+ µ

√

3(1− ω̃)

4(1− ω̃p1)
. (169)

The left panel of Fig. 8 shows values of 〈µ|λ2n) from (169), the blue dots, compared to values
of the exact solution of the second eigenvalue equation (144), the continuous red line.

From inspection of the left panel of Fig. 9 we see that the quasi-isotropic eigenvector
((λ2n|µ〉 for weak absorption can be written very accurately as the sum of the first three
Legendre polynomials, P0(µ) = 1, P1(µ) = µ and P2(µ) = (3µ2 − 1)/2. Then the first and
third columns of the first eigenvalue equation (144) become

[

((λ2n|0) ((λ2n|1) ((λ2n|2)
]





−λ2n 0
(1− ω̃p1)

−13−1 2(1− ω̃p1)
−13−1

0 −λ2n



 = [0 0]. (170)

Solving (170) for ((λ2n|0) and ((λ2n|2) in terms of ((λ2n|1), and requiring that ((λ2n|λ2n) = 1
we find

((λ2n|1) →
√

3(1− ω̃p1)

1− ω̃
(171)
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and
((λ2n|2) = 2((λ2n|0) → 2. (172)

In continuous µ-space, (171) and (172) give

((λ2n|µ〉 → µ

√

3(1− ω̃p1)

4(1− ω̃)
+

3

2
µ2. (173)

The left panel of Fig. 9 shows values of (λ2n|µ〉 from (173), the blue dots, compared to the
values of the solution of the first eigenvalue equation (144), the continuous red line. Reflecting
|λ2n) gives the other quasi-isotropic eigenfunction |λ1) = r̂|λ2n) or 〈µ|λ1) = 〈−µ|λ2n). The
corresponding eigenvalue is λ1 = −λ2n.

7 Clouds

For optical depths τ inside a cloud of optical thickness τc, that is, for 0 ≤ τ ≤ τc, the intensity
|I(τ)} varies because of absorption, thermal emission and scattering, as described by (62).
We denote the radiation coming into the cloud with the 2n× 1 incoming intensity vector,

|I{in}} = Mu|I(0)}+Md|I(τc)}. (174)

The projection operators Mu and Md for upward and downward streams were defined by
(88). The intensity going out of the cloud is denoted by the outgoing intensity vector,

|I{out}} = Md|I(0)}+Mu|I(τc)}. (175)

7.1 Optically thin clouds

For a cloud of infinitesimal thickness τc = dτ ≪ 1, we can take κ and |B} as constant, and
write the solution of the equation of transfer (62), to order dτ > 0, as

|I(dτ)} = (1̂− dτκ̂)|I(0)}+ dτκ̂|B}, (176)

Noting from (87) that Mu +Md = 1̂, we use (176) to write the incoming intensity (174) as

|I{in}} = Mu|I(0)}+Md|I(dτ)}
= Mu|I(0)}+Md

[

(1̂− dτκ̂)|I(0)}+ dτκ̂|B}
]

= (1̂− dτMdκ̂)|I(0)}+ dτMdκ̂|B}. (177)

In like manner we write the outgoing intensity (175) as

|I{out}} = Md|I(0)}+Mu|I(dτ)}
= Md|I(0)}+Mu

[

(1̂− dτκ̂)|I(0)}+ dτκ̂|B}
]

= (1̂− dτMuκ̂)|I(0)}+ dτMuκ̂|B}. (178)
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Solving (177), to order dτ , for |I(0)}, we find

|I(0)} = (1̂ + dτMdκ̂)|I{in}} − dτMdκ̂|B}. (179)

Substituting (179) into (178) we find, to order dτ , that the output intensity from the thin
cloud is

|I{out}} = S|I{in}}+ E|B}. (180)

To order dτ , the scattering matrix for the thin cloud is

S = 1̂− dτ(Mu −Md)κ̂. (181)

The emissivity matrix is
E = dτ(Mu −Md)κ̂. (182)

From inspection of (181) and (182) we see that the scattering and emissivity matrices for a
thin cloud obey Kirchhoff’s law,

S + E = 1̂. (183)

As we shall show below, Kirchhoff’s law (183) remains valid for an isothermal cloud of
arbitrary thickness.

Substituting the efficiency operator η̂ of (54) into the growth rate operator κ̂ = ς̂ η̂ of (63)
we write the scattering matrix (181) of a thin cloud as

S = 1̂− dτ(Mu −Md)ς̂(1̂−
ω̃

2
p̂)

= 1̂− dτ(ς̂u − ς̂d)(1̂−
ω̃

2
p̂)

= SC + SD. (184)

Here the coherent scattering operator for the thin cloud is

SC = 1̂− dτ(ς̂u − ς̂d). (185)

The diffuse scattering operator is

SD =
dτ ω̃

2
(ς̂u − ς̂d)p̂. (186)

The matrix elements of the scattering matrix in µ-space can be written as

((µi|S|µi′) = ((µi|SC|µi′) + ((µi|SD|µi′)

= δii′(1− dτ |ςi|) +
dτω̃

2
|ςi|((µi|p̂|µi′). (187)

From (187) we see that the matrix elements of S are bounded by

0 ≤ ((µi|S|µi′) < 1. (188)
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For off diagonal elements, with i′ 6= i, the second line of (187) and (126) imply that for small
enough dτ > 0,

((µi|S|µi′) =
dτω̃

2
|ςi|((µi|p̂|µi′) ≥ 0, and ((µi|S|µi′) < 1. (189)

For diagonal elements, with i′ = i, the second line of (187) and (129) imply that for small
enough dτ ,

((µi|S|µi) = 1− dτ |ςi|
[

1− ω̃

2
((µi|p̂|µi)

]

< 1, and ((µi|S|µi) > 0. (190)

7.2 Scattering in clouds of finite thickness

We now consider non-emissive clouds of finite thickness, which can scatter or absorb, but
which are too cold to emit radiation at the frequency of interest. An example is visible
sunlight in Earth’s clouds. The clouds, at a temperature of around 300 K, are much cooler
than the temperature, around 5700 K, of the Sun’s photosphere, where the sunlight was
generated.

For a non-emissive cloud we can set |B} = 0̂ in (62), which then becomes the homogeneous
equation of transfer

(

d

dτ
+ κ̂

)

|I(τ)} = 0̂. (191)

A general solution of (191) that is useful for our purposes is

|I(τ)} = U(τ)|A}. (192)

Here we have introduced the operator

U(τ) =
∑

i

e−κi(τ−τi)|λi)((λi|

= e−κ̂d(τ−τc) + e−κ̂uτ . (193)

The reference optical depths are

τi =

{

τc, if i ≤ n,
0, if i > n.

(194)

The upward and downward parts of U(τ) are

e−κ̂d(τ−τc) =
∑

j

e−κi(τ−τc)|λj)((λj| and e−κ̂uτ =
∑

k

e−κkτ |λk)((λk|. (195)

For a cloud of finite thickness, τc > 0, for optical depths τ within the cloud, 0 ≤ τ ≤ τc, and
for at least some single-scattering absorption, 1 − ω̃ > 0, the diagonal matrix elements of
U(τ) are positive and no larger than 1,

0 < ((λi|U(τ)|λi) ≤ 1. (196)
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The amplitude |A} of (192) is a 2n × 1 column vector that is independent of the optical
depth τ . As we shall show presently, the value of |A} is determined by boundary conditions.

From (193) we see that the rate of change of U(τ) with optical depth τ is

d

dτ
U(τ) = −

∑

i

e−κi(τ−τi)κi|λi)((λi| = −κ̂U(τ). (197)

According to (197) the evolution operator U(τ) is a solution of the homogeneous equation
of transfer (191) and therefore the intensity (192) is also a solution.

From (192) we see that the incoming intensity |I{in}} of (174) must be related to the
amplitude |A} by

|I{in}} = I|A}, (198)

where the incoming matrix is

I = MuU(0) +MdU(τc)
= Cudeκ̂dτc + Cuu + Cdd + Cdue−κ̂uτc . (199)

The overlap matrices Cqq′ were defined by (162).
Similarly, from (192) and (175) we see that the outgoing intensity |I{out}} is the product

of the outgoing matrix O and the amplitude |A}

|I{out}} = O|A}, (200)

where

O = MdU(0) +MuU(τc)
= Cddeκ̂dτc + Cdu + Cud + Cuue−κ̂uτc . (201)

Solving (198) for |A} we find
|A} = I−1|I{in}}. (202)

Substituting (202) into (192) we find that the intensity within the cloud is

|I(τ)} = U(τ)I−1|I{in}}. (203)

We can use (193) to write the projection of the intensity (203) on the stream i at an optical
depth τ inside the cloud as

((µi|I(τ)} =
∑

i′

e−κ
i′
(τ−τ

i′
)((µi|λi′)((λi′|I−1|I{in}}. (204)

Using (202) in (200) we find that the outgoing intensity can be written as

|I{out}} = S|I{in}}, (205)

where the scattering-matrix is
S = OI−1. (206)
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Figure 10: Transmission, absorption and reflection of an initial upward stream, |I{in}} =
|µ2n) by a cloud with weak single-scatter absorption, 1−ω̃ = 0.01, with a Rayleigh-scattering
phase function like that of Fig. 3, and with an optical depth τc = 8. There are 2n = 10
streams. The lengths of the black rays on the left panel are the sample intensities I(µi, τ) =
w−1

i ((µi|I(τ)} at the optical depth τ , as calculated with (204). The dotted rays at the bottom
of the cloud are 1/10 the value of I(µ2n, τ = 0), the intensity of the incident stream which is
too long to fit on the graph. Indicated on the bottom of the figure are fractions of the incident
flux that are transmitted: T = 0.1204, absorbed: A = 0.1472, and reflected: R = 0.7324.

For an infinitesimally thin cloud, τc = dτ → 0, one can show that (206) approaches the
limiting expression (181).

For a cloud of finite thickness τc, the coherent scattering matrix, denoted by the symbol
SC, is

SC = e−τc(ς̂u−ς̂d). (207)

SC describes the fractions of outgoing streams that have not been absorbed or scattered,
and simply passed through the cloud. The diffuse scattering matrix, denoted by the symbol
SD, is

SD = S − SC = OI−1 − e−τc(ς̂u−ς̂d), (208)

The diffuse scattering matrix, SD, describes outgoing radiation that has been scattered one
or more times.

7.3 Cloud albedo

We can use (104) and (29) to write the vertical flux (20) as

Z(τ) = ((0|Z(τ)} (209)

Here the upward flux vector |Z(τ)} is related to the intensity vector |I(τ)} by

|Z(τ)} = 4πµ̂|I(τ)}. (210)
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Figure 11: Like Fig. 10 but with 100 times smaller single-scattering absorption 1 − ω̃ =
0.0001. Indicated on the bottom of the figure are fractions of incident flux transmitted:
T = 0.1751, absorbed: A = 0.0018, and reflected: R = 0.8231. For such small single-
scattering absorption, the cloud absorption cannot be clearly displayed in the graph.

The projections of intensity, ((µi|I} ≥ 0 are positive (or zero) for all streams i, but the
projections of vertical flux, ((µk|Z} = 4πµk((µk|I} ≥ 0 are positive for upward streams, with
µk > 0, but negative. ((µj|Z} = 4πµj((µk|I} ≤ 0 for downward streams with µj < 0.

We write the net flux coming into the cloud as the sum of the flux into the bottom of the
cloud carried by upward streams, and the flux into the top of the cloud carried by downward
streams,

Z{in} = ((0|Z{in}}, (211)

where the input flux vector is

|Z{in}} = Mu|Z(0)} −Md|Z(τc)}
= 4π (Muµ̂|I(0)} −Mdµ̂|I(τc)})
= 4π(µ̂u − µ̂d) (Mu|I(0)}+Md|I(τc)})
= 4π(µ̂u − µ̂d)|I{in}}. (212)

In like manner we write the outgoing flux as the sum of the upward flux out of the top of
the cloud and the downward flux out of the bottom

Z{out} = ((0|Z{out}}, (213)

where the output flux vector is

|Z{out}} = 4π(µ̂u − µ̂d)|I{out}}. (214)

39



-10

0

10

20

0 0.5 1
0

2

4

6

8

Figure 12: Transmission and reflection as in Fig. 10 but for a forward-scattering phase
function like that of Fig. 4. Because of the strong forward scattering, more of the light is
transmitted and less is reflected than for the Rayleigh scattering of Fig. 10. The fractions of
incident flux are: transmitted, T = 0.3752; absorbed, A = 0.1499; and reflected R = 0.4749.

For a non-emissive cloud we can use (212) and (214) with (205) to write as

|Z{out}} = Ω|Z{in}}. (215)

Here the cloud albedo matrix is

Ω = (µ̂u − µ̂d)S(µ̂u − µ̂d)
−1

= (µ̂u − µ̂d)S(ς̂u − ς̂d). (216)

From the first line of (216) we see that the cloud albedo matrix, Ω, is a similarity trans-
formation of the scattering matrix, S. We define the cloud albedo 〈Ω〉 as the ratio of the
outgoing flux (213) to the incoming flux (211),

〈Ω〉 =
Z{out}

Z{in}

=
((0|Ω|Z{in}}
((0|Z{in}} . (217)

Since the cloud albedo 〈Ω〉 of (217) is a ratio of an outgoing flux to an incoming flux, it is
equivalent to an astronomical Bond albedo – as is the single-scattering albedo ω̃.

In a subsequent paper we will show that

((0|Ω → ((0|, as ω̃ → 1. (218)
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Figure 13: Transmission fraction T versus optical depth τc for a pure-scattering cloud
(ω̃ → 1) and modeled with 2n = 10 streams. The scattering phases are isotropic, Rayleigh,
maximum forward with p(µ) = ̟{n}(µ) from (134) and maximum backward with p(µ) =
̟{n}(−µ). The input intensity, |I{in} = |µ2n), is nearly vertical, with a direction cosine
µ2n = 0.9739. The forward-scattering is peaked at ̟{n}(µ = 1) = n(n + 1) = 30. For pure
scattering, the cloud reflection is R = 1−T and there is no absorption, A = 0. For an optical
depth of τc = 20, the transmitted fractions for backward, isotropic, Rayleigh and forward
scattering are: 0.0469, 0.0770, 0.0773, and 0.3299. See the text for more discussion.

The limiting behavior (218) implies that the cloud albedo (217) approaches unity as ω → 1,

〈Ω〉 → 1, as ω̃ → 1, (219)

irrespective of the cloud thickness τc, the scattering phase function p(µ, µ′), or the nature of
the incident flux, |Z{in}} = 4π(µ̂u − µ̂d)|I{in}}. An example of (219) can be seen on Fig. 15.

7.4 Examples of radiative transfer in clouds

In Fig. 10 we show Z(τ)/Z{in}, calculated with (203), (209) and (210), and with the most
vertical possible input intensity |I{in}} = |µ2n) for a non-emissive (cold) cloud of optical
depth τc = 8. The cloud has a Rayleigh-scattering phase function like that of Fig. 3, and
it has very weak single-scattering absorption, 1 − ω̃ = 0.01, comparable to that of Earth’s
clouds for sunlight. To facilitate plotting Fig. 10, only 2n = 10 streams were used. The
fluxes change very little with the number of streams. For example, the transmissivities are
T = Z(τc)/Z

{in} = 0, 1167, 0.1204, and 0.1225 for 2n = 6, 10, and 32 streams. The increased
transmission for more streams is mainly due to the shorter relative slant path of the input
stream through the cloud, ς2n = 1/µ2n = 1.0724, 1.0268, and 1.0027, for 2n = 6, 10 and 32.

Shown on the left panel of the figure are the unweighted intensities I(µi, τ) = w−1
i ((µi|I(τ)}

at various optical depths τ . At the bottom of the cloud the only non-zero amplitude of up-
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Figure 14: Transmission fraction T versus optical depth τc for a pure-scattering cloud like
Fig. 13, but with 2n = 32 streams. The input intensity, |I{in} = |µ2n), is more vertical,
with a direction cosine µ2n = 0.9973, and the forward-scattering is more strongly peaked
at ̟{n}(µ = 1) = n(n + 1) = 272. The transmission for the maximum forward scattering
phase function increases from 33% to 64%. The transmission for isotropic, Rayleigh or
maximum backward scattering is not changed much. For an optical depth of τc = 20, the
transmitted fractions for backward, isotropic, Rayleigh and forward scattering are: 0.0467,
0.0782, 0.0786, and 0.6369.

ward intensity is I(µ2n, 0) = w−1
2n ((µ2n|I{in}}, that of the single, nearly vertical input stream.

The downward intensity at the bottom of the cloud I(µj, 0), comes from diffuse reflection. In
the middle of the cloud, at optical depth τ = 4, the intensity I(µi, 4) is roughly isotropic, but
has an upward bias. At the top of the cloud, there is no downward intensity, I(µj, 8) = 0, but
there is diffusely transmitted upward intensity, I(µk, 8) > 0. Because of the isotropization
by multiple scattering, the outgoing light from the top of the cloud retains no trace of the
directionality of the nearly vertical incoming stream at the bottom of the cloud.

The right panel of Fig. 10 shows the relative total flux Z(τ)/Z{in}. For the large optical
depth of the cloud, τc = 8, the coherent transmission ≈ e−8 = 3.35×10−4, is much too small
to display on the graph. But the weak absorption and multiple scattering allows about 12%
of the radiation to reach the top of the cloud as diffuse transmission.

Fig. 11 has all the same parameters as Fig. 10, except for 100 times weaker single-
scattering absorption, 1− ω̃ = 0.0001. This increases the transmission of the cloud to about
18% and it reduces the absorption to only 0.18%, too small to be recognizable on the figure.

The plots of Fig. 12 are like those of Fig. 10, but the Rayleigh-scattering phase function
has been replaced by the forward-scattering phase function, p(µ) = ̟{3}(µ), of Fig. 4,
constructed from the first 2p = 6 Legendre polyomials. This modestly peaked forward-
scattering, (p(1) = 12), more than triples the transmitted fraction of flux, from 12% to 38%.
The reflected flux decreases from 73% to 47%.
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Figure 15: Cloud albedos 〈Ω〉 of (217) for optically thick clouds with the albedo matrices Ω
of (233) and with the most vertical possible incident intensity |I{in}} = |µ2n) , versus single-
scattering albedo ω̃. Albedos are shown for four different scattering phase functions which
are discussed further in the text. The results depend little on the number n of stream pairs.
In this plot 2n = 32. For ω̃ = 0.8 the cloud albedos 〈Ω〉 for forward, isotropic, Rayleigh,
and backward scattering are: 0.1029, 0.2857, 0.2907 and 0.4234. For all the same conditions
except 2n = 6, the values of 〈Ω〉 become: 0.1111, 0.2976, 0.3011, and 0.4277. In accordance
with (219), all of the cloud albedos approach unity, 〈Ω〉 → 1 as the single-scattering albedo
approaches unity, ω̃ → 1. See the text for more discussion.

Fig. 13 shows the fraction of a nearly vertical stream that is transmitted through a
cloud with negligible single-scattering absorption, ω̃ → 1, as a function of the cloud’s optical
depth τc. The radiative transfer is modeled with 2n = 10 streams. Four different scattering
phase functions were assumed, isotropic, Rayleigh, maximum forward scattering with p(µ) =
̟{n}(µ) from (134) and the corresponding maximum backward scattering phase p(µ) =
̟{n}(−µ).

Fig. 14 is the same as Fig. 13, except that the transmission is modeled with 2n = 32
streams. This makes very little difference to the transmission for clouds with isotropic,
Rayleigh or backscattering phase functions, but it greatly increases the transmission of the
cloud with maximum forward-scattering phase function, p(µ) = ̟{n}(µ) of (134).

Fig. 15 shows cloud albedos 〈Ω〉 of (217) for optically thick clouds, with τc = ∞,
versus the single-scattering albedo ω̃ for four different scattering phase functions: isotropic
scattering, with the simplest scattering phase function p(µ) = 1; Rayleigh scattering like
that of Fig. 3 with the phase function p(µ) = (3/4)(1 + µ2); forward scattering like that of
Fig. 4 with the phase function p(µ) = ̟{3}(µ), the maximum forward scattering that can be
modelled with the first six Legendre polynomials; and backward scattering like that of Fig. 5
with the phase function p(µ) = ̟{3}(−µ). The phase functions ̟{p}(µ) are defined by (134).
Not surprisingly, clouds with backward-scattering phase functions have significantly larger
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Figure 16: The top panels are reproductions of Fig. 21 from Chandrasekhar’s book Radiative

Transfer[2]. Diffuse reflections and transmissions were calculated for conservative isotropic
scattering in clouds of optical depths τc = 0.25 (red), 0.5 (green), 1 (light blue) and 2 (dark
blue). The diffuse reflections increase with increasing optical depth. Assuming radiation
incident on the bottom of the cloud, the diffuse reflections on the left are plotted versus
“south-latitude” angles θ. Diffuse transmissions on the right are plotted versus “north-
latitude” angles θ. The bottom two panels are the same quantities calculated with the
2n = 32-stream model, at the latitude angles corresponding to the Gauss-Legendre cosines
µi with near unity single-scattering albedo, ω̃ = 1− 10−6, and for isotropic scattering. The
diffuse part, SD, of the scattering matrix is given by (208). The incident stream was chosen
to have a Gauss-Legendre cosine, µ{in} = µ23 = 0.5877, as close as possible to the value
µ{in} = 0.6 used for Chandrasekhar’s calculations.

cloud albedos than those with forward-scattering phase functions, where photons penetrate
deeply into the cloud and require many more collisions to reverse direction and “random
walk” out of the cloud before being absorbed.

7.5 Comparison with Chandrasekhar

In Fig. 21 and Fig. 22 of Radiative Transfer[2], Chandrasekhar displays diffuse transmission
and reflection for isotropic scattering, calculated for relatively thin clouds with optical depths
τc = 0.25, 0.5, 1 and 2.

In Fig. 16 we compare diffuse reflection and transmission, calculated with (208) with
the results shown in Chandrasekhar’s Fig. 21, conservative isotropic scattering with single-
scattering albedo ω̃ = 1. Chandrasekhar’s Fig. 22, calculated with ω̃ = 0.9, should be
compared with our Fig 17. The results from the 2n-stream model, with 2n = 32 can hardly
be distinguished from those of Chandrasekhar.

With the 2n-stream model it is easy to make calculations analogous to those of Fig. 16
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Figure 17: Like Fig. 16, but the top two panels are reproductions of Fig. 22 from Chan-
drasekhar’s book, and the single-scattering albedo was ω̃ = 0.9. The finite single-scattering
absorption probability, 1− ω̃ = 0.1, has the largest effect on clouds with the largest optical
depth.

and Fig. 17 for diffuse reflection and transmission with any nonnegative phase function that
can be expanded on the first 2n Legendre polynomials. It appears to be much harder to
extend the methods outlined by Chandrasekhar beyond isotropic scattering.

7.6 Block Matrices

To facilitate subsequent discussions, we will represent some of the operators defined above
as blocks of matrix elements between upward or downward, left or right basis vectors. As
illustrated below, the basis vectors may be in either µ-space or λ-space or both, depending
on the task at hand.

It is natural to write the scattering matrix as the sum of four blocks of elements between
left and right basis vectors in µ-space,

S = Sdd + Sud + Sdu + Suu, (220)
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where

Sdd =
∑

jj′

|µj)((µj|S|µj′)((µj′| =
[

Sdd 0̂

0̂ 0̂

]

, (221)

Sud =
∑

kj′

|µk)((µk|S|µj′)((µj′| =
[

0̂ 0̂

Sud 0̂

]

, (222)

Sdu =
∑

jk′

|µj)((µj|S|µk′)((µk′| =
[

0̂ Sdu

0̂ 0̂

]

, (223)

Suu =
∑

kk′

|µk)((µk|S|µk′)((µk′| =
[

0̂ 0̂

0̂ Suu

]

. (224)

As shown in (221) - (224), we will use the same symbol Sqq′ to denote either: (1) an n× n
block of matrix elements, or (2) the full 2n × 2n matrix, padded with three n × n arrays
of zeros, denoted by the symbol 0̂. The context will normally make clear which quantity is
meant.

In an analogous way, we write the incoming matrix I of (199) as

I = Idd + Iud + Idu + Iuu. (225)

The blocks are arrays of matrix elements between the left basis vectors ((µi| and the right
basis vectors |λi′),

Idd =
∑

jj′

|µj)((µj|I|λj′)((λj′| =
[

Idd 0̂

0̂ 0̂

]

. (226)

The block matrices Iud, Idu and Iuu are defined in analogy to (221) - (224) and (226).
In like manner we write the outgoing matrix O of (201) as

O = Odd +Oud +Odu +Ouu. (227)

where

Odd =
∑

jj′

|µj)((µj|O|λj′)((λj′| =
[

Odd 0̂

0̂ 0̂

]

. (228)

The block matrices Oud, Odu and Ouu are defined in analogy to (221) - (224) and (228).
We will write I−1, the inverse of the incoming matrix (199), as arrays of matrix elements

between the left basis vectors ((λi| and the right basis vectors |µi′).

I−1 = (I−1)dd + (I−1)ud + (I−1)du + (I−1)uu, (229)

where

(I−1)dd =
∑

jj′

|λj)((λj|I−1|µj′)((µj′| =
[

(I−1)dd 0̂

0̂ 0̂

]

, (230)

The block matrices (I−1)ud, (I−1)du and (I−1)uu are defined in analogy to (221) - (224) and
(230).
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Figure 18: Intensities for two clouds in series. The atmosphere is completely transparent in
the mid-layer between the lower cloud with scattering matrix S(1) and the upper cloud with
scattering matrix S(2).

7.7 Optically thick clouds

A simple limiting case of radiative transfer is an optically thick cloud, where τc → ∞ and
e−κ̂uτc → 0̂ and eκ̂dτc → 0̂. Then the incoming matrix I of (199) and the outgoing matrix O
of (201) approach the limits

I →
[

Cdd 0̂

0̂ Cuu

]

, and O →
[

0̂ Cdu
Cud 0̂

]

, (231)

Then the scattering matrix (206) approaches the limit

S →
[

0̂ Cdu(Cuu)−1

Cud(Cdd)−1 0̂

]

, (232)

For optically thick clouds there is no transmission from the bottom to the top of the cloud or
vice-versa, so Suu = 0̂ and Sdd = 0̂. Diffuse reflection from the bottom and top of the cloud
are represented by the nonzero, n × n matrices Sdu = Cdu(Cuu)−1 and Sud = Cud(Cdd)−1.
Chandrasekhar[2] discusses optically thick clouds (which he calls semi-infinite) for isotropic
and Rayleigh scattering phase functions in his Chapter VI.

The cloud albedo matrix (216) for an optically thick cloud approaches

Ω → −
[

0̂ µ̂dCdu(Cuu)−1ς̂u
µ̂uCud(Cdd)−1ς̂d 0̂

]

, (233)
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7.8 Clouds in series

The scattering matrices, S{1} and S{2}, of two clouds “in series,” like those of Fig. 18 can
be combined to form a single scattering matrix S. If we write the scattering matrices of the
lower and upper clouds as

S(1) =

[

S(1)
dd S(1)

du

S(1)
ud S(1)

uu

]

, and S(2) =

[

S(2)
dd S(2)

du

S(2)
ud S(2)

uu

]

, (234)

then the addition formula is

S =





S(1)
dd

(

1̂− S(2)
duS

(1)
ud

)−1

S(2)
dd S(1)

ddS
(2)
du

(

1̂− S(1)
udS

(2)
du

)−1

S(1)
uu + S(1)

du

S(2)
uuS(1)

ud

(

1̂− S(2)
duS

(1)
ud

)−1

S(2)
dd + S(2)

ud S(2)
uu

(

1̂− S(1)
udS

(2)
du

)−1

S(1)
uu



 . (235)

To prove (235) we see from inspection of Fig. 18 that we can write 4 equations that relate
intensities and scattering matrices at the four cloud boundaries:

|I{out}u } = S(2)
ud |I

{in}
d }+ S(2)

uu |I{mid}
u }, (236)

|I{mid}
d } = S(2)

dd |I
{in}
d }+ S(2)

du |I{mid}
u }, (237)

|I{mid}
u } = S(1)

uu |I{in}u }+ S(1)
ud |I

{mid}
d }, (238)

|I{out}d } = S(1)
du |I{in}u }+ S(1)

dd |I
{mid}
d }. (239)

Here (236) relates the intensities at the top of the upper cloud; (237) relates intensities at
the bottom of the upper cloud; (238) relates intensities at the top of the lower cloud, and
(239) relates intensities at the bottom of the lower cloud.

In analogy to (174), we write the downward and upward input intensities as the column
vector

|I{in}} =

∣

∣

∣

∣

∣

|I{in}d }
|I{in}u }

}

=

∣

∣

∣

∣

|Id(τ1 + τ2)}
|Iu(0)}

}

. (240)

We have assumed that the mid interval beween the clouds is transparent, with negligibly
small optical depth, so the total optical depth from the bottom of the lower cloud to the
top of the upper cloud is τ1 + τ2, the sum of the optical depth τ1 of the lower cloud and the
optical depth τ2 of the upper cloud.

The downward and upward parts of the mid intensity can be written as

|I{mid}} =

∣

∣

∣

∣

∣

|I{mid}
d }

|I{mid}
u }

}

=

∣

∣

∣

∣

|Id(τ1)}
|Iu(τ1)}

}

. (241)

In analogy to (175) we write the downward and upward parts of the outward intensity as

|I{out}} =

∣

∣

∣

∣

∣

|I{out}d }
|I{out}u }

}

=

∣

∣

∣

∣

|Id(0)}
|Iu(τ1 + τ2)}

}

. (242)
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From (236) and (239) we can write the outward intensity in terms of the mid intensity
and input intensity as

|I{out}} = M|I{mid}}+Q|I{in}}. (243)

The coupling matrices are

M =

[

S(1)
dd 0̂

0̂ S(2)
uu

]

. (244)

and

Q =

[

0̂ S(1)
du

S(2)
ud 0̂

]

. (245)

From (237) and (238) we see that the mid intensity and input intensity are related by

P|I{mid}} = N|I{in}}. (246)

where the matrices P and N are

P =

[

1̂ −S(2)
du

−S(1)
ud 1̂

]

. (247)

and

N =

[

S(2)
dd 0̂

0̂ S(1)
uu

]

. (248)

Combining (243) with (246) we find

|I{out}} = S|I{in}}. (249)

where the overall scattering matrix for the two clouds is

S = MP−1N +Q. (250)

One can verify that the inverse of the matrix P of (247), which is needed to evaluate (250)
can be written as

P−1 =





(

1̂− S(2)
duS

(1)
ud

)−1

S(2)
du

(

1̂− S(1)
udS

(2)
du

)−1

S(1)
ud

(

1̂− S(2)
duS

(1)
ud

)−1 (

1̂− S(1)
udS

(2)
du

)−1



 . (251)

Using (244), (245), (248) and (251) in (250) we find (235).
One can divide the atmosphere into vertical layers of clear air or cloudy air. Each layer

will have a scattering matrix. Starting from the bottom, one can use (235) to combine the
scattering matrices of the first two layers. This net scattering matrix for the first two layers
can then be combined with the scattering matrix of the third layer, using (235) once again,
to get a single scattering matix for the first three layers. This procedure can be continued
to get a net scattering matrix for all atmospheric layers, from the surface to the top of the
atmosphere.
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7.9 Nonnegative S
The elements Sii′ of the scattering matrix are the probabilities of scattering from an initial
stream i′ to a final stream i. We therefore expect the elements of the scattering matrix to
be nonnegative. Suppose that all elements of the scattering matrices, S{1} and S{2} of the
two clouds of (234) are nonnegative

S(1)
ii′ ≥ 0, and S(2)

ii′ ≥ 0. (252)

Then (252) implies that the compound scattering matrix of the two clouds, with elements
given by (235), is also nonnegative

Sii′ ≥ 0. (253)

To prove (253) we note that we can write the n× n inverse matrix in the upper left corner
of (235) as the geometric series

(

1̂− S(2)
duS

(1)
ud

)−1

= 1̂ +
(

S(2)
duS

(1)
ud

)

+
(

S(2)
duS

(1)
ud

)2

+ · · · (254)

Since products and sums of nonnegative matrices are non-negative, the inverse matrix (254)
is non-negative. To evaluate the n×n matrix Sdd in the upper left corner of (235), the non-

negative matrix (254) is multiplied on the left by the nonnegative matrix S(1)
dd and on the

right by the nonnegative matrix S(2)
dd . Therefore, Sdd is nonnegative. Analogous arguments

show that the matrices Sdu, Sud and Suu of the other three corners of (235) are nonnegative.
This completes the proof of (253).

Since the scattering matrix for a cloud of finite optical thickness can be compounded from
optically thin layers, and since we showed in Section 7.1 that the elements of the scattering
matrix of an optically thin cloud are non-negative, we conclude that (253) is true in general.

8 Thermal Emission

Greenhouse molecules continuously make transitions between vibration-rotation energy levels
as they absorb or emit radiation. Small water droplets or ice crystallites in clouds also emit
and absorb thermal radiation with corresponding changes in internal energy. However, under
atmospheric conditions, radiative heat transfer to and from greenhouse molecules is orders
of magnitude slower than energy transfer by collisions with other atmospheric molecules.
Radiative heating or cooling of cloud particulates is also orders of magnitude slower than heat
conduction from the surrounding air, or the latent heat fluxes of condensing or evaporating
water molecules.

For thermal radiation with strongly absorbed frequencies, greenhouse-gas molecules,
cloud particulates and the air that surrounds them are very nearly in local thermal equi-
librium at the same temperature. But for frequencies where the optical depth between the
cloud and outer space is of order 1 or less the radiation is not in equilibrium with the air.
More thermal radiation goes upward toward space than comes back downward. In thermal
equilibrium, radiation must be isotropic, and its dependence on frequency ν must be given
by (7). Only in the center of optically thick clouds can this be true.
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Over most of the troposphere, more thermal radiation is emitted than absorbed from air
parcels. This cools the parcel and decreases its entropy. In contrast, adiabatic cooling due
to expansion of air parcels maintains constant entropy but it decreases the internal energy
due to the p dV work done. For this reason, radiative cooling is sometimes called diabatic
(entropy-changing) cooling, to highlight the difference from adiabatic cooling.

The intensity |T} of thermal radiation in a cloud must satisfy the equation of radiation
transfer (62), which becomes

(

d

dτ
+ κ̂

)

|T} = κ̂|B}, (255)

The boundary conditions needed for a complete solution of (255) are that thermal radiation
emitted inside the cloud must flow out of the top or bottom. No internally generated
radiation can flow into the top or bottom.

9 Green’s function

A convenient way to solve (255) is with a point-response function or Green’s function,
|G(τ, τ ′)} ,

|T (τ)} =

∫ τc

0

dτ ′|G(τ, τ ′)}B(τ ′). (256)

Substituting (256) into (255) we find that the Green’s function must satisfy equation

∫ τc

0

dτ ′
[(

∂

∂τ
+ κ̂

)

|G(τ, τ ′)} − δ(τ − τ ′)κ̂|0)
]

B(τ ′) = 0. (257)

For (257) to be true for arbitrary Planck intensities B(τ ′), the Green’s function must satisfy
the differential equation

(

∂

∂τ
+ κ̂

)

|G(τ, τ ′)} = δ(τ − τ ′)κ̂|0). (258)

It will be convenient subsequently to write the Green’s function as

|G(τ, τ ′)} = |G{∞}(τ − τ ′)}+ |∆G(τ, τ ′)}. (259)

One can verify that a particular solution to (258) is

|G{∞}(τ − τ ′)} = H(τ − τ ′)κ̂ue
−κ̂u(τ−τ ′)|0)−H(τ ′ − τ)κ̂de

−κ̂d(τ−τ ′)|0)

= δ(τ − τ ′)|0) + ∂

∂τ ′

[

H(τ − τ ′)e−κ̂u(τ−τ ′) −H(τ ′ − τ)e−κ̂d(τ−τ ′)

]

|0). (260)

Here H(τ) is the Heaviside unit step function.

H(τ) =







0, if τ < 0,
1/2, if τ = 0,
1, if τ > 0.

(261)
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In writing the second line of (260) we noted that the derivative of the Heaviside function is
the Dirac delta function,

d

dτ
H(τ) = δ(τ). (262)

The Green’s function |G{∞}(τ − τ ′)} for a hypothetical infinite cloud is the intensity that
would be generated at the optical depth τ by a thin layer of emitters at the optical depth
τ ′. The cloud is assumed to have the same single-scattering albedo ω̃ and scattering phase
function, p(µ, µ′), from optical depths τ = −∞ to τ = +∞. Therefore, |G{∞}(τ − τ ′)} is
invariant to equal displacements of the optical depths τ and τ ′.

The Green’s function (259) includes a part, |∆G(τ, τ ′)}, that is a solution of the homo-
geneous version of (258),

(

∂

∂τ
+ κ̂

)

|∆G(τ, τ ′)} = 0̂. (263)

Using (192) we write
|∆G(τ, τ ′)} = U(τ)|A(τ ′)}. (264)

The amplitude |A(τ ′)}, which depends on the optical depth τ ′ of the point source, can be
determined from the boundary condition that no thermal radiation generated by the cloud
comes into the top or bottom.

The value of the Green’s function (259) for observation points at the top of the cloud,
where τ = τc, is

|G(τc, τ ′)} = |G{∞}(τc − τ ′)}+ |∆G(τc, τ ′)}
= κ̂ue

−κ̂u(τc−τ ′)|0) +
[

Ld + e−κ̂uτc
]

|A(τ ′)}. (265)

For observation points at the bottom of the cloud, where τ = 0, we find

|G(0, τ ′)} = |G{∞}(−τ ′)}+ |∆G(0, τ ′)}
= −κ̂deκ̂dτ

′ |0) +
[

eκ̂dτc + Lu

]

|A(τ ′)}. (266)

Using (265) with the boundary condition, Md|G(τc, τ ′)} = 0̂, of no downward internally
generated thermal radiation at the top of the cloud, and using (266) with the boundary
condition, Mu|G(0, τ ′)} = 0̂ of no internally generated upward thermal radiation at the
bottom of the cloud, we find

0̂ = Cduκ̂ue−κ̂u(τc−τ ′)|0) +
[

Cdd + Cdue−κ̂uτc
]

|A(τ ′)}, (267)

0̂ = −Cudκ̂deκ̂dτ
′|0) +

[

Cudeκ̂dτc + Cuu
]

|A(τ ′)}. (268)

Summing the left and right sides of equations (267) and (268) we find

0̂ =
[

Cduκ̂ue−κ̂u(τc−τ ′) − Cudκ̂deκ̂dτ
′

]

|0)
+

[

Cdd + Cdue−κ̂uτc + Cudeκ̂dτc + Cuu
]

|A(τ ′)}. (269)

Introducing the matrix
R(τ ′) = −Cdue−κ̂u(τc−τ ′) + Cudeκ̂dτ

′

, (270)
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and noting the definition (199) of I, we rewrite (269) as

∂

∂τ ′
R(τ ′)|0) = I|A(τ ′)}. (271)

Since I is independent of τ ′ we can solve (271) for |A(τ ′)} to find

|A(τ ′)} =
∂

∂τ ′
I−1R(τ ′)|0) (272)

Substituting (272) into (264) we find

|∆G(τ, τ ′)} =
∂

∂τ ′
U(τ)I−1R(τ ′)|0). (273)

Adding (260) to (273) gives an explicit expression for |G(τ, τ ′)}, the total Green’s function
(259) of the cloud.

|G(τ, τ ′)} = δ(τ − τ ′)|0)

+
∂

∂τ ′

[

H(τ − τ ′)e−κ̂u(τ−τ ′) −H(τ ′ − τ)e−κ̂d(τ−τ ′) + U(τ)I−1R(τ ′)

]

|0). (274)

9.1 Isothermal emitting cloud

If the cloud is isothermal, the Planck intensity B(τ ′) can be taken to have the τ ′-independent
value B. Then we can use (256) with (274) to write the thermal intensity in the cloud as

|T (τ)} = B

∫ τc

0

dτ ′|G(τ, τ ′)}

= |B}+
[

H(τ − τ ′)e−κ̂u(τ−τ ′) −H(τ ′ − τ)e−κ̂d(τ−τ ′) + U(τ)I−1R(τ ′)

]τ ′=τc

τ ′=0

|B}

=

[

1̂− e−κ̂d(τ−τc) + U(τ)I−1R(τc)− e−κ̂uτ − U(τ)I−1R(0)

]

|B}

=

[

1̂− U(τ) + U(τ)I−1{R(τc)−R(0)}
]

|B}. (275)

From (270), (199) and (163) we find

R(τc)−R(0) = −Cdu + Cudeκ̂dτc + Cdue−κ̂uτc − Cud
= I − 1̂. (276)

Substituting (276) into (275) we find that the thermal radiation generated by the cloud is

|T (τ)} =

[

1̂− U(τ)I−1

]

|B}. (277)
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Figure 19: Thermal emission, computed with (277) for a forward-scattering cloud of optical
depth τc = 8. The cloud is isothermal with a constant value of the Planck intensity B =
1. The radiation is modeled with 2n = 10 streams. The lengths of the blue rays are
proportional to the intensities of the thermal radiation, T (µi, τ) = w−1

i ((µi|T (τ)}, generated
in the cloud. The forward-scattering phase function is constructed from the first 2p = 6
Legendre polynomials, like that of Fig. 4. The single-scattering albedo is ω̃ = 0.9. At the
center of the cloud, at an optical depth ∆τ = 4 from both the top and bottom, the thermal
radiation is nearly isotropic, but slightly more intense in horizontal than vertical directions.
At the top and bottom of the cloud, marked by the horizontal black lines, there is only
outgoing, “limb-darkened” thermal radiation.

From (277) we see that the thermal outgoing radiation from the cloud is

|T {out}} = Md|T (0)}+Mu|T (τc)}
=

[

Md +Mu − {Md U(0) +Mu U(τc)}I−1
]

|B}
=

[

1̂−OI−1
]

|B}
= E|B}. (278)

The outgoing matrix O was defined by (201). According to (206), the scattering matrix of
the cloud is S = OI−1. So from (280) we see that the emissivity matrix is

E = 1̂−OI−1 = 1̂− S. (279)

Eq. (279) is Kirchhoff’s law (178). As a consistency check, we use (277) and (199) to show
that the thermal radiation coming into the cloud is

|T {in}} = Mu|T (0)}+Md|T (τc)}
=

[

Mu +Md − {Mu U(0) +Md U(τc)}I−1
]

|B}
=

[

1̂− II−1
]

|B}
= 0̂. (280)
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Figure 20: Like Fig. 19, but for an isothermal cloud with optical depth τc = 8, located above a
warmer black surface with Planck intensity 1.2B that is 20% larger than the Planck intensity
B of the cloud. The intensity in the cloud is a combination of “blue” thermal emission by
cloud particulates, computed with (277), and attenuated “red” thermal radiation from the
warmer surface, calculated with (203). The total intensity is the sum of the lengths of the
two colored segments. The upward radiation from the surface has the incident intensity
|I{in}} = Mu|0)1.2B and is Lambertian. At increasing optical depths above the surface, the
slant rays of the red surface radiation are more attenuated than the more vertical radiation,
which leads to increasing limb darkening with altitude. Very little “red” surface radiation
emerges from the cloud top, where the outgoing radiation is almost all “blue” thermal
radiation generated in the cloud. A relatively small amount of “red” surface radiation is
diffusely reflected from the bottom of the cloud.

10 Summary

Here we summarize the most important differences between the results of our 2n-stream
model and previous work. Additional interesting and useful results will be discussed in
subsequent papers.

We consider axially symmetric variables, like the intensity I(µ, τ), that depend on the
direction cosine µ of the radiation, and on the optical depth τ above the bottom of a cloud.
Using Dirac notation, similar to that used for the analysis of Schrödinger’s equation in
quantum mechanics, we write the equation of transfer in the formally simple, but completely
general form (62). The propagation of radiation is controlled by the 2n×2n exponentiation-
rate matrix κ̂ of (63) that is analogous to the quantum mechanical Hamiltonian operator
H . The intensity is described by an abstract state vector |I(τ)} that depends on the optical
depth τ in a similar way to the dependence of a spin wave function |ψ(t)〉 on the time t.

As exemplified in (121), we represent radiative variables as a superposition of 2n basis
vectors, the right stream bases |µi) and the left stream bases ((µi| of (95) and (96). The
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stream indices are i = 1, 2, 3, . . . , 2n. The streams have nominal zenith angles θi = cos−1 µi.
According to (66), the Gauss-Legendre direction cosine µi is a root of the Legendre polyno-
mial P2n, that is, P2n(µi) = 0. Representative projections 〈µ|µi) of the stream bases onto
continuous direction-cosine states 〈µ| of (26) are shown in Fig. 1. The maximum values
of |〈µ|µi)| occur for µ ≈ µi. So the stream bases |µi) represent radiation propagating with
directions close to that of the zenith angle θi = cos−1 µi.

As in quantum mechanics, we think of bases as eigenvectors of “observables.” In (105) we
show that the stream bases |µi) are right eigenvectors of the 2n× 2n direction-cosine matrix
µ̂ of (36), or of its inverse, the direction-secant matrix ς̂ of (44). The left eigenvectors of
µ̂ are denoted by ((µi|. The double left parenthesis is a reminder that the left eigenvectors
are not Hermitian conjugates of the right eigenvectors. Many radiative-transfer variables in
2n space can be conveniently represented with non-Hermitian matrices. So it is not always
possible to write left and right eigenvectors as Hermitian conjugate pairs.

Radiative transfer is parameterized by the single scattering-albedo ω̃ and by the scattering
phase function p(µ, µ′). The fraction of photons scattered by a collision is ω̃. The fraction
absorbed and converted to heat is 1 − ω̃. The fraction of photons of initial direction cosine
µ′ that is scattered into direction cosines between µ and µ+ dµ is p(µ, µ′) dµ/2.

We have introduced a family of phase functions, p(µ, µ′ = 1) = ̟{p}(µ) of (134) which
are superpositions of the first 2p Legendre polynomials, and which produce the maximum
possible forward scattering. For a 2n-stream model one must have p ≤ n. The maximum-
forward-scattering phase function ̟{p}(µ) satisfies the constraints (5) and (6). The forward-
scattering values are ̟{p}(µ = 1) = p(p + 1). A representative forward-scattering phase
function ̟{3}(µ, µ′) is shown in Fig. 4, and others are shown in Fig. 6.

The homogeneous equation of transfer (191) has 2n independent solutions, |λi)e−κiτ .
The penetration modes |λi), defined by (144), are eigenfunctions of the exponentiation-
rate matrix κ̂, or of its inverse, λ̂ = κ̂−1, the penetration-length matrix. Representative
projections 〈µ|λi) of the penetration modes onto the direction-cosine states 〈µ| are shown in
Fig. 8 for a weakly absorbing cloud with 1− ω̃ = 0.001. For negligible scattering, ω̃ → 0, we
noted in (164) that the penetration modes are identical to the stream bases, |λi) = |µi), and
the penetration lengths are the same as the Gauss-Legendre cosines, λi = µi. For any value
of ω̃ < 0, the directional penetration modes |λi), with i = 2, 3, . . . , 2n− 1, are qualitatively
similar to the corresponding stream bases |µi). But for weak absorption, the upward quasi-
isotropic mode |λ2n), shown in the left panel of Fig. 8, has very little dependence on µ,
and it differs drastically from the stream basis |µ2n) on the left panel of Fig. 1, which is
strongly peaked near µ = 1. The downward quasi-isotropic mode |λ1) differs from |µ1) in an
analogous way. The quasi-isotropic modes represent the familiar, nearly uniform brightness
seen from all directions on a foggy day or from an aircraft flying through thick, sunlit clouds.

Representative penetration lengths, λi = 1/κi, the inverses of the exponentiation rates κi,
are plotted in Fig. 7 as a function of the single-scattering albedo ω̃. As ω̃ → 1, the penetra-
tion lengths λi separate into two groups. For the directional modes, with i = 2, 3, . . . , 2n−1,
the lengths |λi| are only slightly larger than the corresponding Gauss-Legendre cosines. |µi|.
The quasi-isotropic mode |λ2n), and its mirror image, |λ1) have divergent penetration lengths,
as one can see by inspection of Fig. 7. According to (167), as ω̃ → 1 the quasi-isotropic

penetration lengths are very nearly given by λ2n = −λ1 →
[

3(1− ω̃p1)(1− ω̃)
]1/2

.
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The optical-depth evolution operator U(τ) of (193) is the sum of exponentially growing or
decaying terms of the form e−κi(τ−τi)|λi)((λi|. As indicated by (194), for radiative transfer it is
convenient to choose reference optical depths τi = 0, at the bottom of the cloud, for decaying
modes with κi > 0. For growing modes, with κi < 0, the reference optical depths, τi = τc, are
most conveniently chosen at the top of the cloud. According to (203), the intensity |I(τ)}
at an optical depth τ inside a cloud is given in terms of the incident intensity |I{in}} at the
top and bottom of the cloud by |I(τ)} = U(τ)I−1|I{in}}, where the incoming matrix I was
given by (199).

We represent the overall radiation transfer in non-emissive clouds by the scattering matrix
S of (206). According to (205), the outgoing intensity, |I{out}}, from the top and bottom of
the cloud is related to the incoming intensity |I{in}} by |I{out}} = S|I{in}}. The scattering
matrices S(1) and S(2) of two clouds in series can be represented by a single scattering matrix
S, given by the addition formula of (235).

We consider not only the scattering of external radiation by clouds but also the thermal
emission of radiation by warm molecules or particulates inside clouds. The Green’s function
(or point-response function) G(τ, τ ′) of (274) can be used to calculate the thermally emitted
intensity |T (τ)} within a non-isothermal cloud with (256). For the simple case of an isother-
mal cloud with a constant Planck intensity |B}, (278) shows that the thermally generated
intensity going out of the cloud is |T {out}} = E|B}, where E is the emissivity matrix of
the cloud. In agreement with Kirchhoff’s law, (279) shows that the sum of the isothermal
emissivity matrix and the scattering matrix is the unit matrix, E + S = 1̂.

Fig. 16 compares diffuse reflection and transmission for pure isotropic scattering in clouds
of various optical depths τc. The top panels of Fig. 16 reproduce Fig. 21 of Chandrasekhar[2].
The bottom panels are the results of a 32-stream calculation with ω̃ = 1 − 10−6 and with
an input stream |I{in}} = |µ23), where µ23 = 0.5877 is the Gauss-Legendre cosine that is
closest to the input cosine µ = 0.6 used by Chandrasekhar. In our Fig. 17 we show a similar
comparison to Chandrasekhar’s Fig. 22 where the single-scattering albedo was ω̃ = 0.9.
Our results can hardly be distinguished from those of Chandrasekhar, who used “X and Y
functions” of §61(1) and §61(2), the solutions of complicated integral equations.

The 2n values of intensity, I(µi, τ) = w−1
i ((µi|I(τ)}, can be used to make physically

instructive plots like Fig. 10, which shows how part the nearly vertical radiation incident
on the bottom of a cloud is diffusely reflected and part is transmitted. For optically thick
clouds like that of Fig. 10, with τc = 8, but with very small single-scattering absorption
1 − ω̃ = 10−2, appreciable transmission (12%) is possible because of multiple scattering.
Multiple scattering nearly “isotropizes” the intensity near the center of the cloud. At the
top of the cloud, there are upward transmitted streams, but no downward streams. At the
bottom of the cloud there is a strong incident stream |I{in}} = |µ2n), and relatively weak
diffusely reflected streams I(µj, τ = 0) with µj < 0.

Fig. 11 shows what happens when the single-scattering absorption is reduced by a factor
of 100 from that of Fig. 10, to 1 − ω̃ = 10−4. For such small single-scattering absorption,
the absorption in the cloud is also negligible and the flux is nearly constant from the bottom
to the top of the cloud. The formalism outlined in this paper does not work if there is no
absorption at all and ω̃ = 1. As we will show in a subsequent paper, minor modifications
in the computational steps outlined above allow us to calculate radiative tranfer for ω̃ = 1,
Chandrasekhar’s “conservative scattering.”
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Other interesting calculations are summarized in Fig. 13, which shows how the trans-
mission of radiation from the bottom to the top of a cloud with negligibly small absorption
1− ω̃ ≪ 1 depends on the optical depth τc of the cloud and on the nature of the scattering
phase function p(µ, µ′). Not suprisingly, the transmission is greatest for forward scattering
and least for backward scattering.

Fig. 15, for an optically thick cloud, shows the cloud albedo, 〈Ω〉, of (217). The cloud
albedo is the fraction of the vertical flux reflected from the bottom of a cloud, as opposed to
being absorbed. The cloud albedo depends on the single-scattering albedo ω̃, on the nature
of the scattering phase function p(µ, µ′), and on the angular distribution of the incident
intensity |I{in}}. If the cloud were not optically thick, its albedo would also depend on the
optical thickness τc.

Finally, Fig. 20 shows how blackbody thermal flux emitted from a warm surface prop-
agates into a cooler, isothermal cloud with single-scattering albedo ω̃ = 0.9, a forward
scattering phase function, ̟{3}(µ), and an optical depth τc = 8. Most of the surface radia-
tion is absorbed and replaced by thermal flux emitted by the cloud. A small fraction of the
radiation is diffusely reflected back into the surface, and a still smaller fraction is transmit-
ted out of the top of the cloud, where most of the emergent radiation has been thermally
generated by cloud particulates.

It is easy to use modern mathematical software like Matlab with this new 2n-stream
formalism to calculate a variety of radiative-transfer quantities, including diffuse reflection
or transmission, albedos, thermal emission, etc. A few dozen lines of code is usually suffi-
cient. It is easy to go beyond isotropic or Rayleigh-scattering phase functions of traditional
radiative transfer calculations to much more realistic and complicated ones. The family of
phase functions ̟{p}(µ) of (134) allows one to model radiation transfer with large forward-
scattering amplitudes, like the Mie scattering of sunlight in Earth’s clouds. We believe
that the 2n-stream formalism discussed here will be a useful new tool for radiative-transfer
calculations.

A Phase Functions for Maximum Forward Scattering

We turn now to the proof that the algebraic formula of (134) for ̟{p}(µ) gives the maximum
possible forward scattering for a phase function constructed from the first 2p = 2, 4, 6, . . .
Legendre polynomials. We assume that the maximum forward-scattering phase function can
be written as

̟{p}(µ) = (1 + µ)φ2(µ). (281)

Here φ(µ) is a polynomial of degree p− 1 which we expand in Legendre polynomials as

φ(µ) =

p−1
∑

l=0

φl gl Pl(µ). (282)

The coefficient gl is a diagonal element of the statistical weight matrix ĝ, defined by (157).
To facilitate further discussion we introduce a statistical-weight column vector |g〉 and row
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vector 〈g| with the elements

|g〉 =















g0
g1
g2
...

gp−1















, and 〈g| = [g0, g1, g2, · · · , gp−1]. (283)

Using (282) we write the forward-scattering phase (281) as

̟{p}(1) = 2φ2(1) = 2

(

p−1
∑

l=0

φlgl

)2

= 2
∑

ll′

φlqll′φl′. (284)

In (284) we have introduced the p× p symmetric matrix q̂, defined by

q̂ = |g〉〈g|, or ((l|q̂|l′) = qll′ = glgl′. (285)

As shown in (6), the area of the phase function ̟{p}(µ) is constrained to be

∫ 1

−1

dµ̟{p}(µ) =

∫ 1

−1

dµ (1 + µ)
∑

ll′

glφlPl(µ)gl′φl′Pl′(µ) = 2, (286)

or
1 =

∑

ll′

φlhll′φl′. (287)

Here the elements hll′ of the constraint matrix are

hll′ = glδll′ + glµ̂ll′, or ĥ = ĝ + ĝµ̂ = ĝ(1̂ + µ̂). (288)

The elements of the direction-cosine matrix µ̂ were given by (17) or (36), and they can be
used to write elements of the constraint matrix ĥ of (288) as

hll′ = ((l|ĥ|l′) =























1 1 0 0 0 0 · · ·
1 3 2 0 0 0 · · ·
0 2 5 3 0 0 · · ·
0 0 3 7 4 0 · · ·
0 0 0 4 9 5 · · ·
0 0 0 0 5 11 · · ·
...

...
...

...
...

...
. . .























(289)

We use a Lagrangian multiplier m to find the coefficients φl that maximize the forward-
scattering phase ̟{p}(1) of (284), subject to the constraint (287). Then we can vary the
amplitudes φk independently to find local maxima, minima or saddle points of the function

M(φ0, φ1, . . . , φn−1) = ̟{p}(1)−m
∑

ll′

φlhll′φl′. (290)
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For φk’s at a local maximum of M , we must have

0 =
∂

∂φk
M

=
∂

∂φk

∑

ll′

φl (2qll′ −mhll′)φl′

= 2
∑

l′

(2qkl′ −mhkl′)φl′, for k = 0, 1, 2, . . . , 2p− 1. (291)

In writing the last line of (291) we made use of the symmetries qll′ = ql′l and hll′ = hl′l. We
can write the last line of (291) as

2
∑

l′

qkl′φl′ = m
∑

l′

hkl′φl′, or 2|g〉〈g|φ) = mĥ|φ). (292)

Here we have introduced the column vector of multipole amplitudes

|φ) =















φ0

φ1

φ2
...

φp−1















. (293)

We can multiply the left version of (292) by φk, sum over k, and use (284) with (287) to find

̟{p}(1) = 2
∑

kl′

φkqkl′φl′

= m
∑

kl′

φkhkl′φl′

= m. (294)

The maximum value̟{p}(1) of the phase function is the same as the value ofm, the Lagrange
multiplier. Multiplying both sides of the second, matrix equation of (292) by ĥ−1 we find

m̂|φ〉 = m|φ〉, where m̂ = |f〉〈g|. (295)

The column vector |f〉 of (295) is

|f〉 = 2ĥ−1|g〉. (296)

To facilitate further discussion we introduce a p× 1 column vector, |x〉 of alternating 2’s
and 0’s, for which the last element is a 2.

|x〉 =















...
0
2
0
2















. (297)
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From inspection of (297) and (36) we see that

µ̂|x〉 =















...
2
0
2
0















. (298)

Therefore,

(1̂ + µ̂)|x〉 =















...
2
2
2
2















. (299)

The inverse ĝ−1 of the statistical-weight matrix ĝ of (157) has the matrix elements

((l|ĝ−1|l′) = g−1
l δll′. (300)

Using (300) with (283) and (299) we find

2ĝ−1|g〉 =















...
2
2
2
2















= (1̂ + µ̂)|x〉. (301)

Multiplying both sides of (301) by (1̂ + µ̂)−1, we find

|x〉 = 2(1̂ + µ̂)−1ĝ−1|g〉
= 2[ĝ(1̂ + µ̂)]−1|g〉
= 2ĥ−1|g〉
= |f〉. (302)

So the column vector |f〉 of (296) is the same as the column vector |x〉 of (297), for which
the elements alternate between 2 and 0, with xp−1 = 2.

In the eigenvalue equation of (295), the matrix m̂ = |f〉〈g| is the outer product between
the column vector |f〉 and row vector 〈g|. It is easy to find the eigenvectors |φ) and eigen-
values m of outer products. There are p − 1 degenerate eigenvalues, m = 0, corresponding
to any set of p − 1 independent vectors |φ) for which 〈g|φ) = 0. These solutions are of no
interest to us. The eigenvector corresponding to the single, potentially non-zero eigenvalue
can be chosen to be

|φ〉 = c|f〉. (303)

We will determine the constant c below. Substituting (303) into the eigenvalue equation of
(295) we find

c|f〉〈g|f〉 = cm|f〉. (304)
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Eq. (304) implies that
〈g|f〉 = m. (305)

Using (305) with the explicit form of |f〉 = |x〉 of (297) and 〈g| of (283) we find that the
value of the Lagrange multiplier m must be

m = 2(gp−1 + gp−3 + gp−5 + · · · )
= p(p+ 1). (306)

The sum on the first line of (306) only includes statistical weights gl for which l ≥ 0. One
can prove the last line of (306) by mathematical induction. Letting mp be the value of m for
the phase function (281) that is expanded on 2p Legendre polynomials, we see that (306) is
true for p = 1 and p = 2,

m1 = 2(1)

m2 = 2(3). (307)

If mp = p(p+ 1) for the integer p, then we can use (306) to write

mp+2 = 2gp+1 + p(p+ 1)

= 2(2p+ 3) + p2 + p

= p2 + 5p+ 6

= (p+ 2)(p+ 3). (308)

This completes the proof that (306) is true for all positive integers p.
Substituting the coefficients φl = cfl from (303) into (282) we find

φ(µ) =

p−1
∑

l=0

φl gl Pl(µ)

= 2c [gp−1Pp−1(µ) + gp−3Pp−3(µ) + · · · ]

= 2c
dPp

dµ
(µ). (309)

An identity of Legendre polynomials [12] was used to go from the second to the third line of
(309). Substituting (309) into (281) we find

̟{p}(µ) = 4c2(1 + µ)

[

dPp

dµ
(µ)

]2

. (310)

Evaluating (310) for forward scattering (µ = 1) and using (294) with (306) we find

̟{p}(1) = 8c2
[

dPp

dµ
(1)

]2

= p(p+ 1). (311)

The derivatives of the Legendre polynomials at the end point µ = 1 have the values [12]

dPp

dµ
(1) =

p(p+ 1)

2
. (312)
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Using (312) in (311) we find that the squared coefficient c2 of (310) must be

c2 =
1

2p(p+ 1)
. (313)

Substituting (313) into (310) gives (134) and completes the proof that ̟{p}(µ) is the phase
function constructed from the first 2p = 2, 4, 6, . . . Legendre polynomials that has the maxi-
mum possible forward-scattering value.
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