Phys 4050 Assignment 6

 Diamangetic susceptibility of atomic hydrogen. The wave function of the hydrogen atom in its ground state (1s) is

$$\psi = (\pi a_0^3)^{-1/2} \exp(-r/a_0)$$

where a_0 is the Bohr radius. The charge density is $-e |\psi|^2$ according to the statistical interpretation of the wave function. Show that for this state $< r^2 > = 3$ a_0^2 and calculate the molar diamagnetic susceptibility of atomic hydrogen.

- 2. Triplet excited states. Some organic molecules have a triplet (S=1) excited state at an energy $k_B \Delta$ above a single (S=0) ground state.
 - a) Find an expression for the magnetic moment $\langle \mu \rangle$ in a field B.
 - b) Show that the susceptibility for T>> Δ is approximately independent of Δ .
- 3. Heat capacity from internal degrees of freedom. Consider a two level system with an energy splitting k_B Δ between upper and lower states; the splitting may arise from a magnetic field or in other ways.
 - a) Show that the heat capacity per system is

$$C = k_B \frac{(\Delta/T)^2 e^{4/T}}{(1+e^{\Delta/T})^2}$$

- b) Show that for T >> Δ one obtains C = $k_B (\Delta/2T)^2$
- 4. Two level system. Consider two levels having energies Δ and $-\Delta$.
 - a) Show that the energy is given by

b) Show that the heat capacity is given by

$$C = k_B \left(\frac{\Delta}{k_B T}\right)^2 \operatorname{sech}^2\left(\frac{\Delta}{k_B T}\right)$$

c) If the system has a random composition such that all values of Δ are equally likely up to some limit Δ_o show the heat capacity is linearly proportional to the temperature provided k_B T << Δ_o .

- 5. Paramagnetism of S = 1 system.
 - a) Find the magnetization as a function of magnetic field and temperature for a system of spins with S = 1, moment μ and concentration n.
 - b) Show that in the limit μ B << k T the result is M = $(2n\mu^2/3kT)$ B.
- 6. Rotating coordinate system. We define the vector

Let the coordinate system of the unit vectors \hat{x} , $\hat{y} \neq \hat{z}$ rotate with an instantaneous angular velocity Ω so that

$$\frac{d\hat{x}}{dt} = \Lambda_y \hat{z} - \Lambda_z \hat{y} \quad \text{etc.}$$

a) Show that $\frac{d\vec{F}}{dt} = \left(\frac{d\vec{F}}{dt}\right)_R + \vec{\Lambda} \times \vec{F}$

where $(dF)_R$ is the time derivative of F as viewed in the rotating frame R.

b) Show that

$$\left(\frac{d\vec{H}}{dt}\right)_{R} = \vec{X} \vec{H} \times (\vec{B}_{a} + \vec{\Lambda}/\vec{Y})$$

This is the equation of motion of \overrightarrow{M} in a rotating coordinate system. The transformation to a rotating system is extraordinarily useful.

- c) Let $\Omega = -\gamma B_{\alpha} \hat{z}$ thus in the rotating frame there is no static magnetic field. Still in the rotating frame, we now apply a dc pulse $B_1 \hat{x}$ for a time t. If the magnetization is initially along \hat{z} , find an expression for the pulse length t such that the magnetization will be directed along $-\hat{z}$ at the end of the pulse. Neglect relaxation effects.
- d) Describe this pulse as viewed from the laboratory frame of reference.