Phys 4050 Assignment 5

- 1. Kronig-Penney model.
 - a) For the delta function potential and with $P \ll 1$, find at k = 0 the energy of the lowest energy band.
 - b) For the same problem, find the band gap at $k = \pi/a$.
- 2. Ionization of donors. In a particular semiconductor there are 10¹³ donors/cm³ with an ionization energy E_d of 1 meV and an effective mass 0.01 m.
 - a) Estimate the concentration of conduction electrons at 4 K.
 - b) What is the value of the Hall coefficient? Assume no acceptor atoms are present and that $E_g >> kT$.
- 3. Hall effect with two carrier types. Assuming concentrations n, p; relaxation times τ_e , τ_h and masses m_e . m_h show that the Hall coefficient in the drift velocity approximation is

$$R_{H} = \frac{1}{ec} \cdot \frac{p - nb^{2}}{(p + nb)^{2}}$$

where $b = \mu_e / \mu_h$ is the mobility ratio. In the derivation neglect terms of order B^2 . Hint: In the presence of a longitudinal electric field, find the transverse electric field such that the transverse current vanishes. You may neglect $(\omega_c \tau)^2$ in comparison with $\omega_c \tau$.