Phys 4050 Assignment 4

- 1. Kinetic energy of electron gas. Show that the kinetic energy of a three dimensional gas of N free electrons at 0 K is $U_0 = 3/5$ N ε_F .
- 2. Fermi gases in astrophysics.
 - a) Estimate the number of electrons in the sun.
 - b) In a white dwarf star this number of electrons may be ionized and contained in a sphere of radius 2 x 10⁹ cm. Find the Fermi energy of the electrons in electron volts.
 - c) The energy of an electron in the relativistic limit $\epsilon >> mc^2$ is related to the wavevector as $\epsilon = pc = h/2\pi$ kc. Show that the Fermi energy in this limit is $\epsilon_F = h/2\pi \left(N/V \right)^{1/3}$.
 - d) If the above number of electrons were contained within a pulsar of radius 10 km, show that the Fermi energy would be 10^8 eV. This value explains why pulsars are believed to be composed largely of neutrons rather than of protons and electrons, for the energy release in the reaction $n \rightarrow p + e$ is only 0.8×10^6 eV, which is not large enough to enable many electrons to form a Fermi sea. The neutron decay proceeds only until the electron concentration builds up enough to create a Fermi level of 0.8×10^6 eV, at which point the neutron, proton and electron concentrations are in equilibrium.
- 3. Liquid He³. The atom He³ has spin $\frac{1}{2}$ and is a fermion. The density of liquid He³ is 0.081 gm/cm³ near absolute zero. Calculate the Fermi energy ϵ_F and the Fermi temperature T_F .
- 4. Frequency dependence of electrical conductivity. Use the equation m $dv/dt + mv/\tau = -eE$ for the electron drift velocity v and τ is the mean time between collisions to show that the conductivity at frequency ω is

$$6(\omega) = 6(0) \frac{1 + i\omega\tau}{1 + (\omega\tau)^2}$$

where $\sigma(0) = ne^2 \tau/m$.

5. Static magnetoconductivity tensor. Show that the static current density can be written in matrix form as

$$\begin{pmatrix}
J_{\chi} \\
J_{\gamma} \\
J_{\xi}
\end{pmatrix} = \frac{\epsilon_{o}}{1 + (\omega_{c}\tau)^{2}} \begin{pmatrix}
1 & -\omega_{c}\tau & o \\
\omega_{c}\tau & 1 & o \\
o & o & 1 + (\omega_{c}\tau)^{2}
\end{pmatrix} \begin{pmatrix}
E_{\chi} \\
E_{\gamma} \\
E_{\xi}
\end{pmatrix}$$