Assignment 9

- 1. The atomic mass number of a single nitrogen atom is 14 and the separation between the two atoms in N_2 is 1.5 x 10^{-10} m. Rotational kinetic energy is given by $L^2/2I$ where L is the angular momentum and I is the moment of inertia.
 - a) What is the moment of Inertia I of a nitrogen molecule about an axis perpendicular to the line between the centers of the atoms at the center of mass?
 - b) If the first excited rotational state has an angular momentum of $L=2^{1/2}$ h, at what temperature would the ratio of N_2 molecules in the first excited state to those in the ground state be equal to e^{-1} ?
- 2. Consider a N₂ molecule at room temperature. Find the following.
 - a) Average velocity
 - b) Average speed
 - c) Root mean square speed
 - d) Most probable speed
- 3. The density of air molecules at room temperature and atmospheric pressure is about 2.7×10^{25} molecules/m³.
 - a) Calculate the flux of particles moving in any one direction past any point in your room.
 - b) If a micrometeorite punctured a hole 0.2 mm in diameter in the wall of a spaceship, at what rate would molecules leave if the air in the spaceship was held at atmospheric pressure and room temperature?
- 4. Consider a gas enclosed in a rigid volume. If the temperature of a gas is doubled, by what factor do the following things change:
 - a) Mean free path
 - b) Collision frequency
- 5. Consider a gas of atoms of mass M in an oven at a temperature T. A small hole of area A is punched into the oven wall allowing the atoms to escape to create a collimated atomic beam in the z direction.
 - a) Write down an expression for the atom flux.
 - b) Write down an expression giving the probability of velocities v_z in the atomic beam.