Assignment 7

- 1. Consider a mole of steam under very high pressure described the van der Waals equation of state where a = 5.5 liter² atm mole⁻² and b = 0.030 liter/mole. The steam was initially at a pressure of 100 atm and had a volume of 0.3 liter. The steam then expands to twice its initial volume.
 - a) What is the initial temperature of the steam?
 - b) What is the final temperature if the expansion is isobaric?
 - c) What is the final pressure if the expansion is isothermal?
- 2. A gas undergoing the throttling (Joule Thomson expansion) process is initially at a pressure of 100 atm, temperature of 0 $^{\circ}$ C and the molar volume is 0.25 liters. The molar heat capacity is $C_P = 81$ J/mole/K and the coefficient of volume expansion is 2 x 10^{-3} $^{\circ}$ C⁻¹. Calculate the change in gas temperature if the pressure is reduced by 1 atm using the formula below.

- 3. Consider an ideal gas whose molecules each have 5 degrees of freedom, which initially has pressure P_i and volume V_i . If this gas undergoes isothermal expansion to volume V_f :
 - a) What is the amount of work done by the gas in terms of P_i, V_i and V_f.
 - b) What is the pressure after the expansion, P_f , in terms of P_i , V_i and V_f ?
 - c) Repeat parts a and b if the expansion is adiabatic rather than isothermal.
- 4. Heat Released during Isothermal Compression
 - a) Write down the expression for dF using the definition of the Helmholtz free energy and the first law of thermodynamics.
 - b) Derive the following Maxwell relation.

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

- c) Consider an expression for the heat released $\Delta Q = T \Delta S$ where the entropy S = S(T,V).
- d) Consider a material whose equation of state is PV¹⁰ T⁻⁵ = constant. The material is initially at atmospheric pressure, has a volume of 0.5 liters and a temperature of 300K. How much heat is released when it is compressed isothermally until its volume is reduced by 1%?
- 5. A motorcycle engine burns a liter of gasoline every 20 minutes when it does work at a rate of about 6 kW.
 - a) How much heat energy in joules is provided by burning one liter of gasoline? You may assume each gasoline molecule releases 57 eV of energy upon oxidation and has a mass of 114 amu. The mass of one liter of gasoline is 0.7 kg.
 - b) What is the efficiency of the motorcycle engine?