Assignment 5

- 1. Consider two small interacting systems A_1 and A_2 for which $\Omega_1 = 2$ and $\Omega_2 = 4$.
 - a) What is Ω_0 ?
 - b) What are the entropies S₁ and S₂ in terms of Boltzmann's constant?
 - c) What is S_0 in terms of Boltzmann's constant?
- 2. Repeat problem 1 for $\Omega_1 = 2 \times 10^{10^{24}}$ and $\Omega_2 = 4 \times 10^{10^{24}}$
- 3. Two small nonrelativistic systems A_1 and A_2 are in thermal equilibrium. The number of states accessible to each increases with its energy according to $\Omega_1 = C_1 \ E_1^{10}$ and $\Omega_2 = C_2 \ E_2^{8}$ where C_1 and C_2 are constants. The total energy of the combined system is fixed at $E_0 = E_1 + E_2 = 10^{-18} \ J$.
 - a) How many degrees of freedom have systems A₁ and A₂?
 - b) What is the value of E₁ and E₂ when these systems are in equilibrium?
 - c) What is the entropy of the combined system in equilibrium?
 - d) What is the temperature of this system?
- 4. If the entropy of a nonrelativistic system changes by 1 J/K when the internal energy is doubled, how many degrees of freedom does the system have?
- 5. If a nonrelativistic system has 10^{24} degrees of freedom, by how much does the entropy increase when the internal energy is increased by 10%?
- 6. If you add 20 J of heat to a chunk of ice at -20 C (assume the chunk is big enough so that the temperature doesn't change):
 - a) What is the change in entropy of the ice?
 - b) By what factor does the number of states available to the ice increase?
- 7. a) How many joules of heat energy would you have to add to the Atlantic Ocean to double the number of states accessible to it? Assume that T = 4 °C, which is the water's average temperature.
 - b) Would the answer be the same if you were dealing with a cup of water at 4 °C instead?