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The forcings due to changing concentrations of Earth’s five most important, naturally occur-
ring greenhouse gases, H2O, CO2, O3, N2O and CH4 as well as CF4 and SF6 were evaluated
for the case of a cloud-free atmosphere. The calculation used over 1.5 million lines having
strengths as low as 10−27 cm. For a hypothetical, optically thin atmosphere, where there
is negligible saturation of the absorption bands, or interference of one type of greenhouse
gas with others, the per-molecule forcings are of order 10−22 W for H2O, CO2, O3, N2O and
CH4 and of order 10−21 W for CF4 and SF6. For current atmospheric concentrations, the
per-molecule forcings of the abundant greenhouse gases H2O and CO2 are suppressed by
four orders of magnitude. The forcings of the less abundant greenhouse gases, O3, N2O and
CH4, are also suppressed, but much less so. For CF4 and SF6, the suppression is less than
an order of magnitude because the concentrations of these gases is very low. For current
concentrations, the per-molecule forcings are two to four orders of magnitude greater for O3,
N2O, CH4, CF4 and SF6 than those of H2O or CO2. Doubling the current concentrations of
CO2, N2O or CH4 increases the forcings by a few per cent. A concentration increase of either
CF4 or SF6 by a factor of 100 yields a forcing nearly an order of magnitude smaller than
that obtained by doubling CO2. Important insight was obtained using a harmonic oscillator
model to estimate the power radiated per molecule. Unlike the most intense bands of the
5 naturally occurring greenhouse gases, the frequency-integrated cross sections of CF4 and
SF6 were found to noticeably depend on temperature.
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1 Introduction

Accurate calculations of radiative forcing are essential to estimate future climate change
[1, 2]. This paper examines the effect of changing greenhouse gas concentrations on thermal
radiation for the case of a clear sky. It considers the five most important naturally occurring
greenhouse gases: H2O, CO2, O3, N2O and CH4 as well as CF4 and SF6 that are nearly
entirely of anthropogenic origin. The atmospheric concentrations of these gases has been
observed to be steadily increasing [3, 4]. The concentrations of CF4 and SF6 are too low to
significantly affect the present climate but have increased by over 25% and 100% respectively
since 2000 . These two molecules also have atmospheric lifetimes well in excess of 1,000 years
[5, 6]. The Kyoto protocol seeks to limit emissions of the gases considered in this study [1].

Radiative forcings are strongly affected by saturation of the absorption bands and spectral
overlap with other greenhouse gases. Recently, this was found to significantly affect methane
forcing [7]. There have also been conflicting forcing estimates of the less abundant gases such
as SF6 [6]. The spectra of greenhouse gases consists of hundreds of thousands of individual
rovibrational spectral lines. The most accurate forcings are found by performing line by line
calculations that have been described by various authors [8, 9, 10, 11].

This study downloaded the line strengths and transition frequencies of over 1.5 million
rovibrational lines from the most recent HITRAN [12] and VAMDC [13] databases to cal-
culate the per-molecule forcings of the most important greenhouse gas molecules. Each
greenhouse gas concentration was varied from the optically thin limit where there is negli-
gible saturation or interference of one type of greenhouse gas with others; to current levels.
The “instantaneous” forcings resulting from doubling concentrations were compared to those
published in the literature.

This paper is organized as follows. First, we describe the altitudinal profiles of the
atmospheric temperature and the concentrations of the various greenhouse gases. Next, the
line intensities are briefly discussed. The following section outlines how radiative forcing
is determined. The main part of the paper describes the concentration dependence of the
radiative forcing. Finally, the use of a harmonic oscillator model to accurately estimate
the power radiated per greenhouse molecule without the need for detailed line intensity
information is presented.

2 Altitude Profiles of Temperature and Greenhouse

Gases

Radiation transfer in the cloud-free atmosphere is controlled by the temperature T = T (z)
at the altitude z. Fig. 1 shows the midlatitude atmospheric temperature profile [14]. The
atmosphere was divided into 5 layers each having constant lapse rate. We characterize
the temperature profile with six breakpoints, with temperatures θα = [288.7, 217.2, 217.2,
229.2, 271.2, 187.5] in units of Kelvins at altitudes ζα = [0, 11, 20, 32, 47, 86] in km, where
α = 0, 1, ..., 5. Each of the 5 atmospheric layers was further subdivided into 100 sublayers.

The standard concentrations for the ith greenhouse gas, C
{i}
sd , based on observations [6,

15, 16], are shown as functions of altitude on the right of Fig. 1. The sea level concentrations
for 2020 were estimated to be 7, 750 ppm of H2O, 1.8 ppm of CH4, 0.32 ppm of N2O and
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Figure 1: Left. A midlatitude atmospheric temperature profile, T = T (z). The Earth’s

mean surface temperature T (0) = 288.7 K. Right. Standard observed concentrations, C
{i}
sd

for greenhouse molecules versus altitude z.

10 ppt of SF6. The O3 concentration peaks at 7.8 ppm at an altitude of 35 km, while
the concentrations of CO2 and CF4 were 400 ppm and 86 ppt respectively, at all altitudes.
Integrating the concentrations over an atmospheric column having a cross sectional area of
1 cm2 yields the column number density of the ith type of molecule N̂

{i}
sd listed in Table 1.

3 Line Intensities

Fig. 2 illustrates the greenhouse gas lines considered in this work. The Bohr frequency νul
for a radiative transition from a lower level l of energy El to an upper level u of energy Eu
of the same molecule is denoted by

νul =
Eul
hc

, where Eul = Eu − El. (1)

where the energy of a resonant photon is Eul, h is Planck’s constant and c is the speed of
light.

The cross section, σ{i} = σ, for the ith type of greenhouse molecule is written as the sum
of partial cross sections σul, corresponding to each Bohr frequency νul,

σ =
∑
ul

σul. (2)
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i Molecule N̂
{i}
sd (molecules/cm2)

1 H2O 4.70× 1022

2 CO2 8.54× 1021

3 O3 9.18× 1018

4 N2O 6.56× 1018

5 CH4 3.73× 1019

6 CF4 1.84× 1015

7 SF6 2.10× 1014

Table 1: Column densities, N̂
{i}
sd , of the 5 most abundant greenhouse gases obtained using

the standard altitudinal profiles of Fig. 1.

The partial cross section, σul, is the product of a lineshape function, Gul = Gul(ν, τ) where
the optical depth τ is defined in the next section, and the line intensity, Sul = Sul(T ),

σul = GulSul. (3)

The lineshape functions, Gul, take into account the natural linewidth and Doppler Broaden-
ing as well as effects due to collisions [11]. They are normalized to have unit area,∫ ∞

0

Guldν = 1 (4)

and have units of cm. The line intensity is

Sul = ηuπrefulWl

(
1− e−νul/νT

)
=
ηuWuΓulEul

4πB̃ul

. (5)

Sul has the units of cm and re is the classical electron radius. The isotopologue fractions are
ηu. For the most abundant isotopologues of CO2,

ηu =


0.9843 for 16O 12C 16O
0.0110 for 16O 13C 16O
0.0040 for 16O 12C 18O
0.0007 for 16O 12C 17O.

(6)

The last term of (5) contains the spectral Planck intensity evaluated at the frequency νul,

B̃ul = B̃(νul, T ). (7)

The Planck intensity is given by

B̃(ν, T ) =
2hc2ν3

eνc h/(kBT ) − 1
(8)

The radiation frequency, ν = 1/λ is the inverse of the wavelength λ and has units of cm−1.
The probability Wn (with n = u or n = l) to find a molecule in the rovibrational level n is
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Figure 2: Reference line intensities, S
{r}
ul of (14) for H2O, CO2, O3, N2O, CH4, CF4 and

SF6 from the HITRAN data base [12]. The horizontal coordinate of each point represents
the Bohr frequency νul of a transition from an upper level u to a lower level l. The vertical
coordinate is the line intensity. For CF4, HITRAN only lists line intensities exceeding 10−24

cm. For greater clarity we have plotted only 1/10, chosen at random, of the extremely large
number of the O3, CF4 and SF6 line intensities. The numbers of lines (in parenthesis) used for
this work were: H2O (31,112), CO2 (20,569), O3 (210,295), N2O (43,152), CH4 (43,696) CF4

(842,534) and SF6 (307,780). We also used SF6 lines (336,027) from the VAMDC database
which are nearly indistinugishable from those shown in this figure. The smooth line is the
Planck spectral intensity, B̃ of (8) in units of mW cm m−2 sr−1 for the reference temperature,
T {r} = 296 K.

Wn =
gne
−En/kBT

Q
. (9)

Here gn is the statistical weight of the level n, the number of independent quantum states
with the same energy En. For molecules in the level n, the statistical weight can be taken
to be

gn = (2jn + 1)kn, (10)

where jn is the rotational angular momentum quantum number, and kn is the nuclear de-
generacy factor, that depends on whether the spins of the nuclei are identical or not. The
partition function, Q = Q(T ), of the molecule is

Q =
∑
n

gne
−En/kBT . (11)
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The oscillator strength, ful, of (5) is related to the matrix elements of the electric dipole
moment M of the molecule, between the upper energy basis state |jumu〉 with azimuthal
quantum number mu and the lower energy basis state |jlml〉, by

ful =
4πνul

3glc re~
∑
muml

〈umu|M|l ml〉 · 〈l ml|M|umu〉. (12)

The quantum numbers mu label the various degenerate substates of the upper level u and
the ml label the substates of the lower level l. If the levels are characterized by rotational
quantum numbers ju and jl, the quantum numbers mu and ml can be thought of as the
corresponding azimuthal quantum numbers, for example, mu = ju, ju− 1, . . . ,−ju. The rate
of spontaneous emission of photons when the molecule makes transitions from the upper
level u to the lower level l is Γul, the same as the Einstein A coefficient. It is related to the
oscillator strength by

Γul =
8π2c reν

2
ulfulgl

gu
. (13)

From inspection of (5) we see that the line intensity Sul = Sul(T ) at some arbitrary

temperature T is related to the intensity, S
{r}
ul = Sul(T

{r}) at a reference temperature T {r}

where the partition function of (11) is related to Q{r} = Q(T {r}) by

Sul = S
{r}
ul

Q{r}

Q

(
e−El/kBT

e−El/kBT {r}

)(
1− e−νul/νT

1− e−νul/νT{r}

)
. (14)

The HITRAN and VAMDC databases list line intensities at a reference temperature T {r} =
296 K. This work considered all lines of the seven gases under consideration having intensities
greater than 10−25 cm. For H2O, lines having intensities greater than 10−27 cm were included
since water vapor has an order of magnitude greater density than any other greenhouse gas
near the Earth’s surface.

4 Calculation of Radiative Forcing

Radiation transport is governed by the Schwarzschild equation [17] in cloud-free air where
scattering is negligible.

cos θ
∂Ĩ

∂τ
= −(Ĩ − B̃) (15)

Here Ĩ = Ĩ(ν, z, θ) is the spectral intensity of a pencil of radiation of frequency between ν
and ν + dν at altitude z. The pencil makes an angle θ to the vertical. The optical depth is
defined by

τ(z, ν) =

∫ z

0

dz′κ(z′, ν), (16)

where the net attenuation coefficient due to molecules absorbing and reemitting light of
frequency ν at altitude z is given by
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κ(z, ν) =
∑
i

N{i}(z)σ{i}(z, ν). (17)

Here N{i}(z) is the density of greenhouse gas molecule of type i and σ{i} = σ{i}(z, ν) is
its absorption cross section for radiation of frequency ν at the altitude z given by (2). The
cross section can depend strongly on altitude because temperature and pressure are functions
of altitude. Temperature controls the distribution of the molecules between translational,
rotational and vibrational states. Pressure, together with temperature, determines the width
of the molecular resonance lines.

The optical depth from the surface to the top of the radiative atmosphere, the altitude
zmp of the mesopause, is

τ∞ = τmp =

∫ zmp

0

dz′κ(z′, ν). (18)

As indicated by the notation (18), we have assumed that the optical depth τmp at the
mesopause altitude zmp differs negligibly from the optical depth τ∞ at infinite altitude since
there is so little opacity of the atmosphere above the mesopause.

The Schwarzschild equation (15) can be solved to find the intensity [18]

For ς > 0 : Ĩ(τ, ς) = +ς

∫ τ

0

dτ ′e−ς(τ−τ
′)B̃(τ ′) + e−ςτ Ĩ(0, ς) (19)

For ς < 0 : Ĩ(τ, ς) = −ς
∫ τ∞

τ

dτ ′e−ς(τ−τ
′)B̃(τ ′) (20)

where ς = sec θ. For simplicity, we assume the surface intensity is the product of B̃s = B̃(Ts),
the Planck intensity (8) for a temperature Ts, and an angle independent emissivity εs = εs(ν),

Ĩ(0, ς) = εsB̃s. (21)

Over most of the Earth’s surface the thermal infrared emissivity εs, is observed to be in the
interval [0.9 < εs < 1] [19]. The emissivity εs was therefore set to 1. We also assumed there
is negligible temperature discontinuity between the surface and the air immediately above
so that B̃s = B̃0.

The upwards flux defined by

Z̃ =

∫
4π

dΩ cos θ Ĩ. (22)

can be rewritten after substituting (19) and (20) into (21) to give

Z̃

2π
=

∫ τ

0

dτ ′E2(τ − τ ′)B̃(τ ′)−
∫ τ∞

τ

dτ ′E2(τ ′ − τ)B̃(τ ′) + εsB̃sE3(τ)

= −
∫ τ∞

0

dτ ′E3(|τ − τ ′|)∂B̃(τ ′)

∂τ ′
+ B̃(τ∞)E3(τ∞ − τ). (23)
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This equation is the fundamental expression for the net upward flux in an atmosphere with
negligible scattering [18, 20]. The exponential-integral functions, En(τ), that account for
slant paths of radiation between different altitudes are defined for integers n = 1, 2, 3, . . . by

En(τ) =

∫ ∞
1

dς ς−n e−ςτ . (24)

The spectral forcing, F̃ , is defined as the difference between the spectral flux πB̃s through
a transparent atmosphere from a black surface with temperature Ts, and the spectral flux Z̃
for an atmosphere with greenhouse gases,

F̃ = πB̃s − Z̃. (25)

The frequency integrals of the flux (22) and the forcing (25) are

Z =

∫ ∞
0

dν Z̃, (26)

F =

∫ ∞
0

dν F̃ = σSBT
4
0 − Z, (27)

(28)

where σSB is the Stefan Boltzmann constant.
High resolution spectrometers seldom provide measurements with resolutions less than a

few cm−1. It is therefore useful to plot filtered spectral quantities.

〈X̃〉(z, ν) =

∫ ∞
0

dν ′J(ν, ν ′)X̃(z, ν ′). (29)

The filter function J(ν, ν ′) smooths out sharp changes with frequency. It is normalized so
that ∫ ∞

−∞
dνJ(ν, ν ′) = 1. (30)

From (29) and (30) we see that the unfiltered spectral flux Z̃ and filtered spectral flux 〈Z̃〉
have the same frequency integral

Z =

∫ ∞
0

dνZ̃ =

∫ ∞
0

dν 〈Z̃〉, (31)

and represent the same total flux Z. We found it convenient to use a Gaussian filter function,

J(ν, ν ′) =
e−(ν−ν ′)2/2∆ν2

√
2π∆ν

(32)

with a width parameter ∆ν = 3 cm−1.
The effects on radiative transfer of changing the column density of the ith greenhouse

gas to some multiple f of the standard value, N̂
{i}
sd , can be displayed with filtered spectral

fluxes
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Figure 3: Effects of changing concentrations of carbon dioxide, CO2 on the filtered spectral
flux 〈Z̃{i}(ν, zmp, f)〉 of (33) at the mesopause altitude, zmp = 86 km. The width of the filter
(32) was ∆ν = 3 cm−1. The smooth blue line is the spectral flux, Z̃ = πB̃(ν, T0) from a
surface at the temperature T0 = 288.7 K for a transparent atmosphere with no greenhouse
gases. The green line is 〈Z̃{i}(ν, zmp, 0)〉 with the CO2 removed but with all the other
greenhouse gases at their standard concentrations. The black line is 〈Z̃{i}(ν, zmp, 1)〉 with all
greenhouse gases at their standard concentrations. The red line is 〈Z̃{i}(ν, zmp, 2)〉 for twice
the standard concentration of CO2 but with all the other greenhouse gases at their standard
concentrations. Doubling the standard concentration of CO2 (from 400 to 800 ppm) would
cause a forcing increase (the area between the black and red lines) of ∆F {i} = 2.97 W m−2,
as shown in Table 2.

〈Z̃{i}(ν, z, f)〉 = 〈Z̃(ν, z, N̂
{1}
sd , . . . , N̂

{i−1}
sd , fN̂

{i}
sd , N̂

{i+1}
sd , . . . , N̂

{n}
sd )〉. (33)

Fig. 3 shows how varying the concentration of CO2 affects the filtered spectral fluxes at
the mesopause altitude, zmp = 86 km. The present concentrations of CF4 and SF6 are too
low to have any noticeable effect. Fig. 4 shows the effect on the flux at the mesopause
altitude if one were to increase the concentrations of CF4 and SF6 by nearly 3 and 4 orders
of magnitude respectively, to 0.1 ppm.

Integrating spectral fluxes, Z̃, like those of Fig. 3, over all frequencies in accordance with
(26) gives Z, the frequency integrated flux shown in Fig. 5. A doubling of CO2 concentration
results in a 2.97 W/m2 decrease in the top of the atmosphere flux.
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Figure 4: Effects of CF4 and SF6 on the filtered spectral flux 〈Z̃{i}(ν, zmp, f)〉 of (33) at the
mesopause altitude, zmp = 86 km. The blue and black lines have the same meanings as for
Fig. 3. The purple (orange) line is 〈Z̃{i}(ν, zmp, f)〉 for a CF4 (SF6) concentration of 0.1
ppm which far exceeds the 2020 CF4 (SF6) concentration of 86 (10) ppt. The purple and
orange marks on the horizontal axis show the vibrational center frequencies of 615, 631, 948
and 1283 cm−1.

5 Concentration Dependence of Forcing

The frequency integrated forcing, F , of (27) depends on the altitude z and on the column
densities of the seven greenhouse gases given in Table 1.

F = F (z, N̂{1}, . . . , N̂{7}). (34)

We assume the temperature T and densities N{i} have the same altitude profiles as shown
in Fig. 1. An important special case of (34) is the forcing, Fsd, when each greenhouse gas i

is present at its standard column density N̂
{i}
sd of Table 1,

Fsd(z) = F (z, N̂
{1}
sd , . . . , N̂

{7}
sd ). (35)

A second special case of (34) is the hypothetical, per molecule standard forcing, F
{i}
sd , when

the atmosphere contains only molecules of type i at their standard column density, N̂{i} =
N̂
{i}
sd , and the concentrations of the other greenhouse vanish, N̂{j} = 0 if j 6= i,

F
{i}
sd (z) = F (z, 0, . . . , 0, N̂

{i}
sd , 0, . . . , 0). (36)
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Figure 5: Altitude dependence of frequency integrated flux Z of (26). The flux for three

concentrations of CO2 are shown, the standard concentration, C
{i}
sd = 400 ppm of Fig. 1,

twice and half that value. The other greenhouse gases have the standard concentrations of
Fig. 1. The vertical dashed line is the flux σSBT

4
0 = 394 W m−2 for a transparent atmosphere

with a surface temperature T0 = 288.7 K. The forcings F that follow from (27) at 0 km, 11
km and 86 km are 252, 137 and 117 W m−2 respectively.

We define the forcing power per added molecule as

P {i}(z, N̂{1}, . . . , N̂{n}) =
∂F

∂N̂{i}
. (37)

The densities of greenhouse gases j with j 6= i are held constant in the partial derivative of
(37). If the units of F are taken to be W m−2 and the units of N̂{i} are taken to be molecules
m−2, then the units of P {i} will be W molecule−1.

We define a finite forcing increment for the ith type of greenhouse molecule as

∆F {i}(z, f) = F (z, N̂
{1}
sd , . . . , N̂

{i−1}
sd , fN̂

{i}
sd , N̂

{i+1}
sd , . . . , N̂

{n}
sd )− Fsd. (38)

Differentiating (38) with respect to f we find

∂∆F {i}

∂f
(z, f) = N̂

{i}
sd P

{i}
sd (z, f), (39)

where P
{i}
sd (z, f) is the forcing power per additional molecule of type i when these molecules

have the column density N̂{i} = fN̂
{i}
sd and all other types of greenhouse molecules have their

standard column densities.
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Figure 6: Dependence of partial forcing increments ∆F {i} of (38) on greenhouse gas multi-

plicative factor, f = N{i}/N
{i}
sd for H2O, CO2, O3, N2O and CH4. At the standard column

densities, with f = 1, the incremental forcings are well into the saturation regime, with
d∆F {i}(1)/df < d∆F {i}(0)/df for all 5 gases. For the most abundant greenhouse gases, H2O
and CO2, the saturation effects are extreme, with per-molecule forcing powers suppressed
by four orders of magnitude at standard concentrations (f = 1) with respect to the low-
concentration, optically thin limit (f = 0). For CO2, the areas bounded by the green and
black curves of Fig. 3 give the values, −∆F {i} for f = 0, while the areas bounded by the
black and red curves give ∆F {i} for f = 2. See the text and Table 2 for more details. The
curves for CF4 and SF6 are shown in Fig. 7. They are omitted here as they would appear
as horizontal lines corresponding to nearly zero forcing.

The forcing increments (38) for the greenhouse gases considered in this paper are shown
as a function of f in Figs. 6 and 7. Forcing increments are also tabulated at representative
altitudes z and multiplicative factors f in Table 2. At both the top of the atmosphere
and at the tropopause, we see that the forcing increment (38) is largest for abundant water
molecules, H2O, and is relatively small for the much more dilute greenhouse gases CH4, N2O,
CF4 and SF6. The incremental forcings are all in the saturation regime, with ∂∆F {i}/∂f
diminishing with increasing f .

In Table 2, the forcing decrements from removing H2O, CO2, O3, N2O and CH4, −62.2,
−30.2, −8.1, −2.2 and −2.1 W m−2, are reasonably close to those calculated by Zhong
and Haigh [21]. In their Table 1 they cite forcing decrements at the top of the atmosphere
of −70.6, −25.5, −7.0, −1.8 and −1.7 W m−2. Zhong and Haigh seem to have taken the
concentrations of N2O and CH4 to be independent of altitude. The altitude dependence of
Fig. 1 were used in our calculations.

The forcing increments for the 5 naturally occurring greenhouse gases given in Table 3
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Molecule F
{i}
sd (z) ∆F {i}(z, 0) ∆F {i}(z, 1/2) ∆F {i}(z, 2)

i ztp zmp ztp zmp ztp zmp ztp zmp

H2O 81.6 71.6 -72.6 -62.2 -10.4 -7.79 11.2 8.09
CO2 52.4 38.9 -44.6 -30.2 -5.26 -2.96 5.48 2.97
O3 6.15 10.6 -4.70 -8.09 -1.80 -2.22 2.55 2.55

N2O 4.44 4.74 -2.16 -2.18 -0.81 -0.78 1.17 1.09
CH4 4.26 4.46 -2.12 -2.11 -0.63 -0.59 0.79 0.74
CF4 0.034 0.048 -0.010 -0.013 -0.0050 -0.0064 0.0099 0.012
SF6 0.0048 0.0067 -0.0041 -0.0055 -0.0020 -0.0027 0.0040 0.0054∑

i 148.7 130.1 -126.2 -104.8

Fsd(z) 137 117 137 117

Table 2: Partial forcings F
{i}
sd (z) of (36) and partial forcing increments ∆F {i}(z, f) of (38),

all in units of W m−2, at the altitudes ztp = 11 km of the tropopause and zmp = 86 km of
the mesopause. The last row contains the forcings Fsd(z) of (35), shown in Fig. 5, when

all greenhouse molecules are present simultaneously at their standard column densities N̂
{i}
sd .

Because of the overlapping absorption bands,
∑

i F
{i}
sd (z) > Fsd(z), and −

∑
i ∆F

{i}(z, 0) <
Fsd(z).

∆F {i}(z, f) in W m−2

Molecule This Work Previous Work
i f ztp zmp ztp zmp Reference

H2O 1.06 0.91 0.67 1.4 1.1 [9]
CO2 2 5.48 2.97 5.5 2.8 [9]
O3 1.1 0.30 0.33

N2O 2 1.17 1.09 1.3 1.2 [9]
CH4 2 0.79 0.74 0.6 0.6 [9]
CF4 2 0.0099 0.012 0.0088 [22]

100 0.51 0.51
SF6 2 0.0040 0.0054 0.0056 [2]

100 0.33 0.41

Table 3: Comparison of the forcing increments ∆F {i}(z, f) in column 5 of Table 2 and
previous work at the altitude ztp = 11 km of the tropopause and zmp = 86 km of the
mesopause. For H2O, the relative increase, f = 1.06, of the column density is that predicted
by the Clausius Clapeyron equation for a 1 K temperature increase. For CF4 and SF6,
saturation effects are evident at f = 100 as shown in Fig. 7. Note that if there were no
saturation ∆F {i}(z, 100) = 100∆F {i}(z, 2) since ∆F {i}(z, 1) = 0.
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Figure 7: Dependence of partial forcing increments ∆F {i} of (38) for CF4 and SF6 on green-

house gas multiplicative factor, f = N{i}/N
{i}
sd . This is similar to Fig. 6 but the range of f

values has been increased to 100.

are comparable to those calculated by others. We give the increments ∆F {i}(z, f) calculated
by Collins et al [9], as estimated from their Tables 2 and 8. These are the results of averaging
five separate line by line calculations. Our forcing increment for doubling CF4 is reasonably
close to that obtained using the radiative efficiency of 0.102 W m−2 ppb−1 found by Hurley
et al [22]. They predict the radiative forcing will decrease by up to 40% at higher CF4

concentrations as a result of overlapping absorption due to CH4, H2O and N2O which is
consistent with our result for f = 100.

The forcing increment for doubling SF6 was found using both the VAMDC and HITRAN
datsets. The VAMDC dataset lists about 10% more lines than HITRAN and the values of
the individual line strengths are about 6% larger. The resulting forcing increments shown in
Tables 2 and 3 are about 20% larger than obtained using the HITRAN data. Our tropopause
forcing increment for doubling SF6, 0.40 W/m−2 ppb−1, is significantly lower than that given
in the review by Hodnebrog et al [2]. Their result is an average of several studies that used
absorption cross sections giving results ranging from 0.49 to 0.68 W m−2 ppb−1. A recent
result by Kovacs et al [6], calculated radiative efficiencies of 0.77 and 0.50 W m−2 ppb−1

for clear and all sky cases, respectively. Our work and that of Kovacs both used the same
SF6 altitudinal profile shown in Fig. 1. Kovacs also found the integrated cross sections for
infrared absorption of 2.02 × 10−16 cm2 for the 925-955 cm−1 band. This is close to that
found recently by Harrison who examined CF4 and SF6 absorption cross sections [23, 24].
Their result for the frequency-integrated cross section was assumed to be independent of
temperature in contrast to our results as discussed in Section 6.

The three mesopause flux increments ∆F {i} in the fourth column of Table 3 for doubled
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concentrations of CO2, N2O and CH4 sum to 4.8 W m−2. The calculated flux increment
from simultaneously doubling CO2, N2O and CH4 is the slightly smaller value, ∆F = 4.7 W
m−2. Similarly, the four mesopause flux increments ∆F {i} in the fourth column of Table 3
for doubled concentrations of CO2, N2O and CH4 as well as a factor of f = 1.06 increase of
H2O concentration sum to 5.5 W m−2. The calculated flux increment from simultaneously
doubling CO2, N2O and CH4, and increasing the H2O concentrations by a factor of f = 1.06,
is the slightly smaller value 5.3 W m−2. The “whole” is less than the sum of the parts, because
of the interference of greenhouse gases that absorb the same infrared frequencies.

Table 4 summarizes the forcing powers (37) per additional molecule in units of 10−22

W at the tropopause altitude, ztp = 11 km and at the mesopause altitude, zmp = 86 km.
The surface temperature was T0 = 288.7 K, and the altitude profiles of temperature and
number density were those of Fig. 1. The second column lists the forcing powers in the
optically thin limit, P

{i}
ot (z), of (41). These numbers agreed with the results of dividing the

forcing in the optical thin limit by the column density. The numbers of the third column
are forcing powers P

{i}
sd (z, 0) from (39) for an atmosphere that previously had no molecules

of type i (so N̂{i} = 0) but all other greenhouse molecules had standard concentrations,

N̂{j} = N̂
{j}
sd if j 6= i. The forcings of the third column are less than those of the second

because of interference between absorption by different greenhouse gases. The numbers in
the fourth column are the forcing powers P

{i}
sd (z, 1) from (39) when a single molecule of type

i is added to an atmosphere that previously had standard densities for all greenhouse gases,
N̂{j} = N̂

{j}
sd . Saturation of the absorption suppresses the per-molecule forcing by about

four orders of magnitude for the abundant greenhouse gases H2O and CO2. Saturation
causes less drastic suppression of per-molecule forcings for the less abundant O3, N2O and
CH4. Saturation is much less for CF4 and SF6 because the concentrations of these gases are
several orders of magnitude smaller than any of the naturally occurring greenhouse gases.
The forcing powers per molecule are summarized graphically in Fig. 8.

We now consider the optically thin limit, where the concentrations of greenhouse gases
are sufficiently low that the optical depths τ of (16) will be small, τ � 1, for all frequencies
ν and at all altitudes z. The frequency integral of the spectral forcing (26) at altitude z can
then be written as

Fot(z) =
∑
i

N̂{i}P
{i}
ot (z) (40)

where the forcing power per molecule of type i is

P
{i}
ot (z) =

1

2

∫ z

0

dz′
N{i}

′

N̂{i}

[
Π{i}(T ′, T0)− Π{i}(T ′, T ′)

]
+

1

2

∫ ∞
z

dz′
N{i}

′

N̂{i}
Π{i}(T ′, T ′). (41)

Here N{i}
′
= N{i}(z′), T ′ = T (z′) and T0 = T (0). The mean power absorbed by a greenhouse

gas molecule of temperature T from thermal equilibrium radiation of temperature T ′ is

Π{i}(T, T ′) = 4π
∑
ul

S
{i}
ul (T )B̃(νul, T

′). (42)
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Molecule P
{i}
ot (z) P

{i}
sd (z, 0) P

{i}
sd (z, 1)

i ztp zmp ztp zmp ztp zmp

H2O 1.50 1.50 1.2 1.2 3.3× 10−4 2.5× 10−4

CO2 2.76 3.49 2.2 2.5 9.0× 10−4 4.9× 10−4

O3 2.00 5.71 1.7 4.6 3.3× 10−1 3.8× 10−1

N2O 1.70 2.27 0.73 0.91 2.1× 10−1 2.0× 10−1

CH4 0.52 0.72 0.21 0.27 2.8× 10−2 2.6× 10−2

CF4 19.5 28.2 5.6 7.2 5.4 6.9
SF6 23.3 32.1 19 26 19 26

Table 4: Forcing powers (37) per additional molecule in units of 10−22 W at the altitude
ztp = 11 km of the tropopause and zmp = 86 km of the mesopause. The surface temperature
was T0 = 288.7 K and the altitude profiles of temperature and number density were those of
Fig. 1. P

{i}
ot (z) of (42) is for the optically-thin limit. P

{i}
sd (z, 0) from (39) is for an atmosphere

that previously had no molecules of type i (so N̂{i} = 0) but all other greenhouse molecules

had standard concentrations. P
{i}
sd (z, 1) from (39) is for a single molecule of type i added to

an atmosphere that previously had standard densities for all greenhouse gases.

For z′ > z we see from (41) that the dz′N ′ molecules in the altitude interval z′ to z′ + dz′

each emit the power Π(T ′, T ′), of which half goes to outer space and half goes down through
the reference plane at altitude z, diminishing the net flux through the reference plane by
Π(T ′, T ′)/2. Molecules above the reference plane can only cause positive forcing unlike
molecules below the reference plane which can cause either positive or negative forcing.

For the special case of T ′ = T we can substitute (5) into (42) to find

Π{i}(T, T ) =
∑
ul

W {i}
u (T )Γ

{i}
ul E

{i}
ul . (43)

Since we are considering a single isotopologue, we have set ηu = 1 in (5). The three factors

in the summed terms of (43) are the probability W
{i}
u (T ) to find the molecule in the upper

state u, the radiative decay rate Γ
{i}
ul from the upper level u to the lower level l and the

energy E
{i}
ul of the emitted photon. This is obviously the total power radiated by a molecule

of temperature T . For a molecule of temperature T in thermal equilibrium with radiation
of the same temperature, the radiative power absorbed by the molecule is equal to the
spontaneous radiative power it emits.

An important check of our work was to use (41) to calculate the forcing power per
molecule for the optically thin limit. The results displayed in column 2 of Table 4 agreed
with that found by dividing the radiative forcing in the limit of zero gas concentration, by
the column density.
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Figure 8: A graphical display of the per-molecule forcing powers of Table 4. At standard
column densities the (red) powers, P

{i}
sd (z, 1), for H2O and CO2 are suppressed by four

orders of magnitude from their values in the optically thin limit (blue) where the powers

are P
{i}
ot (z). This is due to strong saturation of the absorption bands. Saturation effects

(difference between the blue and red lines) are much less for the minor gases, O3, N2O and

CH4. The green lines are the powers per molecule, P
{i}
sd (z, 0), of the ith greenhouse gas in

its low-concentration limit, but when the forcing power is suppressed by other gases at their
standard densities. Interference effects (difference between the blue and green lines) are more
pronounced for N2O and CH4 than for H2O and CO2. Fig. 2 shows the strongest bands of
O3 overlap little with those of other greenhouse molecules, minimizing interference effects.
Note that for CF4 and SF6, the red and green curves nearly overlap.

6 Harmonic Oscillators

The emission and absorption of thermal radiation by greenhouse-gas molecules usually de-
creases or increases the quantized vibrational energy, with the notable exception of the
low-frequency transitions of H2O, for which rotational quantum numbers change, but there
is no change of the vibrational quantum numbers. Linear molecules with N atoms, like CO2

or N2O, have 3N − 5 vibrational modes whereas nonlinear molecules, like H2O or CH4, have
3N − 6 vibrational modes [25]. For molecules of sufficient symmetry, several independent
modes may have the same frequency νi. They correspond to vibrations along di mutually
perpendicular unit vectors xj. The possible degeneracies di of the ith set of equal-frequency
modes are

di = 1, 2, 3. (44)
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Summing over the degeneracies, we must have∑
i

di = 3N − 5, for linear molecules. (45)∑
i

di = 3N − 6, for nonlinear molecules. (46)

(47)

The bending modes of the linear molecules CO2 and N2O, with resonance frequencies
ν2 of 667 and 588 cm−1 respectively, can be represented as two-dimensional oscillators with
degeneracy 2. The bending modes of CH4 and CF4, with resonance frequencies 1311 and 631
cm−1 respectively, are well approximated as three-dimensional oscillators, with degeneracy
3. The asymmetric stretch modes of CO2 and N2O with resonance frequencies 2349 and 2224
cm−1 respectively, can be represented as one-dimensional oscillators, with single degeneracy.

Molecular rotation makes little difference to the the total radiated power, but it spreads
the emitted frequencies over a band centered on the vibration frequency νi of the non-rotating
molecule. Examples are shown in Fig. 2. The P and R branches of the bands are created
by the rotation of the radiation pattern about an axis that is not parallel to the vibration
axis. Q branches have a relatively narrow spectrum because the rotation and vibration axes
of the molecule are nearly parallel. The permanently bent, asymmetric-top molecules, H2O,
and O3, have especially complicated rotational sidebands.

6.1 Quantum Mechanics

Consider the effective mass of the ith vibrational mode of a molecule to be mi, and let the
restoring-force constant be ki. We can write the Hamiltonian for the vibrational energy of
the ith mode of the non-rotating molecule as

Hi =

di∑
j=1

Hij. (48)

The Hamiltonian describing vibrations of the ith mode along the jth spatial axis is

Hij = − ~2

2mi

∂2

∂x2
ij

+
ki
2
x2
ij −

~ωi
2

=
~ωi
2

(
− ∂2

∂ξ2
ij

+ ξ2
ij − 1

)
=

~ωi
2

(
aija

†
ij + a†ijaij − 1

)
= ~ωi a†ijaij. (49)

Here xij is the displacement coordinate along the jth axis. For convenience, we have sub-
tracted the zero-point vibrational energy, ~ωi/2 from the Hamiltonian. The resonant angular
frequency, in radians per second, is

ωi =

√
ki
mi

= 2πc νi. (50)
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The dimensionless displacements are

ξij =
xij
Xi

, (51)

where the characteristic length is

Xi =

(
~2

miki

)1/4

. (52)

The annihilation and creation operators for excitations along the jth spatial axis are

aij =
1√
2

(
ξij +

∂

∂ξij

)
and a†ij =

1√
2

(
ξij −

∂

∂ξij

)
. (53)

The non-zero commutators, which have the values

aija
†
ij − a

†
ijaij = 1, (54)

can be used to derive the last line of (49).
The energy basis states, φni

, of the molecule are the eigenfuctions of the Hamiltonian
(48)

Hiφni
= Eni

φni
. (55)

We have labeled the energy eigenstates with the spatial vector

ni = ni1x1 + ni2x2 + · · ·+ nidixdi (56)

The total number ni of excitation quanta of the state φni
is

ni =

di∑
j=1

nij =

di∑
j=1

ni · xj = ni · di , (57)

where the vector di is
di = x1 + x2 + · · ·+ xdi . (58)

The energy eigenvalue of (55) is
Eni

= ~ωini. (59)

A few examples may help to clarify the preceding discussion. If the mode degeneracy is
di = 3, and there are ni = 0 vibrational excitation quanta, the possible values of nij are

[ni1, ni2, ni3] = [0, 0, 0]. (60)

The energy degeneracy is gi(0) = 1. The ground state of a three-dimensional oscllator is a
non-degenerate S state.

For ni = 1 the possible values of nij are

[ni1, ni2, ni3] = [1, 0, 0], [0, 1, 0], [0, 0, 1]. (61)
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The energy degeneracy is gi(1) = 3. The independent states are linear combinations of the
3 azimuthal sublevels of a P state.

For ni = 2 the possible values of nij are

[ni1, ni2, ni3] = [2, 0, 0], [0, 2, 0], [0, 0, 2], [0, 1, 1], [1, 0, 1], [1, 1, 0]. (62)

The energy degeneracy is gi(2) = 6. One of the states is a non-degenerate S state while the
5 other degenerate states are linear combinations of the 5 azimuthal sublevels of a D state.

Following this line of reasoning, we see that for a mode degeneracy di, and for ni vibra-
tional excitation quanta, the energy degeneracy gi(ni) is given by the formula

gi(ni) =
(ni + di − 1)!

ni!(di − 1)!
=
∑
ni

1, where ni · di = ni. (63)

The energy basis states of (55) can be written as

φni
=

(a†1)ni1(a†2)ni2 · · · (a†d)nidi√
ni1!ni2! · · ·nidi !

φ0. (64)

The non-degenerate, ground-state wave function is

φ0 =
e−(ξ2i1+ξ2i2+···+ξ2idi )/2

πdi/4
. (65)

The commutation relation (54) implies that

aijφni
=
√
nij φni−xj

, (66)

and also
a†ijφni

=
√
nij + 1φni+xj

. (67)

The numbers of quanta along the vibrational axes of the “raised” and “lowered” states are
defined by

ni ± xj = ni1x1 + · · ·+ (nij ± 1)xj + · · ·+ nidixdi . (68)

6.2 Radiation

The electric-dipole-moment operator of the molecule is defined by

Mi = Mi

di∑
j=1

ξijxj

=
Mi√

2

di∑
j=1

(aij + a†ij)xj. (69)

The moment amplitude Mi is the product of the characteristic length of (52) and a charac-
teristic charge qi,

Mi = qiXi. (70)
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We denote the matrix elements by

〈ni |Mi|n′i 〉 =

∫ ∞
−∞

dξi1 · · ·
∫ ∞
−∞

dξidi φ
∗
ni

(ξi1, . . . , ξidi)Mi φn′
i
(ξi1, . . . , ξidi). (71)

When the molecule is approximated as a non-rotating, di-dimensional harmonic oscillator,
νul = νi = ωi/2πc, where the “principal quantum number” of the upper level u is ni = ni ·di
and the principal quantum number of the lower level l is n′i = n′i · di = ni − 1. The energies
of the upper and lower levels are Eu = ~ωini and El = ~ωin′i = Eu − ~ωi. Then we can use
(69), (66), (67) (57) and (63) to write the oscillator strength (12) as

ful =
4πνi

3c re~ gi(n′i)
∑
ni,n′

i

〈ni] Mi|n′i 〉 · 〈n′i |Mi|ni 〉

=
2πνiM

2
i

3c re~gi(n′i)
∑
ni

〈ni |
di∑
j=1

nij|ni 〉

=
2πνiM

2
i

3c re~ gi(n′i)
∑
ni

ni

=
2πνiM

2
i nigi(ni)

3c re~ gi(n′i)
. (72)

Substituting (72) into (13) we find the spontaneous decay rate

Γni
= Γul =

2ω3
iM

2
i ni

3c3~
. (73)

Multiplying (73) by the photon energy, ~ωi, we find the power radiated by molecules at the
frequency ωi of the ith mode, with ni vibrational excitation quanta, is

Pi(ni) = ~ωiΓni
=

2ω4
iM

2
i ni

3c3
. (74)

The power (74) is proportional to the number of vibrational excitation quanta ni, to the
fourth power of the vibration angular frequency ωi, and to the square of the transition
moment Mi. As expected from the correspondence principle, the quantum mechanical ex-
pression (74) for the radiated power is closely analogous to Larmor’s classical formula for
the power radiated by an oscillating dipole moment, M = Mo cosωt with M̈ = −ω2M ,

P =
2M̈2

3c3
=

2ω4M2

3c3
. (75)

6.3 Statistical Mechanics

In accordance with (9), the Boltzmann probability that a molecule at a temperature T will
have ni vibrational excitation quanta for the ith mode is

Wi(ni) =
gi(ni)e

−~ωini/kBT

Q
. (76)
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Here the vibrational partition function for the non-rotating molecule with m different vibra-
tional modes is

Q = Q1Q2 · · ·Qm. (77)

The partition function of the ith mode is

Qi =
∞∑
ni=0

gi(ni)e
−~ωini/kBT . (78)

From (74) and (76) we see that at a temperature T , the average power emitted by a molecule
due to vibrations of the ith normal mode is

〈Pi〉 =
2ω4

iM
2
i 〈ni〉

3c3
. (79)

where the mean number of vibrational excitation quanta of the ith mode is

〈ni〉 =
∞∑
ni=0

niWi(ni)

=
∞∑
ni=0

nigi(ni)e
−~ωini/kBT

Q

=
kBT

2Qi

~ωiQ
d

dT
lnQi (80)

The evaluation of the partition functions can be facilitated by noting the identity

1

(1− x)di
=

∞∑
ni=0

gi(ni)x
ni . (81)

where the energy degeneracy gi(ni) of the ith mode, with ni excitation quanta, was given by
(63). We can use (81) to write the vibrational partition function (78) of the ith mode as

Qi =
∞∑
ni=1

gi(ni)e
−~ωini/kBT =

1

(1− e−~ωi/kBT )di
(82)

Substituting (82) into (80) we find

〈ni〉 =
di

(e~ωi/kBT − 1)

(
Qi

Q

)
(83)

For many of the modes listed in Table 5 such as the CO2 bending mode with vibrational
frequency νi = 667 cm−1, the factorQi/Q hardly differs from 1 over the range of temperatures
observed in Earth’s atmosphere. But for other modes such as the CO2 asymmetric stretch
mode, with the vibrational frequency νi = 2349 cm−1, the factor Qi/Q is several percent less
than 1. For the infrared active modes of CF4 and SF6 the factor Qi/Q is substantially less
than 1.
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Substituting (83) into (79), we find that at the temperature T , the mean power radiated
by the ith mode of the molecule is

〈Pi〉 =
2ω4

iM
2
i di

3c3(e~ωi/kBT − 1)

(
Qi

Q

)
(84)

The power of Planck radiation at temperature T absorbed by a molecule at the same tem-
perature, is given by the sum over line intensities, Π{i}(T, T ) of (42). In thermal equilibrium,
this absorbed power must equal the spontaneously power emitted by the molecule. If we
equate (84), the power emitted according to the harmonic oscillator model, to (42), the
power absorbed from thermal radiation, we find that the transition dipole moment of the
vibrating molecule must be given by

|Mi| =

√
3c3Π{i}(T, T )

2〈ni〉ω4
i

. (85)

In Table 5, we show values of the transition dipole moments Mi given by (85) as well as
the spontaneous emission rate

Γni=1 =
Π{i}(T, T )

~ωi〈ni〉
(86)

implied by (73). The radiated powers Π{i}(T, T ) of (42) at T = 300 K of the prominent
vibrational modes evident in the spectra shown in Fig. 3 are of order 10−21 W. The transition
electric dipole moments are of order one tenth of a Debye unit (1 D = 10−18 statC cm). The
modes of CF4 at 1283 cm−1 and SF6 at 948 cm−1 have a somewhat higher power which likely
arises from the presence of fluorine which has the largest electronegativity of any atom and
creates the relatively large transition moment. There is considerably more variation of the
mean number of thermally excited vibrational quanta 〈ni〉 and the spontaneous decay rates
Γni=1.

The dependence of the power radiated per molecule for the range of temperatures occur-
ring in the atmosphere is shown in Fig. 9. From equations (83) and (84), we see the power
per molecule is proportional to the mean number of vibrational excitation quanta 〈ni〉 which
increases rapidly with temperature.

6.4 Frequency-integrated cross sections

For a non rotating harmonic oscillator model, we can write the Planck radiation intensity
B̃(νul, T ) = B̃(νi, T ), take it outside the sum and use (8) and (42), with Π(T, T ) = 〈Pi〉, to
write the line intensity sum as

∑
ul

S
{i}
ul =

〈Pi〉
4πB̃(νi, T )

=
4π3νiM

2
i di

3hc

(Qi

Q

)
. (87)
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Figure 9: Power radiated per molecule at a temperature T . The solid lines represent the
power per molecule Π{i}(T, T ) found according to the line intensity sum of (42) while the
dots are the mean powers radiated by a harmonic oscillator as given by (84). The results
are for the following modes with the frequencies in units of cm−1: H2O (1595), CO2 (667),
O3 (699), N2O (1285), CH4 (1311), CF4 (1283) and SF6 (948).

The line intensity sum of (87) includes all line by line transition frequencies, νul, for the
molecular absorption band interval ν1 ≤ νul ≤ ν2, centered on the mode frequency νi.
According to (2) to (4), this sum is the same as the frequency-integrated absorption cross
section of the band, ∫ ν2

ν1

σ(ν, T )dν =
∑
ul

S
{i}
ul . (88)

Fig. 10 shows a plot of the frequency-integrated cross section versus temperature. Equa-
tions (87) and (88) show the cross sectional temperature dependence is determined by the
partition function Qi for the vibrational mode at frequency νi given by (78), divided by the
total partition function Q given by (77). The individual partition functions, Qi, increase with
temperature causing Q to have an even greater temperature increase. Hence, the ratio Qi/Q
decreases as the temperature increases. The exact temperature dependence of the frequency-
integrated cross section is a function of the vibrational frequencies. For a theoretical molecule
having only a single vibrational frequency, Qi/Q is unity and the frequency-integrated cross
section is constant. The temperature dependence of the frequency-integrated cross section
is most noticeable for a molecule having a large number of vibrational frequencies. This is
most evident in Fig. 10 for SF6 where the frequency-integrated cross section increases by
nearly a factor of 2 as temperature decreases from 300 to 200 K.
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Molecule νi di 〈ni〉 ν1 − ν2 Π{i}(T, T ) |Mi| Γni=1

(cm−1) (cm−1) (10−21 W) (D) (s−1)

H2O 1595 1 4.75× 10−4 1000-2500 0.330 0.185 21.9
3652 1 2.47× 10−8 2500-3700 6.40× 10−5 0.068 35.7
3756 1 1.50× 10−8 3700-5000 5.51× 10−5 0.077 49.2

CO2 667 2 8.50× 10−2 500-850 1.73 0.182 1.54
1388 1 1.18× 10−3

2349 1 1.18× 10−5 1500-2500 0.253 0.476 461
O3 699 1 3.58× 10−2 500-900 0.115 0.066 0.231

1042 1 6.53× 10−3 900-1075 1.70 0.266 12.6
1110 1 4.70× 10−3 1075-1300 3.23× 10−2 0.038 0.312

N2O 588 2 1.27× 10−1 500-800 0.224 0.069 0.152
1285 1 1.87× 10−3 800-1500 0.673 0.206 14.1
2224 1 2.06× 10−5 1500-3000 0.221 0.376 243

CH4 1311 3 5.58× 10−3 1000-1900 0.332 0.080 2.28
1533 2 1.28× 10−3

2916 1 8.38× 10−7

3019 3 1.53× 10−6 1900-4000 2.52× 10−3 0.080 27.4
CF4 439 2 2.35× 10−1

631 3 1.16× 10−1 583-681 0.229 0.063 0.158
922 1 8.04× 10−3

1283 3 4.20× 10−3 895-1515 11.7 0.575 109
SF6 351 3 3.89× 10−1

525 3 1.04× 10−1

615 3 5.98× 10−2 592-637 1.14 0.207 1.56
643 2 3.24× 10−2

775 1 7.84× 10−3

948 3 1.02× 10−2 932-964 9.64 0.613 50.2

Table 5: Mode frequencies νi = ωi/(2πc), spatial degeneracies di of (44) and mean number
of vibrational excitation quanta 〈ni〉 from (83). For the infrared active modes, we found the
radiated powers Π{i}(T, T ) at T = 300 K from (42), for lines with frequencies νul between the
lower bound ν1 and the upper bound ν2. Transition moments |Mi| were obtained using (85)
and the spontaneous decay rates Γni=1 of (86) for an excited molecule with one vibrational
quantum.

25



Figure 10: Temperature dependence of line strength sum,
∑

ul Sul(T ), or frequency integral
of the cross sections,

∫
σ(ν, T )dν, from the right side of (87). The results correspond to the

following modes with the frequencies in units of cm−1: H2O (1595), CO2 (667), O3 (699),
N2O (1285), CH4 (1311), CF4 (1283) and SF6 (948).

7 Conclusions

This work examined the transmission of infrared radiation through a cloud-free atmosphere
from the Earth’s surface to outer space. A line by line calculation used over 1.5 million
lines of the five most important naturally occurring greenhouse gases, H2O, CO2, O3, N2O
and CH4 as well as CF4 and SF6. This included considerably more weaker rovibrational line
strengths, for H2O as small as 10−27 cm, than other studies. The calculation of forcings took
into account the observed altitudinal concentrations of the various gases.

The most striking fact about radiation transfer in Earth’s atmosphere is summarized by
Fig. 3. Doubling the current concentrations of the greenhouse gases CO2, N2O and CH4

increases the forcings by a few percent for cloud-free parts of the atmosphere. Table 3 shows
the forcings at both the top of the atmosphere and at the tropopause for all molecules except
for SF6 are comparable to those found by other groups. Our result for SF6 is lower than
other groups that used infrared absorption cross sections. Increasing the concentrations of
either CF4 or SF6 by a factor of 100 yields a forcing nearly an order of magnitude smaller
than that obtained by doubling CO2.

Fig. 6 as well as Tables 2 and 4 show that at current concentrations, the forcings from
the 5 naturally occurring greenhouse gases are saturated. The saturation of CF4 and SF6 is
small because their concentrations are orders of magnitude less than the other greenhouse
gases. The saturations of the abundant greenhouse gases H2O and CO2 are so extreme that
their per-molecule forcing is attenuated by four orders of magnitude with respect to the
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optically thin values. Saturation also suppresses the forcing power per molecule for the less
abundant greenhouse gases, O3, N2O and CH4, from their optically thin values, but far less
than for H2O and CO2.

Table 2 and Fig. 8 show the overlap of absorption bands of greenhouse gases causes their
forcings to be only roughly additive. One greenhouse gas interferes with, and diminishes, the
forcings of all others. But for the case of H2O, CO2, O3, N2O and CH4, the self-interference
of a greenhouse gas with itself, or saturation, is a much larger effect than interference be-
tween different gases. Table 4 shows that for optically thin conditions, the forcing power
per molecule is about a few times 10−22 W per molecule for the five naturally occurring
greenhouse gases and of order 10−21 W per molecule for CF4 and SF6.

An important consistency test of our work is that for optically thin conditions, the forcing
power per molecule can be computed directly from the line strengths. This was checked to
agree with that found by dividing the radiative forcing by the column density. The forcing
power per molecule agreed well with the results obtained using a simple harmonic oscillator
model for the various vibrational modes for all seven molecules considered in this study. The
frequency-integrated cross sections were found to be relatively independent of temperature
for the five naturally occurring greenhouse molecules but not for CF4 nor SF6. For SF6,
it varies by about a factor of 2 over the temperature range found in the atmosphere which
may explain the different radiative forcings found by various groups. In conclusion, this
work is useful for examining the dependence of radiative forcing on changing greenhouse gas
concentrations.
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