Assignment 2

1. A fisherman 2 meters from shore sees a fish directly below. His one meter tall partner stands next to shore. He sees the fish and measures an angle of 45° for the light ray from the fish exiting the water surface. How deep should the fisher in the boat quickly cast his net to catch the fish?

$$\begin{aligned}
& \lim_{\theta \to \infty} \theta_{+} = \lim_{\theta \to \infty} 45^{\circ} \\
& \lim_{\theta \to \infty} \theta_{+} = \frac{1}{\sqrt{2} \times 1.33} \\
& \theta_{+} = 32^{\circ} \\
& \tan \theta_{+} = \frac{1}{4} \\
& \frac{1}{\sqrt{2} \times 1.33} = 1.59 \text{ m is depth of fish.}
\end{aligned}$$

- 2. Consider a 1 cm high object placed in front of a lens having a focal length of 5 cm. For object positions of 20, 7.5 and 2.5 cm, find:
 - a) the image position
 - b) the magnification
 - c) draw a neat diagram showing the directions of the light rays
 - d) Is the image real or virtual, erect or inverted?

a)
$$\frac{1}{5_0} + \frac{1}{5_1} = \frac{1}{4}$$
 b) $M_7 = \frac{|y_1|}{y_0}$
 $\frac{1}{5_1} = \frac{1}{5} - \frac{1}{20}$ = $\frac{5_1}{5_0}$
 $5_1 = 6.67 \text{ cm}$.

d) Image is real & inverted.

Object Image M_T Image

20 cm. 6.67 cm. 0.33 Real Inverted

7.5 15 2 Real Inverted

2.5 -5 2 Virtual Erect

Repeat question 2 for the same object if it is placed 20 cm in front of a concave 3. lens having a focal length of 5 cm.

- - 5; = -4 cm.
- a) $\frac{1}{70} + \frac{1}{5i} = \frac{1}{-5}$ b) $M_T = |5i|$ d) Image is Virtual 4 Erect
- Explain using a diagram what farsightedness is and how it is corrected with 4. glasses.

Object

Correction using Convex Leus.

5. A laser beam having a diameter of 2 mm is to be expanded by a factor of 4. Draw a diagram of how one can create a beam expander using two convex lenses. Specify the focal length of the lenses and their positions using a

diagram.

$$M_{T} = \frac{f_{2}}{f_{1}} = 4$$
 $f_{2} = 4f_{1}$