Quiz 1

Name:		
rainc.		

Total = 10 marks

1. (2 marks) Estimate the number of photons per second in a 10 Watt blue argon ion laser beam?

photons / sec =
$$\frac{\rho}{h\nu}$$

= $\frac{10 \text{ Watt}}{6.63 \times 10^{-34} \text{ Js}} \times \frac{3 \times 10^{8} \text{ m/s}}{6 \times 10^{-7} \text{ m}}$

= $3 \times 10^{9} \text{ phot/s}$

2. (3 marks) Derive the law of reflection using Fermat's Principle.

See dectore notes.

3. Refraction

a) (3 marks) A light beam travelling in water strikes a 1 meter thick glass plate at an angle of incidence of 70° as shown below. Find the position x where the light ray enters the air on the other side of the glass surface.

Refraction at $H_2O/Glass$ interface: $n_W \sin 70^\circ = n_G \sin \theta_+$ $\sin \theta_+ = \frac{1.33 \sin 70^\circ}{1.5}$ $\theta_\perp = 56.4^\circ$

Now town
$$\theta_{\uparrow} = \frac{x}{1}$$

 $x = 1.51$ meters

b) (2 marks) How does the answer change if the light ray is initially in glass and then hits a 1 meter thick water layer?

Refraction: $n_G \sin 70^\circ = n_W \sin \theta_f$ $\sin \theta_f = \frac{1.5 \sin 70^\circ}{1.33}$ = 1.06

- no refraction occurs. Roug is totally internally reflected and never reaches air.