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Chapter 1

Some Basic Ideas

1-1 THE SCOPE OF NEWTONIAN
MECHANICS

Early in the second half of the twentieth
eentury, the space age began. Since 1950,
successes have been achieved in the field
of space travel that were only wild dreams
in 1900. We have now arrived at the stage
at which, by taking proper precautions,
men can travel in space for at least a
limited time. And it is quite possible that
in the next 50 years men will completely
conguer space.

Many of the advances which have been
responsible for these achievements have
been technological advances. New metals
have been discovered which will stand
the extreme temperatures encountered,
particularly as a satellite re-enters the
earth’satmosphere. New communications
devices, particularly those involving
miniature components, have been devised.
New fuels for satellite propulsion have
been found. Above all, large amounts of

money have been made available for
research and development.

Yet the basic laws governing the
motions of satellites have been known
for at least 250 years; they were first
enunciated by Sir Isaac Newton in the
17th century. It is true that these laws
have to be modified slightly when we deal
with small particles travelling at high
speeds, but it is equally true that any
description of Physics as we know it
today cannot overlook the contributions
of Newtonian mechanics.

So this book deals with the laws de-
veloped by Newton and others, and
develops the ideas necessary to an under-
standing of the elements of space travel.
But the usefulness of Newtonian me-
chanics does not stop there; the laws of
mechanies enable us to understand the
motions of objects which we encounter
from day to day. Moreover, they enable
us to analyse the motions of molecules
and atoms and sub-atomic particles.




1-2 THE WORK OF THE
PHYSICIST

The physicist is concerned with the
discovery of fundamental facts and is not
necessarily concerned with applying these
facts directly for the service of mankind
or for financial gain. Engineers and tech-
nologists apply the fundamental knowl-
edge gained by the physicist in building
bridges, skyserapers, automobiles, air-
craft, radios, television sets, earth satel-
lites, atomic bombs, etc. Engineers and
technologists frequently discover facts on
their own, too, and feed these facts back
to the physicist. In turn, the physicist
may suggest engineering or technological
changes. But the main concern of the
physicist is with the discovery of funda-
mental facts, and our concern in this book
will be with the discussion of such facts,
rather than with an extensive description
of their technological applications.

The physicist designs experimental ap-
paratus, performs experiments, assesses
experimental data, formulates laws and
proposes theories. Each of these activities
is important and its role in the over-all
process should be understood.

1-3 THE ROLE OF THE
LABORATORY

When a physicist sets up an experiment,
he usually has a definite goal in mind,
and he designs apparatus whose function
it is to perform the operations he wishes
performed. In making experimental ob-
servations, he uses many instruments,
some of which are very complex. However,
regardless of its complexity, the purpose
of any instrument is to extend the experi-
menter’s senses of sight, sound, and touch,
and to remove the unreliability which
these senses often display. For in the
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course of the experiment, the physicist,
even though he has a goal in mind, must
not be influenced by what he hopes will
happen.

As a student of Physics you will use
the laboratory, and carry out Laboratory
Exercises similar to experiments that
physicists have done. You will not likely
have much part in the designing of the
apparatus, but you should have some part
in deciding how the apparatus is to be
used. You should have some goal or pur-
pose in mind. However, as you perform
the experiment, you should not be in-
fluenced by this purpose, but should
record the results honestly and objective-
ly. Remember, too, that the experiment
is not finished when you have recorded
the last observation. The data which you
have collected must be analysed and
interpreted.

1-4 THE ROLE OF MATHEMATICS

In relating, interpreting, and summar-
izing experimental data, the chief tool of
the physicist is mathematics. Physics is a
quantitative science involving measure-
ment and calculation, rather than a purely
qualitative and descriptive subject. The
need for quantitative treatment is very
well summarized in the following state-
ment. It is attributed to Lord Kelvin
(1827-1907).

“T often say that when you can measure
what you are speaking about, and express
it in numbers, you know something about
it; but when you cannot measure it, when
you cannot express it in numbers, your
knowledge is of a meagre and unsatis-
factory kind; it may be the beginning of
knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science,
whatever the matter may be.”
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The purpose of mathematics is not
simply to perform calculations with the
numbers resulting from measurement, but
also to discover relationships among the
quantities involved. In order to interpret
the results of the Laboratory BExercises
which you will perform, you must be able
to recognize such relationships as direct
and inverse proportion, either from a table
of experimental data, or from the cor-
responding graph. The physicist is con-
tinually searching for relationships such
as these, and often for much more com-
plicated relationships. When he finds a
relationship which is valid for many sets
of experimental data, he formulates a law.

1-5 PHYSICAL LAWS

A physical law is not an instruction
that may be obeyed or ignored, as if it
were a federal statute. In fact, a physical
law is not in any sense responsible for the
behaviour of physical objects; all it does
is summarize and describe that behaviour.
Perhaps we can make the distinction clear
by quoting an example.

In Chapter 4 we discuss Newton’s
second law. This law states, among other
things, that the acceleration of an object
is proportional to the net force acting on
the object. Newton’s second law applies
to automobiles, airplanes, toboggans,
baseballs, tennis balls, lawn mowers—to
all objects. But the objects do not behave
this way because of the law; rather, ex-
periments have shown that these objects
behavein this manner, So the lawissimply
a summary of experimental facts, a
generalization that was possible only after
a great deal of experimentation.

We use laws in solving problems, con-
fidently assuming that the laws have been
derived from sufficient experimental evi-

dence to ensure their validity in the
problem. But there is one danger. Most
laws, and the formulas which are the
mathematical expressions of these laws,
have certain restrictions placed upon
them. Ifor example, the formula which
expresses Newton’s second law is I' = ma.
This formula is easy to learn, but it can
be used incorrectly. In order to use it
correctly, you must not only know what
the symbols I, m, and a stand for, but
yvou must remember that the use of the
formula is restricted to cases where F is
the net force acting on an object. More-
over, it is valid only for certain units of
force, mass, and acceleration.

1-6 UNITS OF MEASUREMENT

Newtonian mechaniecs has traditionally
required a multiplicity of fundamental
and derived units. In order to reduce the
number of units discussed in this book,
we shall use the M.IK.S. system of meas-
urement almost exclusively. The M.IK.S.
system uses the metre, kilogram, and
second as units for the fundamental con-
cepts of length, mass, and time. The
student should be familiar with these
units already; for convenience they are
tabulated in the appendix.

The names of units in which derived
concepts are measured are combinations
of these fundamental units. If, for ex-
ample, in determining a speed, a distance
in metres is divided by a time in seconds,
the speed is measured in ;netr.es ;

seconds
monly written as metres per second or
m/sec. On the other hand, if a quantity
of work is calculated by multiplying a
force in newtons by a displacement in
metres, the work is measured in newtons
X metres, commonly written as newton-

com-=-




metres. Moreover, units may be ‘‘can-
celled’” just as numbers are. If metres/sec
are multiplied by see, the result 1s metres.
If newton-metres are divided by newtons,
the result is metres.

Some units which could very well be
named in terms of fundamental units have
abbreviated names. For example, 1
newton-metre is called 1 joule; 1 joule per
second is called 1 watt. These examples
and others will be discussed in their proper

contexts in later chapters.

1-7 HYPOTHESES AND THEORIES

Up to this point we have described the
mostfrequently used elements of scientific
procedure. However, there can be useful
variations, and even reversals, of the
methods outlined.

In Section 1-5 we described how a
general law is derived from a large num-
ber of experimental observations. This
process is called inductive reasoning; it
proceeds from the particular to the
general. On the other hand, the general
law—usually called a hypothesis until it
is tested—may be arrived at by what
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amounts to an intelligent guess. The
hypothesis is then tested in particular
cases, and if the hypothesis proves correct
in a large number of cases, it may become
a law. This process of proceeding from
the general to the particular is called de-
ductive reasoning. Newton’s development
of the law of universal gravitation, which
we shall discuss in Chapter 6, 1s an ex-
cellent example of the use of deductive
reasoning.

At somestagein a series of experiments,
perhaps after the law has been enunciated,
an attempt is made to explain the ob-
served facts and the general law which
describes these facts. That is, a theory
is proposed. There are few theories in
Mechanies, for the facts and laws seem
to be so fundamental as to defy explana-
tion, Thereisalaw of gravity, for example,
but no theory as yet to explain it. How-
ever, the lack of explanations should not
cause us to under-rate the importance of
Mechanics. Two all-embracing laws of
mechanics—the law of conservation of
momentum and the law of conservation
of energy—are of fundamental impor-
tance to the whole field of Physics.

Ty
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Chapter 2

Straight Line Kinematics

2-1 INTRODUCTION

Mobility seems to be a prime require-
ment of twentieth century living. Auto-
mobiles travel our highways, airplanes
fly through the skies, ships sail the seas,
satellites travel through space, and the
wheels of industry turn continually. Those
who lived in former centuries were con-
cerned with motion too, with the motions
of stars and planets in the heavens, with
the motions of air masses over the surface
of the earth, and, more recently, with the
motions of molecules in gases and of
electrons in atoms.

Because motion is such a common
phenomenon, it is one of the basic con-
cepts of Physics. However, the concepf
of motion was poorly understood for many
centuries, and this lack of understanding
hampered the development of many
branches of seience. Since then, mainly
as the result of the work of Galileo Galilei
(1564-1642) and Sir Isaac Newton (1642-
1727), a system of studying motion hag

been developed. This system divides the
subject into two parts—kinematics and
dynamics. Kinematics deals with motion
without considering its cause, and
dynamics considers both the motion and
the forces which affect the motion.

In this chapter we will begin to con-
sider kinematics, that is, a description of
motion. We shall confine the discussion
to motion along a straight line path.

2—-2 AVERAGE SPEED

The average speed for a trip is defined
as the total distance travelled divided by
the time taken. Suppose that in travelling
from Toronto to Windsor the distance of
240 miles is covered in 6 hours. Then the
average speed for the entire trip is 40
miles per hour.

Suppose, in another case, that an auto-
mobile travelled at a speed of 40 mi/hr
for 13 hours and then reduced speed to
30 mi/hr for the next hour. The distance
travelled during the first 13 hours is 60




miles; the distance travelled during the
next hour is 30 miles. The total distance
travelled is 90 miles; the total time 1s
21 hours. The average speed is thus
90 =+ 2% mi/hr, or 36 mi/hr. Note that
the average speed is not the arithmetic
average of the two speeds; it is the uni-
form or constant speed at which the given
total distance could be covered in the
given time interval.

2—-3 MOTION AT CONSTANT
SPEED

Automobiles travelling on a street are
continually starting, stopping, speeding
up, slowing down, ascending or descend-
ing hills, and changing direction. Motion
at constant (uniform) speed—the type of
motion which would occur if the average
speed were maintained throughout the
trip—oceurs rarely but is basic to the
understanding of more complicated types
of motion.
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If the speed of an object is uniform,
the object travels equal distances in equal
intervals of time. Suppose, for example,
that a ground radar station takes a series
of readings of the horizontal distance from
the station to an aircraft which had pre-
viously passed over the station and
travelled in a straight line thereafter. The
readings might be tabulated as follows:

TIME (1) DISTANCE (s)
10.30 20 miles
10.32 25 miles
10.34 30 miles
10.36 35 miles
10.38 40 miles
10.40 45 miles
10.42 50 miles

Examination of these readingsindicates
that the speed of the aircraft relative to
the station is constant at 150 mi/hr. The
distance-time graph is shown in Figure
2.1. A study of this graph yields the
following information:

50 C
] B(])f g \I
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= o2 |
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w30 —jb {
= 5= —+——-—+— ¢
& 20 —=
(a] > &
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Fig. 2.1. Distance-time graph for constant speed.
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Fig. 2.2, Speed-time graph for constant speed.

(¢) For uniform speed, the distance-
time graph is a straight line.

(b) Theratio BC : AC, where A and B
are any two points on the line and C is
the point of intersection of lines drawn
through 4 and B parallel to the axes, is
the value of this uniform speed. Note
that BC' = As, AC = At, and the ratio,
731% = %, the slope of the graph. In the
case shown, As = 20 mi, and A{ = 8 min.
Thercfore the speed is

%: = % mi/min = 150 mi/hr

(¢) If the graph is produced to the left,
we find by extrapolation that the aireraft
passed over the radar station at 10.22.
This conclusion is valid if the speed was
constant at 150 mi/hr between 10.22 and
10.30.

The speed-time graph is plotted in
Figure 2.2. Since the speed is constant,
this graph is a straight line parallel to

the time axis. If from any two points
A and B on thig line, perpendiculars are
drawn to the time axis, a rectangle ACDRB
is formed. The area of this rectangle is
CD X BD, i.e., the time interval multi-
plied by the constant speed during that
interval. The value of this product is, of
course, the distance travelled during the
time interval.

We will show later in this chapter that,
in general, the area under a speed-time
graph is the distance travelled during the
time interval. This fact provides a graphi-
cal method which is useful for computing
distance, particularly in cases in which
the speed is not uniform and the graph
18 not a straight line.

2-4 MEASUREMENT OF
UNIFORM SPEED

Motion at uniform speed may be
demonstrated in the laboratory with the
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Fig. 2.3. Fletcher's trolley.

Fletcher's trolley apparatus (Ilig. 2.3).
It consists of a trolley car, about 75 cm
long and 8 ¢cm wide, mounted on almost
frictionless wheels which run along metal
tracks on a rigid metal frame. A strip of
spring metal is mounted over the car, and
a fine brush is attached to the end of this
strip. A strip of paper is fastened on the
top of the ear, and the brush is adjusted
just to touch the surface of the paper. If
the brush is inked and the metal strip
remains at rest, and if the car is pushed
under the brush, the tracing on the paper
isastraightline. When thestripisvibrated
and the car is put in motion, the inked
brush traces a wavy line on the paper.
The length of the metal strip can be ad-
justed to provide different periods of
vibration for the brush.

To study uniform speed, one end of
the track is raised slightly so that the
car will move at uniform speed if once
started, but it will not start of its own
accord. This adjustment is carried out to
make allowance for friction which is un-
avoidably present. The strip is vibrated,
and the car is given a quick push. The
tracing on the paper is a uniform wavy

line as shown in Figure 2.4. The tracing
shows that, when the car moved through
a distance AB or B(C, the brush made
one complete vibration, and that the
distances, A B, BC, etc., areapproximately
equal.

The average distance covered during
one complete vibration of the brush was
7 em. The brush vibrated 50 times in 10
seconds. Thus the car travelled 7 cm in
£ sec, and its speed was approximately
constant at 35 em/sec.

2-5 WORKED EXAMPLES

Exawpre 1

TFigure 2.5 is a speed-time graph for a
car, showing its motion during 5 different
time intervals 4, B, €, D and E. (a) De-
scribe the motion in words. (b) Caleulate
the distance travelled during each time
interval, and the total distance. (¢) Is
such a graph likely in practice?
SoLUTION

(a) The car travels for 0.10 hr at 15
mi/hr, then for 0.30 hr at 25 mi/hr, for
0.10 hr at 12.5 mi/hr, for 0.50 hr at
30 mi/hr and finally for 0.10 hr at 12.5
mi/hr.

Fig. 2.4. A tracing from a Fletcher's trolley, illustrating uniform speed.
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Fig. 2.3. Fletcher's trolley.
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Fig. 2.5. Speed-time record (idealized) of a trip by car.

(b) The distance travelled during the
time interval 4 may be obtained by
multiplying the speed (15 mi/hr) by the
time (0.1 hrs) or by finding the area of
the shaded rectangle on the graph. (Note
that in finding the area from the graph,
the length and width of the rectangle
must be measured in the units marked on
the corresponding axes of the graph.) The
distances travelled during intervals 4,
B,C, D, E are 1.5 mi, 7.5 mi, 1.25 mi,
15 mi, and 1.25 mi respectively. The
total distance is 26.5 mi.

(¢) Buch a graph is unlikely for two
reasons. (z) The speed is unlikely to re-
main absolutely uniform for any of the
time intervals. (¢7) The speed cannot pos-
sibly change abruptly, for example, from
15 mi/hr to 25 mi/hr. The graph, then,
is an idealization of a real situation. Such
idealizations are often necessary and fre-
quently useful in physics; they allow us
to make a very useful approximation of
a complicated real situation.

ExampLe 2

Tigure 2.6 shows, on the one set of
axes, the distance-time graphs for two
cars. (a) Interpret the graphs in words.
(b) At what time will car B be overtaken
by car 47
SoLuTION

(a) Since the graph for car B cuts the
distance axis 10 mi above the point where
the graph for car A cuts this axis, car B
is 10 mi ahead of car A when the timing
begins. Since both graphs are straight
lines, both cars travel at constant speed.
However, since the slope of the graph for
car 4 is greater than that for car B, car 4
travels faster than car B and eventually
overtakes car B. (The actual speeds of
the cars can be found from the slopes of
the graph, if desired.)

(b) The graphs intersect at time 0.8
hr. Thisis the time at which car A catches

up to car B. At this time, car A has
travelled for 20 mi from the start and
car B for 10 mi.




10

KINEMATICS AND DYNAMICS

25 |-
é 201
W 151 CAR B
u
z - —= —
< B
O o) il |
a || CAR A
5 ______
|
|
0 | | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

TIME

(HR)——

Fig. 2.6. Distance-time graphs for two cars.

2—6 ACCELERATION

It is almost impossible to drive an
automobile for a considerable length of
time at uniform speed. It is more likely,
particularly in city driving, that there
will be quick changes in speed, or sudden
stops, or quick get-aways. Take, for
example, a car moving at a speed of 20
miles per hour; the driver steps on the
accelerator and the speed is quickly in-
creased to 30 miles per hour. The speed
of the car has been increased by 10 miles
per hour; the car has been accelerated.

Suppose that the speed of a car in-
creases from 10 miles per hour to 30 miles
per hour in 5 scconds. Assuming that this
change takes place uniformly, there has
been an increase in speed of 4 miles per
hour each second, i.e., the acceleration is
4 miles per hour per second.

Suppose that, in another case, an object
moves 5 feet during the first second of
its motion from rest, 10 feet during the
second second, and 15 feet during the

third second of its motion. Its average
speeds during these successive seconds
are 5, 10, and 15 feet per second respec-
tively. In each second its speed increases
5 feet per second; its acceleration is 5 ft
per sec per sec. The first “per sec” 18
associated with the 5 ft in expressing the
increase in speed; the other “per sec”
indieates the time required for this in-
crease to take place. The expression ft
per sec persecis frequently written ft/sect.

In both of these examples, the acceler-
ation is constant or uniform, and the
motion is uniformly accelerated. On the
other hand, if a body moves 5 ft in the
first second of its motion from rest, 15 ft
in the second second, and 30 ft in the third
second, the acceleration is variable.

For unidirectional motion, that is, for
motion along a straight line path, ac-
celeration may be defined as the rate of
change of speed. Acceleration is calcu-
lated by dividing the change in speed by

: ' A
the time taken, that is, a = _Ai; If the
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acceleration is uniform, the speed changes
hy equal amounts in equal intervals of
time; otherwise the acceleration is
variable.

2-7 MEASUREMENT OF
ACCELERATION

The Fletcher’s trolley apparatus may
beused to study and measure acceleration.
If one end of the track is raised a few
inches, the track becomes an inclined
plane. The trolley moving down the plane
passes under the inked brush, and if the
vibrator is put in motion at the same
time that the car is released, a tracing
such as is shown in Figure 2.7 results.
Examination of the tracing shows that
B(C is greater than AB, CD is greater
than BC, ete. The car is accelerating.

The period of vibration of the brush
is  second. The car moves through each
of the following distances AB, BC, CD,
DE, ete., during equal, successive inter-
vals of time, that is during £+ second. The
distances AB, BC, DC, DE, ete., are
measured and found to be 0.97 cm, 1.78
em, 2.54 ¢m, 3.28 cm, ete., respectively.
When the car is moving from 4 to B,
its speed is increasing. Since it travels
0.97 cm in £ sec, its average speed in this
interval is 0,97 X 5 = 4.85 em/sec. If
the speed is increasing uniformly, this
average speed will be the speed of the
trolley at point (1) between A and B.
Similarly, when the car is moving from
B to C, its speed is increasing. Since it
travels 1.78 cm in 3 sec, its average speed
inthisintervalis1.78 X 5 = 8.90 em/sec.
Again, if the speed of the trolley is in-
ereasing uniformly, this average speed
will be its speed at point (2) between
B and (. Similarly, the speeds at points
@), @), (5), (6), (7), (8), (9), (10), and

11

(11) of the successive intervals are de-
termined. Thesc speeds are listed in the
second column of Figure 2.7.

A study of the tracing and of the second
column shows that while the car has
moved from point (1) of the first interval
to point (2) of the second interval, its
speed has increased from 4.85 cm/sec to
8.90 cm/sec. The increase in speed is
4.05 cm/sec. Similarly, the further in-
creases in speed arc found to be 3.80,
3.70, 3.65, 3.55, 3.85, 3.80, 3.80, 3.85,
and 3.80 em/sec. These increases in speed
are the same (within the limits of experi-
mental error), and therefore the car is
moving with approximately uniform
acceleration.

The increase in speed between points
(1) and (2) is 4.05 em/see, and this in-
crease occurs in + second. Therefore, the
acceleration is4.05 X 5 em/sec? or 20.25
cm /sec?.

Similarly, the acceleration for succes-
sive intervals from point (2) to (3), from
(3) to (4), ete., is determined and found
to be 19.00 em/scc?, 18.50 em/sec?,
18.25 em/sec?, ete. (Fig. 2.7, last column).
The average of these values for the ten
intervals shown on the tracing is 18.9
em/sec’. Hence, from the experiment it
is concluded that the trolley was moving
with approximately uniform acceleration
andthattheaccelerationwas18.9 cm/sec?.

2-8 DISTANCE-TIME GRAPH FOR
UNIFORM ACCELERATION

For the trolley tracing shown in I'igure
2.7, the graph of distances from 4 plotted
against the corresponding time intervals
is shown in Figure 2.8. Information ob-
tained from a study of this graph is
summarized below.
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Fig. 2.7. A trolley tracing, illustrating uniform acceleration.
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Fig. 2.8. Distance-time graph for uniformly ac-
celerated motion.

(a) The distance-time graph for uni-
form acceleration is curved. The graph is
a portion of a curve called a parabola.

(b) The slope of the chord joining any
two points P and ) on the curve is the
average speed for the time interval
involved.

(¢) If the point @ is not close to P,
the average speed between P and @ differs
considerably from the speed at P. How-
ever, if the point @ is close to P, the
average speed between P and Q is very
nearly equal to the speed at P.

2-9 INSTANTANEOUS SPEED

Instantaneous speed, or speed at a
point, may be defined as the average speed
over a very short distance which includes
the point. In other words, the speed at a

point is the value of %? when At is very

small, i.e., the limit of %z as At approaches

zero. In symbols

2 = i
Al—)DAt

As @ approaches P (Fig. 2.8), At ap-
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Fig.2.9. Speed-time graph for uniformly acceler-
ated motion.

proaches zero and the slope of the chord
approaches the slope of the tangent at P.
(You may verify this fact by drawing a
small section of the curve near P on a
large-scale graph.) Thus the speed at P
may be found by drawing the tangent at
P, and calculating its slope. In general,
an instantaneous speed may be deter-
mined from a distance-time graph by
drawing the tangent at the appropriate
point on the graph. The slope of the tan-
gent is the speed at the point.

Note that uniform speed may now be
defined more satisfactorily than was done
formerly; speed is uniform if it is the
same at all points.

2—-10 SPEED-TIME GRAPH FOR
UNIFORM ACCELERATION

By drawing a series of tangents at
points on the distance-time graph (Fig.
2.8) or by arithmetical calculation similar
to that shown in Figure 2.7, a number of
instantaneous speeds of the trolley may
be determined. The resulting speed-time
graph is shown in Figure 2.9. This graph
indicates that:
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Fig. 2.10. The area of the rectangles in this dia-
gram is slightly less than the area under the graph.

(a) The speed-time graph for uniform-
ly accelerated motion is a straight line.

(b) The acceleration ig obtained by
caleulating the slope of the graph. In the
case shown, the slope of the segment
, BC  30.7 em/sec 1
(Note also that the slope of the speed-
time graph shown in Figure 2.2 is zero,
because the acceleration is zero.)

(¢) The area under the speed-time
graph is the distance travelled during the
time interval involved. For example, the
area of the figure ADEB is the distance
travelled in time DE. If the initial and
final speeds AD and BE are represented
by the symbols w and v respectively, if
the time DE is represented by ¢, and if
the distance travelled is represented by
s, then

em/sec?.
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Eig. 2.11. The area of the rectangles in this dia-
gramis slightly more than the area under the graph.

area of ADEB = s = (y—;i))

This fact may not be as obvious for
Figure 2.9 as it was for the constant speed
graph in Figure 2.2. We may clarify the
situation by dividing the area into a series
of narrow rectangles and triangles (Fig.
2.10). Suppose that these rectangles are
of uniform width Af. The smallest of these
rectangles is labelled ABCD; the corre-
sponding triangle is labelled ADE. We
agree that the area of rectangle ABCD
is the distance that the object would have
travelled if its speed had been equal t0
its instantaneous speed at A. However,
the speed increased and the area of rec-
tangle ABCD is less than the actual
distance travelled during the time Al
Suppose, then, that wedraw our rectangles
and triangles as shown in Figure 211
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ig. 2.11. The area of the rectangles in this dia-
ram is slightly more than the area under the graph.

avea of ADEB = s = (” s ”)t

This fact may not be as obvious for
Nigure 2.9 as it was for the constant speed
raph in Figure 2.2. We may clarify the
ituation by dividing the area into a series
f narrow rectangles and triangles (Fig.
.10). Suppose that these rectangles are
f uniform width A¢. The smallest of these
ectangles is labelled 4 BCD; the corre-
ponding triangle is labelled ADE. We
jgree that the area of rectangle ABCD
s the distance that the object would have
ravelled if its speed had been equal to
ts instantaneous speed at A. However,
he speed increased and the area of rec-
angle ABCD is less than the actual
listance travelled during the time At
Juppose, then, that we draw our rectangles
wind triangles as shown in Figure 2.11.
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The area of rectangle FBCFE is the dis-
tance the object would have travelled if
its speed had been equal to its instan-
taneous speed at II. Thus the area of
rectangle F BCE is greater than the actual
distance travelled during the time At

Asg At approaches zero, rectangle A BC'D
and rectangle #/BCE become more nearly
equal in area, and triangles ADE and
AL become less and less significant. The
sum of the areas of the rectangles in either

case approaches the area under the graph. -

Since the distance travelled during
time ¢ is the product of the average speed
and the time, then the equation s =

(:“—-;;l})t indicates that the average speed

w4+ v
2
arithmetical average of the initial and
final speeds. This is true only for uni-

formly accelerated motion,

Further consideration will show that
this average speed occurs at the mid-
point of the time interval, but not at the
mid-point of the distance travelled.

during the time interval is , Le., the

2-11 LABORATORY EXERCISES:
CONSTANT SPEED AND
CONSTANT ACCELERATION

The Fletcher’s trolley, though con-
venient and accurate, is expensive for
student use, and therefore is frequently
replaced by less expensive apparatus. A
“dynamics cart” with roller skate wheels
(Fig. 2.12) replaces the car. A paper tape
18 attached to the cart, and, as the cart
moves, it pulls the tape through a re-
cording timer (Fig. 2.13). The clapper of
the timer vibrates, striking a piece of
?ﬂl‘bOD paper above the tape. The result-
g series of dots on the tape constitutes
@ record of the motion of the cart.

Fig. 2.12. A dynamics cart.

A sheet of § inch plywood, 6 to 8 feet
in length and 13 to 2 feet wide, forms a
suitable track on which to run the cart.
The complete arrangement is shown in
I'igure 2.14. The track shown in this
photograph has plywood sides, the pur-
pose of which is to make the track less
flexible and less likely to warp.

(a) LElevate the end of the track to
which the timer is attached, so that the
cart, once started, will run at what you
judge to be constant speed. Thread the
tape through the timer and attach the
end of the tape to the cart. Start the
timer, and give the cart a push. Stop the

Fig. 2.13. A recording timer.
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timer when the cart reaches the end of
the track. Examine the tape. Does the
positioning of the dots on the tape indi-
cate that the speed was constant? Check
by measuring the distances between suc-
cessive dots over the full length of the
tape. You may find these distances un-
equal, because the frequency of the timer
-may not have been constant. The error
due to variation of timer frequency may
be reduced as follows. Measure the dis-
tances in five-interval groups, i.e., from
the first dot to the sixth dot, from the
sixth dot to the eleventh, etc. Are these
larger distances equal? Was the speed
constant ?

In order to calculate the speed, you
need to settle on a time unit to use. This
time unit need not be one second; it can
be the period of the timer (1 tick) or the
time associated with each of the larger
distances mentioned above. We will call
this larger time unit 1 tock. Obviously,
1 tock = 5 ticks.

Plot the distance-time graph and the
speed-time graph for this motion. You
may get the required data by measure-
ment and calculation from the tape, or
you may cut the tape up into “one-tock
intervals”. These smaller pieces of tape

KINEMATICS AND DYNAMICS

Fig. 2.14. This arrangement of
apparatus may be used to record
the motion of the cart.

are then glued on a graph as shown in
Figure 2.15(a) and (b). You should satisfy
yourself that the methods shown are cor-
rect. Note that the area under the speed-
time graph in Figure 2.15(b) is the
complete length of the tape, i.e., the dis-
tance travelled by the cart.

(b) Elevate the end of the track still
further, and repeat the procedure out-
lined in (a) above. Let the cart accelerate
from rest. Calculate the acceleration from
a table similar to that in Figure 2.7. Is
the acceleration uniform? What is the
average acceleration? Plot the distance-
time and speed-time graphs. From the
speed-time graph, what values do you
obtain for the acceleration, and for the
distance travelled ?

2-12 EQUATIONS INVOLVING
SPEED, ACCELERATION,
TIME AND DISTANCE

Consider an object which accelerates
from an initial speed u to a final speed 2
in time ¢. Since the acceleration a is com-
puted by dividing the change in speed by
the time, then

e — e ————
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Fig. 2.14. This arrangement of
apparatus may be used to record
the motion of the cart.

re then glued on a graph as shown in
fgure 2.15(a) and (b). You should satisfy
rourself that the methods shown are cor-
ect. Note that the area under the speed-
ime graph in Figure 2.15(b) is the
omplete length of the tape, i.e., the dis-
ance travelled by the cart.

(b) Elevate the end of the track still
urther, and repeat the procedure out-
ined in (a) above. Let the cart accelerate
rom rest. Caleulate the acceleration from
. table similar to that in Figure 2.7. Is
he acceleration uniform? What is the
werage acceleration? Plot the distance-
ime and speed-time graphs. From the
speed-time graph, what values do you
sbtain for the acceleration, and for the
distance travelled ?

2-12 EQUATIONS INVOLVING
SPEED, ACCELERATION,
TIME AND DISTANCE

Consider an object which accelerates
from an initial speed u to a final speed v
in time t. Since the acceleration a is com-
puted by dividing the change in speed by
the time, then
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Fig. 2.15(b). Speed-time graph constructed from recording timer tape. The graph is shown as a
straight line, on the assumption that the timer frequency was not constant.

If the object is initially at rest (w = 0),
then » = at.

The formula

(%i’) ...... )

was developed from the graph in Figure
2.9.

If the value for v in equation (1) be
substituted in equation (2),

o\ u—l—u-{—att
- 2

s =

s = ut + Sa2. ... .. (3)
From equation (1)
v— U
fs
a

and substituting this value in equation

(2)s

= (33

v = ul 4+ 2as...... (4)
Elimination of u from equations (1)
and (2) yields the formula
s =t — Fal?...... (5)

The five equations enumerated above
are very useful in solving problems in-
volving speed, acceleration, time, and
distance, and they should be memorized.
The following restrictions on their use
should be kept in mind. The value of @
obtained by substituting values of v,
and ¢ in (1) is the uniform acceleration if
the motion is uniformly accelerated, and
theaverageacceleration if the acceleration

b
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2 = ut 4 2as...... 4)
Elimination of w from equations (1)
nd (2) yields the formula
s =t — 3a. ..... (5)

The five equations enumerated above
we very useful in solving problems in-
rolving speed, acceleration, time, and
listance, and they should be memorized.
The following restrictions on their use
should be kept in mind. The value of @
yhtained by substituting values of », u,
wnd ¢in (1) is the uniform acceleration if
the motion is uniformly accelerated, and
the average acceleration if the acceleration

L
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is not uniform. Thus equation (1) may
pe used whether the acceleration is uni-
form or not. However, equation (2) is
valid only if the acceleration is uniform,
and therefore equation (2) and equations
(3), (4), and (5), which are derived from
it, may, be used only in cases of uniformly
accelerated motion.

Some examples of problems that can
be solved using these equations follow.

2-13 WORKED EXAMPLES

ExAaMPLE 1

An object moving with uniform ac-
celeration changes its speed from 5 em
per sec to 50 cm per sec in 5 seconds.
ind the acceleration.

SoLuTIioN
% = 5 cm/sec
» = 50 em/sec
t = b sec
a=7

The only equation involving «, v, ¢, and
ais

v =u -+ at
Substituting: 50 =5 4+ a X 5
A=

The acceleration is 9 ecm per sec per sec.

Examrre 2

An object travelling with a speed of
50 em per sec is moving with a negative
acceleration of 10 em per sec per sec.
(@) When will it come to rest? (b) Where
will it come to rest?

SoLuTION

At the beginning of the interval the
speed is 50 em per sec, and at the end

19

of this interval the object is at rest,
therefore:

(@) uw = 50 em/sec
v = 0 cm/sec
a = —10 ¢m/sec?
fo=i7
Equation (1) is selected.
v =u 4+ at
0 =50+ (—10 X 1)
=5

It will come to rest in 5 seconds.
(b) u = 50 cm/sec

» = 0 em/sec

a = —10 em/sec?

g =7
Equation (4) is selected.

2 = u? 4+ 2as

0 = 2500 — 20s

S § =125

Therefore the object will travel 125 ¢m
before coming to rest.

ExaMmprLE 3

A car is moving with a uniform ac-
celeration of 6 ft per sec per sec. How
long, after attaining a speed of 42 ft per
sec, will it take to travel 1440 feet ?

SoruTION

u = 42 ft/sec

a = 6 ft/sec?
§ = 1440 £t
=7

Equation (3) is selected.
s = ut + Laf?
1440 = 42¢ 4 32

32 + 42t — 1440 = 0

i + 14t — 480 = 0

(t + 30)(t — 16) =0
“t=16ort = —30

It will take 16 seconds to travel 1440 feet.
The value t = —30 is inadmissible.
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2-14 PROBLEMS

1. A car is driven at a speed of 72 km/hr for 0.50 hr, 80 km/hr for 0.25 hr,
and 58 km/hr for 0.50 hr. (a) Calculate its average speed for the trip.
(b) Draw the distance-time graph and the speed-time graph for the trip.
(¢) Draw the distance-time and speed-time graphs for a trip of the same
duration, at the average speed calculated in (a).

2. Tigure 2.16 is an idealized speed-time graph for a hitchhiker’s trip along a
country road. He travelled first on foot, then by car, then by tractor, and
then in another car. (@) Calculate (z) the total distance travelled, (7z) the
average speed for the trip. (b) Draw the distance-time graph for the trip.

3. The period of vibration of the brush on a Tletcher’s trolley is 0.22 sec.
Successive wave lengths on a tracing measured 4.6, 4.0, 4.5, 4.4,4.5, and
4.6 cm. (a) Is the speed of the trolley uniform? (b) Calculate the average
speed in each 0.22 second interval and the average speed for the 6 intervals.
(¢) Plot the distance-time graph and from the graph determine the average
speed. (d) Plot the speed-time graph.
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Fig. 2.16. For problem 2. Fig. 2.17. For problem 4. |
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. Figure 2.17 shows the distance-time graph for two cars. (@) What is the

speed of .(i)_ car A, (1) car B? (b) When is car A () 10 miles behind B
(#) 10 miles ‘ahead of B? (¢) When does A overtake B? (d) What distz;mceJ
does (¢) 4, (i) B, travel in 2.0 hr? (¢) Draw the corresponding speed-time
graphs.

For each of the 2 graphs in Figure 2.18, (<) calculate the distance travelled
between ¢ = 3 sec and ¢ = 7 sec, (¢4) calculate the average speed between
t = 3 secand t = 7 sec, (¢47) draw the corresponding distance-time graphs.

Assume that the speed of light in air is 3.0 X 10® m/sec, and that the index
of refraction for light passing from air to glass is 1.5. Draw (a) the distance-
time graph, (b) the speed-time graph, for light traversing a path consisting
of 60 em of air followed by 30 cm of glass.

A ball rolling down an incline travels 6 em in the first 0.25 sec and 24 em
in the first 0.50 sec. Find its average speed in each quarter-second interval
and its aceeleration. i
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Fig. 2.17. For problem 4.

Fig. 2.18. For problem 5.
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8. An aircraft, on take-off, starts from rest. Its speed at ten-second intervals
thereafter is 10 km/hr, 256 km/hr, 45 km/hr, 70 km/hr, 100 km/hr, and
135 kkm/hr. (a) Calculate, in km /hr/sec, its average acceleration in each ten-
second interval. (b) Draw the speed-time graph. From the graph, estimate
its acceleration at t = 25 sec. ﬂ

9. A ball rolling down a ramp travels 1 metre in the first second, 3 metres in

the second second, 5 metres in the third second, and 7 metres in the fourth
second. (a) Calculate its acceleration. (b) Plot the distance-time and speed- 4

successive vibrations it moved to C, D, B, and F where AC = 7.1 cm,
AD = 15.2 cm, AE = 26.4 cm, and AF = 40.5 em. The brush completed
20 vibrations in 4 seconds. With the aid of a table in which the columns
bear proper headings, determine, correct to one place of decimals, the 1
average acceleration of the trolley in cm/sec?.

time graphs for its motion. Check the accuracy of your graphs by deter-
mining from them (z) the total distance travelled, and (¢7) the acceleration.

10. A tracing from a Fletcher trolley experiment revealed the following infor- 9 2
mation. From a position A the trolley moved to B, a distance of 2.1 c¢m; @
this distance was traversed during one vibration of the brush. During E

o 2
w
0.
w

11. Using the data given in Question 10, draw both the distance-time graph and
thespeed-timegraph. From the latter graph calculate the average acceleration. (

12. A tracing from a Fletcher trolley revealed the following information. From
a position A the trolley moved to B a distance of 2.0 ¢cm, during one vibration
of the brush. During successive vibrations it moved to C, D, E, F, and G
where AC = 7.1 ¢m, AD = 15.3 cm, AE = 96.7 cm, AF = 41.3 cm, and
AG = 58.9 cm. The period of vibration of the brush was % of a second.
(a) Draw a graph illustrating the motion, plotting distance against time.
State the kind of motion represented by the given data. (b) From the graph
determine the approximate speed of the trolley at the time when the trolley
is 35.0 ¢cm beyond A. (¢) With the aid of a table in which the columns bear
proper headings, determine, correct to one place of decimals, the average
acceleration of the trolley in em/sec.

13. An object initially moving at 10 m/sec accelerates uniformly. In the next
three one-second intervals it travels 12, 16, and 20 m, respectively. Draw
the speed-time graph and determine the acceleration of the object.

14. For the speed-time graph shown in Figure 2.19, calculate the distance
travelled in 2.0 sec.

15. (a) From the distance-time graph in Figure 2.20, determine (¢) the average
speed in each of the four seconds, (77) the acceleration, (i) the speed at
t = 2.5 sec. (b) Draw the speed-time graph and determine from it the
distance travelled in 4 sec. Check your answer by referring to Figure 2.20.
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est. Its speed at ten-second intervals
5 km/hr, 70 km/hr, 100 km/hr, and . 30 |
¢, its average acceleration in each ten- ] 7
ime graph. I'rom the graph, estimate |

metre in the first second, 3 metres in
rd second, and 7 metres in the fourth
(b) Plot the distance-time and speed-
e accuracy of your graphs by deter-
ce travelled, and (#2) the acceleration.

7
|

| 20

1
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seriment revealed the following infor-
.y moved to B, a distance of 2.1 cm;
one vibration of the brush. During
D, E, and F where AC = 7.1 cm,
AF = 40.5 ¢m. The brush completed
. aid of a table in which the columns 7
orrect to one place of decimals, the 1 \ /
cm/sec?.

10 /

DISTANCE (m)

SPEED (m/sec) —s—

R

—
N

g

iraw both the distance-time graph and E?
raph calculate the average acceleration. 0 05 1.0 15 20 0=

1 2 3 4
ealed the following information. From TIME (sec) —— TIME t(s6¢) ——pm
listance of 2.0 ¢m, during one vibration Fi

: q g. 2.19. For problem 14, :
ations it moved to C, D, E, F, and G pioblem Fig. 2.20. For problem 15.
, AE = 26.7 cm, AF = 41.3 cm, and
ation of the brush was % of a second. 0 Consi ; :

. . ; ; : : sider the rel: 3 = Spia ; .
\otion, plotting distance against time. At} (bl) (éi.ip;ii;e}:ffmnbhlp Av = a Al. What is the effect on Av of (a) doubling
by the given data. (b) From the graph ! ’
the trolley at the time when the trolley 17. Tor the relationship s
id of a table in which the columns bear
to one place of decimals, the average

2 oo i o, .
; 18. Consider the relationship »* = 2as. What is the effect on v of (a) changing s
by a factor of 4, (b) changing a by a factor of 3?

1 D o
zat?, what is the effect on s of (a) changing ¢ by ¢
factor of 3, (b) changing a by a factor of 0.7? (a) changing ¢ by a

/sec accelerates uniformly. In the next
12, 16, and 20 m, respectively. Draw 19. What is the average acceleration of i i

’ - : 4 a baseball which, start fr :
the acceleration of the object. rolls 50 m down a hill in 10 sec? Find its speed at the,end lofmt%lello(ﬁllseiz)

n Figure 2.19, calculate the distance 20. A yard engine shunts a freight car along a level siding. If the car stops in

50 seconds, 250 m frgm the point where it was released, calculate the speed
of the engine at the instant the car was released.

 Figure 2.20, determine (7) the average .
(‘ii) the acceleration, (@'z:i) the spe‘cd at 21. An object moves for 3 sec with constant acceleration, during which time it
ime graph and determine from it the travels 81 m. The acceleration then ceases and during the next 3 seconds it
our answer by referring to Figure 2.20. travels 72 m. Find its initial speed and its acceleration.
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22. An object has an initial speed of 4 m/sec and a uniform acceleration of (

9 m/sec?. How far does it travel in 10 sec?

23. A skier starts down a slope 0.5 km long at a speed of 4 m/see. If he acceler-
ates at a constant rate of 2 m/sec?, find his speed at the bottom of the slope.

24. A eyclist moving with a uniform speed of 6 m/sec passes a motor car that is |

just starting. If the motor car has a uniform acceleration of 2 m/sec?, when

and where will the car overtake the cyclist? Check your algebraic solution |

by means of a graphical solution.

25. A car moving with uniform acceleration travels 65 m in the tenth second
of observation and 95 m in the fifteenth second. Calculate the acceleration

and the initial speed.

2-15 SUMMARY

1. Average speed
_ total distance travelled
I elapsed time

2. If speed is uniform,

(a) equal distances are travelled in
equal intervals of time,

(b) the distance-time graph is a
straight line,

(¢) theslopeof thedistance-time graph
is equal to the constant speed,

(d) the speed-time graph is a straight
line parallel to the time-axis,

(¢) the area under the speed-time
graph is equal to the distance
travelled.

3. Forunidirectional motion, acceleration

_change in speed _ Av

~ elapsed time At
4. For uniformly accelerated motion,

(a) equal changes in speed occur in
equal time-intervals,

(b) the distance-time graph is para-
bolic,

(¢) theslope of a chord of the distance-

time graph is equal to the average
speed for the time-interval,

(d) the slope of the tangent at a point
on the distance-time graph is equal
to the instantaneous speed at that 0
time, n
. - ll
the speed-time graph is a straight il
line, d
the slope of the speed-time graph 5
; . a
is equal to the acceleration, "

the area under the speed-time
graph is equal to the distance P
travelled,

thefollowing formulae may be used i
to solve problems, if and only if thes P
motion is uniformly accelerated: f4

v=u+ a

uw -+ v |
v = u? + 2as

s = ut + zat
s = ot — at?

¢
Il

| =yl o e,
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n/sec and a uniform acceleration of
sec?

g at a speed of 4 m/sec. If he acceler-

| his speed at the bottom of the slope.
of 6 m/sec passes a motor car that is
jiform acceleration of 2 m/sec?, when

velist ? Check your algebraic solution

lon travels 65 m in the tenth second
th second. Calculate the acceleration

(¢) theslope of a chord of the distance-
time graph is equal to the average
speed for the time-interval,

(d) the slope of the tangent at a point
on the distance-time graph is equal
to the instantancous speed at that
time,

(¢) the speed-time graph is a straight
line,

() the slope of the speed-time graph
is equal to the acceleration,

(9) the area under the speed-time
graph is equal to the distance
travelled,

(h) thefollowing formulae may be used
to solve problems, if and only if the
motion is uniformly accelerated:

» = u + al
(52)
2
v = u? 4 2as

s = ut + zat?
s = ot — Sat?

S =

Chapter 3

Vectors and Vector

Kinematics

3-1 INTRODUCTION

In Chapter 2 we considered the motions
of several different objects each of which
moved along a straight line path. We did
not at any time mention the position of
that path relative to other objects, or the
direction of that path. Frequently, how-
ever, the position and direction of a path
are important. For example, suppose that
a plane is to make a trip of 200 miles.
The position of the path is certainly im-
portant; it is hardly likely that the pilot
will choose a path 6 inches above the
ground. And the direction is important
too, if the pilot hopes to arrive at the
proper destination. When we take these
factors into consideration, we are led to
adiscussion of relative motion and vectors.

3-2 RELATIVE MOTION

Suppose that a traveller, before leaving
home, puts his suitcase in the trunk of
his car. He travels 100 miles, stops, opens
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the trunk, and finds the suitcase still there.
Has the suitcase moved ? With respect to
the floor of the trunk it has moved very
little, if at all; with respect to the owner’s
home, it has moved 100 miles.

This example illustrates the principle
that the position of an object and the
motion of that object are, consciously or
unconseciously, considered with reference
to the position of some other object. In
general, one point is said to be in motion
with réspect to another point when the
line joining the two points changes in
length or direction. Thus, a passenger
seated in a moving train is not moving
with respect to his seat. However, he is
moving with respect to the ground, for
the line joining him to a point on the
groundischanginginlength. Two children
on a moving merry-go-round are moving
relative to each other, because the line
joining them is changing in direction.
Similarly, points on opposite wing tips of
an aircraft are moving with respect to




one another when the aircraft tuwns or
is tilted, because the line joining them is
changing in direction.

3-3 DISPLACEMENT AND
DISTANCE TRAVELLED

Although a trip in an automobile by
road from Meaford to Midland covers a
distance of about 70 miles, the actual
distance in a straight line across country
is only about 36 miles. Seventy miles is
the distance travelled by the automobile.
Thirty-six miles is the magnitude of the
displacement of the automobile. The
direction of displacement is from Meaford
to Midland.

Displacement, rather than distance
travelled, is the important factor in most
cases of motion. Distance travelled, or
path length, is an example of a scalar
quantity —a quantity having magnitude
only. Displacement, on the other hand,
is an example of a vector quantity—a
quantity having direction as well as mag-
nitude. Further examples of scalar and
vector quantities will be discussed in this
and later chapters.

A displacement may be represented by
a directed line segment. The length of
the line indicates the magnitude of the
displacement; the direction in which the
line is drawn is the direction from the
initial to the final position of the object,
and is indicated by an arrowhead on the
line segment.

3-4 RESULTANT DISPLACEMENT

Suppose that at a given instant an
object is at position B (Fig. 3.1) and that
later it moves to position €. The object
has been displaced, and the amount of
the displacement and the direction of the
displacement are represented by the

KINEMATICS AND DYNAMICS

B C

- b H . .
Fig. 3.1. BC and CD represent successive dis-
placements; BD is their resultant.

directed line segment B?', which is called
a displacement, vector. The arrow above
the letters BC indicates that we are deal-
ing with a vector, rather than with a
scalar quantity. Later the object moves
from ¢ tg_)D, so that the directed line
segment C'D represents a further displace-
ment. In each case, the length of the line
from the initial point to the arrowhead
represents the magnitude of the displace-
ment, and the dircction of the line on
the paper represents the direction of the
displacement.

Now join BD to complete the triangle
BCD in Figure 3.1. The net effect or
resultant of the two displacements of the
object is represented in magnitude by the
line BD, and in direction by the arrow-
head on BD pointing toward D. hat is,
BD is the resultant of BC and CD. This
construction for finding the resultant of
two vectors is called the vector triangle.

The resultant of two displacements can
befoundin mlg’ther way. The two vectors,
for example BC and BE in Figure 3.2, are
drawn from a common point B. A paral-
lelogram is then drawn with these vectors
as si_d)es. The _c_i)iag;oual BD is the resultant
of BU and BE. This method for finding
the resultant of two vectors is called the
vector parallelogram.
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P

B C

—» — ) )
ig. 3.1. BC gnd CD represent successive dis-
lacements; BD is their resultant.

irected line segment, B_&, which is called

displacement vector. The arrow above
he letters BC indicates that we are deal-
1ig with a vector, rather than with a
calar quantity. Later the object moves
rom to_)D, g0 that the dirccted line
egment CD represents a further displace-
1ent, In each case, the length of the line
rom the initial point to the arrowhead
epresents the magnitude of the displace-
aent, and the direction of the line on
he paper represents the direction of the
isplacement.

Now join BD to complete the triangle
30D in Figure 3.1. The net effect or
esultant of the two displacements of the
bject is represented in magnitude by the
ine BD, and in direction by the arrow-
wead on BD pointing toward D. That is,
3D is the resultant of l%’ and CD. This
onstruction for finding the resultant of
wo vectors is called the vector triangle.

The resultant of two displacements can
e found in angther way. The two vectors,
or example B¢ and BE in Figure 3.2, are
{rawn from a common point B. A paral-
elogram is then drawn with these vectors
oS sig)es. The _giag()llal B—IS is the resultant
of BC and BE. This method for finding
the resultant of two vectors is called the
vector parallelogram,
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g -

B C

—
Fig. 3.2. The parallelogram gf displacements. BD
is the resultant of 8C and BE.

The resultant of more than two dis-
hlacements is found by the method shown
%n Figure 3.3. fl_ﬁ, ﬁ’, CD, and DE are
vectors representing successive displace-
ments of an objeet. Thevector A@Z', formed
by joining the foot of the first vector to
the head of the last vector, represents the
magnitude and direction of the resultant.
This construction for finding the resultant
of more than two )_yectors is called the
vegtor polygon. ALL is the resultant of
AB, BC, (D, and DE.

3-5 ADDITION OF VECTORS

Finding the resultant of several vectors
is called vector addition. In spite of its
name, vector addition may differ radically
from ordinary addition. Let us consider
several cases: )

(¢) If an object undergoes successive
displacements of 3 ft, 7 ft, 6 ft, and 4 ft,
all in the same direction, the resultant is
obviously a displacement of 20 {t in that
direction. Thus the resultant of displace-
ments in the same direction is obtained
by simple addition; in this case vector
addition is the same as arithmetic
addition.

(b) If an object undergoes successive
displacements of 3 ft east, 7 ft west, 6 ft
east and 4 ft west, the resultant is ob-
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A

Fig. 3.3. The polygon of displacements. R is the
resultant of four successive displacements.

viously a displacement of 2 £t west. If we
assign a plus sign to vectors directed east,
and a minus sign to vectors directed west,
the resultant is the sum of 43 ft, —7 ft,
+6 ft, and —4 ft, that is, —2 ft, or
2 ft west. Apparently, then, the resultant
of several vectors, some of which have
one direction and others of which have
exactly the opposite direction, can be
found by algebraic addition as for positive
and negative numbers, after assigning a
positive sign to one of the directions, and
a negative sign to the other.

(¢) In all other cases, vector addition
differs completely from addition of num-
bers, since plus and minus signs can be
applied only to directions which are exact-
ly opposite. The triangle, parallelogram
or polygon method for finding the result-
ant may be used. In certain cases the
magnitude and direction of the resultant
can be calculated mathematically; these
calculations will be discussed after we
consider subtraction of vectors.

3-6 SUBTRACTION OF VECTORS

In order to subtract 3 from 7, we ask
ourselves the question: What number
must be added to 3 to give 7? That is,
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P - Q

— =
Fig. 3.4. Vector subtraction. /:i’—é ='P0 - PR.
to evaluate the difference 7 — 3, we de-
termine what number must be added to
the second number (3) to give the first
number (7). We may follow the same
procedure in finding the value of @ — b,
the difference between two vectors 2 and
E: Place the feet of the two vectors to-
gether (Fig. 3.4), thus forming two sides
PQ and PR of the triangle PQE. The
vector which must be added to PR in

order to produce a resultﬂlt PQ is ob-
viously RQ. Thatis, RQ = o b._S_inlilal’
reasoning shows that QR = b — a.

3-7 CALCULATION OF
RESULTANTS

The method of calculating the resultant
of displacement vectors in two special
cases is outlined below.

(a) Suppose that we wish to calculate
the resultant of displacements of 3 ft east
and 4 ft north (Fig. 3.5). Since B is a
right angle,

AC? = AB*+ BC* =9 + 16 = 25

AC = 5 ft.

Also, Z A is such that tan A = % =1.33
. A = 53.1° approximately.
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Thus the resultant fR” is 5 ft in the
direction 53.1° north of east.

(b) Suppose that we wish to calculate
the resultant of displacements of 6 t cast
and 5 ft northwest. We begin by sketch-
ing a diagram like the accurate diagram
drawn in Figure 3.6. The magnitude r of
the resultant may be calculated from the
trigonometric relationship

2 =p? + g* — 2pgcos R
Here, p = 6, ¢ = 5, R = 45° and cos Rk
= 0.71. Hence » = 4.2 approximately.
If R is obtuse, its cosine is negative and
equal in magnitude to cos (180° — I).

Angle @ may be calculated from the
trigonometric relationship

g @ r
s = q__ﬁsi;z L

b osin 45°
4.2
5 X 0.71
T 4.2
= 0.845
. Z@Q = 57.7° approximately.

4ft N

/ |;
A 3ft E B

Fig. 3.5. AC = AB + BC.
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‘hus the resultant A_(E‘ is 5 ft in the
irection 53.1° north of east.

(b) Suppose that we wish to calculate
he resultant of displacements of 6 ft east
nd 5 ft northwest. We begin by sketch-
g a diagram like the accurate diagram
rawn in I'igure 3.6. The magnitude r of
he resultant may be calculated from the
rigonometric relationship

r? = p* 4 ¢* — 2pg cos IR
lere, p = 6, ¢ = 5, B = 45° and cos R
= 0.71. Hence r = 4.2 approximately.
f B is obtuse, its cosine is negative and
qual in magnitude to cos (180° — R).

Angle ) may be calculated from the

rigonometric relationship
sinQ _ sin R
g
_gsin R

Losin Q)

r

_ bsin 45°
N 4.2
56 X011
i 4.2
= 0.845
. £ = 57.7° approximately.

y
;y-"'

rd

4t N

A 3ft E B

Fig. 3.5. AC = AB + BC.
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*) .
Thus the resultant QP = 4.2 ft in the
direction 57.7° north of east.

3-8 COMPONENTS OF A VECTOR

Two specific vectors can have only one
resultant, but any vector may be the
resultant of any pair of an infinite number
of pairs of vectors. Hach member of each
Jair is called a component of the original
veetor. If both the magnitude and direc-
tion of onc component are given, the
magnitude and direction of the other
component may be found;if the directions
of both components are given, the magni-
tudes of both components may be found.
(You should verify these facts by experi-
menting with a vector parallelogram or
triangle.)

The most useful and most often used
components of a vector are those which
are perpendicular to each other. Suppose,
for example, that we wish to find the
horizontal and vertical components of a

B

Fig. 3.7. H and V are the horizontal and vertical
Components, respectively, of A.

29

vector R directed at an angle of 6 to the
horizontal. We may resolve this vector
Z-IEJ;O h()l'i%()[lta]. and vertical components
H and V (Tig. 3.7) by drawing on R a
rectangle ABCD having horizontal and
vertical sides. Noting that (B = AD,
three facts are at once apparent:

1) R =H4+V?

9) sing — B

(2) .smB—AO
“V =Rsind

AB

(3) cosB—AC
*“H = Rcost

Note also that if 8 = 90° sin 6 = 1 and
cos @ = 0, and as a result H = 0 and
V = R. In general, a vector has its full
effect in its own direction, and no effect
or component in a direction at right angles
to itself.

3-9 VELOCITY

Often, when there is occasion to con-
sider the vector displacement of an object,
there is also oceasion to consider the
length of time during which this displace-
ment takes place. The quotient obtained
by dividing the displacement by the time
taken is called the velocity of the object.
Like displacement, velocity is a vector
guantity.




The average velocity for a trip is defined
as the resultant (net) displacement
divided by the time taken. Suppose an
automobile sets out from point A and
travels by a cireuitous route to a point B,
30 miles north of A. If the trip takes
5 hours, the average velocity for the trip
is 6 mi/hr north. The average velocity is
the uniform or constant velocity at which
the given displacement would oceur in
the given time interval.

The facts that have been discussed so
far in this chapter concerning displace-
ment veetors apply equally well to veloci-
ty vectors. This fact is obvious when we
realize that, to obtain a velocity vector,
we simply divide a displacement vector
by a time. Perhaps the best known appli-
cation of vector methods to velocity
vectors is in connecetion with aerial
navigation.

3-10 THE NAVIGATOR’S
PROBLEM

Before takeoff, the navigator of a plane
has available to him the following infor-
mation: (a) the speed, relative to the air,
at which the pilot intends to fly the plane;
(b) an estimated wind speed and direction,
supplied by a meteorologist; (c¢) the
direction on the ground from the airport
from which he takes off to the one at
which he intends to land. However, if he
lets the pilot point the plane in this latter
direction, the wind will blow the plane
“off course” and the plane will not arrive
at its intended destination. Therefore the
navigator must calculate (a) in what
direction to have the pilot point the plane,
and (b) the speed of the plane relative to
the ground. He can accomplish both of

these calculations by means of a vector

triangle such as that shown in Iigure 3.8.
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From any point O he draws a line v, of
indefinite length, in the direction in which
the plane must travel relative to the
E,wmul Also from O he draws 2 vector
OP representing the velocity v, of the
wind relative to the ground. With centre
P and radius equal to the intended speed
of the plane relative to the air, he draws
an arc cutting », at Q. The length of 0Q
is the speed of the plane relative to the
ground; the direction of PQis the direction
in which the pilot must point the plane.
That is, if all goes according to plan.
But flights seldom go according to plan,
because (among other things) v, rarely
turns out to be as the meteorologist pre-
dicted. After a few minutes in flight, the
navigator finds that his position relative
to the ground is not what he expected.
T'rom his observed position he can calcu-
LLtc both the magnitude and direction
of v, v,. The pilot can tell him (pr eaumably)
what the magnitude and direction of v,
have been, and the navigator draws JU—
other vector diagram to find what I
actually is. Then he draws a diagram
such as Figure 3.8 again. The procedure
is repeated at regular intervals through-
out the trip. Nowadays clectronic devices
domost of these operations automatically.

Fig. 3.8. The navigator's vector triangle.



KINEMATICS AND DYNAMICS

rom any point O he draws a line », of
\definite length, in the direction in which
1e plane must travel relative to the
mund Also from O he de% a vector
FJP representing the velocity v, of the
ind relative to the ground. With centre
' and radius equal to the intended speed
f the plane relative to the air, he draws
n arc cutting v, at . The length of OQ
- the speed of the plane relative to the
round ; the direction of £Qisthe direction
1 which the pilot must point the plane.
‘hat is, if all goes according to plan.
But flights seldom go according to plan,
ecause (among other things) v, rarely
urns out to be as the meteorologist pre-
icted. After a few minutes in flight, the
avigator finds that his position relative
o the ground is not what he expected.
rom his observed position he can calcu-
vte both the magnitude and direction
f i)_; The pilot can tell him (presumably)
vhat the magnitude and direction of o,
ave been, and the navigator draws an-
ther vector diagram to find what U
ctually is. Then he draws a diagram
uch as Figure 3.8 again. The procedure
s repeated at regular intervals through-
ut the trip. Nowadays electronic devices
lo most of these operations automatically.

Fig. 3.8. The navigator's vector triangle.
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3-11 MULTIPLYING VECTORS BY
NUMBERS AND BY
SCALARS

The usual meaning of 5 X 3 is that
three 5’s are to be added together. Fol-
Jowing the same reasoning, we conclude
that, when a displacement of 5 ft north
is multiplied by 3, the product is a dis-
plm:ement of 15 ft north. That is, when
a vector is multiplied by a number, the
magnitude of the vector is multiplied by
that number, and the direction of the
veetor and its units remain unchanged.

When a vector such as 40 mi/hr east
is multiplied by a secalar quantity such
as 5 hr, the above rules apply with the
one exception that the units change. The
magnitude of the product is obviously
200; the direction is east; but the units
of the result, obtained by multiplying
mi/hr by hr, are mi, The produet is 200
mi east.

3-12 VECTOR ACCELERATION

In Chapter 2, we defined the acceler-
ation of an object travelling along a
straight line path as the rate of change
of its speed with time. This definition
serves very well when the direction of the
path does not change. However, consider
such cases as these: a ball is thrown
straight up and then returns to earth;
a car coasts part way up a hill, comes to
rest, and then coasts back down again;
a stone rotates in a cirele on the end of a
string. In order to deal with these motions
we must consider acceleration as a vector
quantity. Aceeleration is then defined as
rate of change of velocity, and is calcu-
lated by dividing the change in velocity
by the time.

In cases where part of the motion of
an object is in one direction and part is
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in exactly the opposite direction, the
motion formulae derived in Chapter 2
may be used, provided s, w, » and a are
treated as vector quantities. It is par-
ticularly important to remember that s
must be treated as a displacement rather
than as the total path length or distance
travelled.

3-13 WORKED EXAMPLE

A boy, gliding on skates in a given
direction at a speed of 6 m/sec, suddenly
encounters a headwind which causes him
to slow down at a constant rate of 1.5
m/sec’. (@) When and where will he come
to rest? (b) What will be his velocity and
position 6 seconds after he encounters
the wind ?

Sovurron

Consider the direction of the boy’s
original motion as the positive vector
direction.

(a) =71
%= 6 m/sce
=
v =10
@ = —1.5 m/sect
[ =7
Using the formula v = @ + al
0=06—1.5¢
t =4
- =
Using the formula § = - —Zi_ L
-0 0o

The boy comes Lo rest in 4 see, 12 m from
the position where he first encountered
the wind.

(b) The solution which follows is valid
only if the boy’s acceleration is the same
after he comes to rest as before. The
vector values given below apply from the
time when he first encountered the wind.




32

=7

6 m/sec
=
= —1.5m/sec
= 06 sec
Using the formula? = @ + at
T=6—1.5X6
= -3
Using the formula § = ut + %ELE
§=6X6—73X1.5xX306
= 36 — 27
=9
Thus at the end of 6 seconds he will be
9 mfrom hisstarting point, in the direetion
of the original motion, but he will be
moving backward with a speed of 3 m/sec.

—y
8
—
u
—>
v
—
a
L

3-14 LABORATORY EXERCISES:
ACCELERATED MOTION

1. Attach a tape from a recording timer
to one end of a dynamies cart, and a
rubber band to the other end (I'ig. 3.9).
Hold the cart stationary with one hand,
and stretch the rubber band with the
other hand, as shown in the photograph.
Have your partner start the timer, then
release the cart. Try not to move the
hand holding the rubber band; simply let
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Fig. 3.9. When the cart is re-
leased, it will move with varying
speed.

the band go slack as the cart moves along
the track past your hand.

Use the tape to plot both the distance-
time graph and the speed-time graph for
the motion of the cart. Try to relate each
part of each graph to what you saw
happening to the cart.

9. Attach the tape from a recording
timer to a block of wood (Fig. 3.10). Start
the timer, then allow the block to fall
freely. Make the necessary measurements
on the tape, and caleulate the acceleration
of the block as it fell.

3-15 FREE FALL

The second laboratory exercise in
Section 3-14 suggests a method for find-
ing the acceleration of a falling object.
Since this acceleration is caused by the
force of gravity, it is called the acceler-
ation duc to gravity and is given the
symbol 7 In a vacuum, the magnitude
of g’is the same for all objects, and is
approximately 32 ft/sec?, 9.8 m/sec?, or
980 em/sec2 The direction of g is down,
whether the object is moving up or down.

Where an object falls through the air,
the resistance of the air reduces the magni-



(INEMATICS AND DYNAMIC .
i . S VECTORS AND VECTOR KINEMATICS

Fig. 3.9. When the cart is re-
leased, it will move with varying
speed.

the band go slack as the cart moves along
the track past your hand.

Use the tape to plot both the distance-
time graph and the speed-time graph for
the motion of the cart. Try to relate cach
part of each graph to what you saw
happening to the cart.

2. Attach the tape from a recording
timer to a block of wood (Fig. 3.10). Start
the timer, then allow the block to fall
freely. Make the necessary measurements
on the tape, and ealculate the acceleration
of the block as it fell.

3-15 FREE FALL

The second laboratory excreise in
Section 3-14 suggests a method for find-
ing the acceleration of a falling object.
Sinee this acceleration is caused by the
force of gravity, it is called the acceler-
ation due to gravity and is given the
symbol 72 In a vacuum, the magnitude
of 7 is the same for all objects, and is
approximately 32 ft/sec?, 9.8 m/sec?, or
080 cm/sec?. The direction of g is down,
whether the object is moving up or down.

Where an object falls through the air,
the resistance of the air reduces the magni-

tude of the acceleration. The effect of air
resistance depends on the shape of the
object, on its volume, density and surface
area, and on its speed. In many cases, the
offect of air resistance is negligible, and
we will consider this to be the case through
the remainder of this book, unless we
explicitly state otherwise.

The analysis of the vertical motion of
an object under the influence of gravity
provides 2 good example of the use of
yectors in motion problems.

3-16 WORKED EXAMPLES

ExAMPLE 1

From a point 70 m above the ground
an object is projected vertically upward
with a velocity of 25 m/sec. Assuming
that ¢ = 10 m/sec?, calculate how long
it will take to reach the ground.

SOLUTION

Step 1. Consider the upward portion of
the trip, and consider vectors directed
upward as positive.

V=714 at

0 =25 —10¢

i = 2:8
Thatis, the object ascendsfor 2.5 seconds.

Algo, 2as = »* — u?
—20s = 0 — 257
s = 31.25

That is, the object rises to a height of
31.26m + 70 m = 101.25 m.

Step 2. Consider the fall from this
101.25 m level, and consider vectors
directed downward as positive.

§ = ut + Zar
101.25 = 0 4 5¢2
t=4.5
That is, the object falls 101.25 m in 4.5
sec. Thus the total time of flight is 2.5
sec + 4.5 see, or 7.0 sec.

33

Fig. 3.10. A recording timer may be used to de-
termine the acceleration of a falling object.

The problem may be solved in one step.
Consider the whole flight, and consider
vectors directed downward as positive.

3 = ut + Lar

70 = —25{ 4 52

52 — 25t — 70 =0
2 —5l—14 =0
t—7E+2) =0

t=T7orl = —2

Thus, the time of flight is 7 sec. (The
negative root is inadmissible in this case).

LxamrLE 2
Anobjectisprojected vertically upward
with an initial speed of 128 ft/sec. When

will it reach a height of 240 feet above
the ground ?

SoLuTioN

Note that the object may reach the
240 ft level on the way up and again on
the way down. However, in either case its




displacement from its initial position is
240 £t up.

= —240 ft

—128 ft/sec

=g = 32 ft/sec?

=

-~ 2|8l =»l
Il

Using the formula® = ut + a2
—240 = —128¢ 4 16/
P — 8 — 15 =10
(t—3)(t—5 =0
L=3ort =19
The object is at the 240 ft level on the
way up 3 sec after projection, and on the
way down 5 sec after projection.

3-17 THE PATH OF A PROJECTILE

Vector methods are particularly useful
in analysing the motion of an object, say
a thrown ball, which moves horizontally
at the same time as it falls (or rises)
vertically. The photograph in ligure 3.11
compares the motions of two balls. The
ball on the left was dropped at the same

KINEMATICS AND DYNAMICS

time as the ball on the right was pro-
jected horizontally. The vertical com-
ponent of the initial velocity of each ball
was zero. lixamination of the photograph
yields the following information.

(a) IPor any given time interval, the
vertical components of the displacements
of the two balls are equal.

(1) In equal time intervals, the right
hand ball undergoes equal horizontal dis-
placements.

Though these facts may seem startling
at first glance, they are nevertheless true,
In Chapter 5 we will discuss the reasons
for them; for the present we will simply
take them for granted as a result of
Figure 3.11. What they mean is this:

(a) For a projectile whose motion has
both horizontal and vertical components,
the two components may be considered
separately, each as if the other did not
exist.

() The horizontal component of the
projectile’s velocity remains constant.

Physics Deparlment, :
Unaversity of Western Ontario

Fig. 3.11. The ball on the left
was dropped at the same time as
the ball on the right was projected
horizontally. Ateach flash the two
balls are at the same level.
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ne as the ball on the right was pro-
cted horizontally. The vertical com-
ment of the initial velocity of each ball
18 zero. Examination of the photograph
elds the following information.

(a) For any given time interval, the
rtical components of the displacements
the two balls are equal.

(b) In equal time intervals, the right
.nd ball undergoes equal horizontal dis-
acements.

Though these facts may seem startling
first glance, they are nevertheless true.
. Chapter 5 we will discuss the reasons
r them; for the present we will simply
Jce them for granted as a result of
igure 3.11. What they mean is this:
(a) For a projectile whose motion has
yth horizontal and vertical components,
e two components may be considered
parately, each as if the other did not
st

(b) The horizontal component of the
rojectile’s velocity remains constant.

Physics Departiment, !
University of Western Ontario

Fig. 3.11. The ball on the left
was dropped at the same time as
the ball on the right was projected
horizontally. Ateach flash the two
balls are at the same level.
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3-18 WORKED EXAMPLES

ExavrLn 1

A bomb is dropped from an aireraft
flying horizontally at a speed of 600 km /hr
at a height of 490 m. When and where
does the bomb strike theground ? (Neglect
air resistance).

SOLUTION

Consider first the vertical components
of the vectors and consider vectors
directed downward as positive.

3 =l + Lat
490 = 0 + 4.9
t =10
That is, the time of fall of the bomb is
10 sec.

Next, consider the horizontal motion.
The horizontal speed remains constant at
600 km/hr during the 10 sec (3¢q hr)
while the bomb falls. Therefore the hori-
zontal distance travelled = &5 km =
1.7 km. The bomb strikes the ground
1.7 km from the point on the ground
directly below the point of release.

Examprre 2

A helicopter is rising vertically at a
uniform speed of 48 ft per sec. When it is
640 £t from the ground, a ball is projected
horizontally with a speed of 30 ft per sec.
Calculate (a) when the ball will reach
the ground, (b) where it will reach the
ground, (¢) the magnitude of its resultant
velocity when it strikes the ground.

SoLuTion

Consider first the vertical component
of the motion of the ball, and consider
vectors directed downward as positive.

(a) uw = —48 ft/sec
T = 32 ft/sce
T = 640 ft

-

s = ul + Lae
640 = —48t 4 16¢
1642 — 48t — 640 = 0
2 — 3t — a0 =0
(t— 8)(t+ 5) =0
t=8ort = —5
The negative root is inadmissible.
. the time taken to reach the ground is
8 sec.

(b) The horizontal component of the
velocity is constant; the horizontal dis-
tance covered = 8 X 30 = 240 ft.

(¢) The vertical component of the
velocity at ground is given by 7= % + at.

w0 = —48 4 (32 X 8) = 208 ft/see.
The horizontal component is 30 ft/sec.
The resultant velocity 7 is obtained by
applying the parallelogram of velocities
(Fig. 3.12). The magnitude of the resull-
ant velocity = +/30% + 208 = 210
ft/sec.

Further caleulations show that the ball
projected from the helicopter reaches a

I
4

208

Fig. 3.12. The resultant velocity is found by
means of the parallelogram of velocities.
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This information 1s summarized in

L i - v, Tigure 3.13. In addition, the velocity
640 / \ vectors 71 and e at times 2.0 sec and
600 6.0 sec are shown. They were calculated

as was the resultant velocity at the ground
in the worked example above. The first
500 velocity is 34 ft/sec in a direction making
an angle of approximately 28° with the
horizontal, and the second is approxi-
mately 147 ft/sec in a direction making
an angle of approximately 78° with the
300 \ horizontal. These two vectors are_;%hown

o as AB and AC in Figure 3.14. BC then
is vy — v, that is Av. Measured on the
200 - scale to which veloclties were drawn, Av
seems to be approximately 128 ft/sec,
and is directed down. The corresponding

100 A f ; i T . .
HORIZDNTAL DISTANEE \ time interval Al 1s 4 sec. Therefore the

400

——

VERTICAL DISTANCE IN FEET

IN[FEHT
30 60 90 1201501&0210 2&}3
1 2 3 4 5 6 7 8

TIME IN SECONDS

HORIZONTAL

Fig. 3.13. A graph showing the path of a pro-
jectile, projected horizontally with a speed of 30
ft per sec, from a helicopter which is rising verti-
cally at 48 ft per sec.

height of 676 {t and then loses altitude - v
until it reaches the ground 8 seconds after
projection. Other altitudes and times are
shown in the following table.

TIME (sec) ALTITUDE (ft)
0 640
1 672
13 676
2 672
3 640
4 576
5 480
6 352 c
i 212 . . )
] 0 Fig. 3.14. Vector triangle for the velocity vectors

from Figure 3.13.




KINEMATICS AND DYNAMICS

This information is summarized in
rare 3.13. In addition, the velocity
stors vy and s at times 2.0 sec and
) sec are shown. They were calculated
was the resultant veloeity at the groufnd
the worked example above. The first
locity is 34 {t/sec in a direction making
angle of approximately 28° with the
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wtely 147 ft/sec in a direction making
angle of approximately 78° with the
rizontal. These two vectors are shown
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g. 3.14. Vector triangle for the velocity vectors
om Figure 3.13.
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=)

. . \ lirecti f cither 71 or vs. The ¢
acceleration, %%, is 32 ft/sec? down. We direction of either; or vs. (b) The above

is a valid method for calculating the ac-
celeration of an object which follows a
curved path. We will find it useful in
Chapter 5 when we analyse circular
motion,

|cnew this in the beginning of course, but

our caleulations have made two facts
- % ¥

plain. (a) The acceleration vector a has
. . - . .

the same direction as Ay, and this direc-

tion is not necessarily the same as the

3-19 PROBLEMS

Use ¢ = 9.8 m/sec? unless otherwise instructed.

1. At a particular instant, car A, with a uniform speed of 45 mi/hr, is 0.5
miles behind car B, which has a uniform speed of 30 mi/hr. What is the
speed of A relative to B, and how long will A require to overtake B?

2. A stone is dropped from a point on the ceiling to the floor of a railway car
which is travelling with constant velocity on a level track. At what point
will the stone strike the floor of the car? Give a reason for your answer.

3. Why do aireraft take off and land into the wind?

4. In order to take off successfully from an aircraft carrier, a certain type of
aireraft must attain an air speed of 90 mi/hr, but can attain a speed of only
60 mi/hr relative to the declk. What steps can be taken to attain the necessary
air speed ? Under what circumstances would a take-off be inadvisable?

5. The hour hand of a kitchen clock is 6.0 em long. (@) Calculate the distance
its tip travels () between 12:00 noon and 3:00 P.M., (#2) between 12:00 noon
and 6:00 P.M., (472) between 12:00 noon and 12:00 midnight. (b) Calculate
its displacement in each of the time intervals mentioned in (a).

6. A man walks 2 miles east, stops, turns through 120° to his left, and walks 4
miles in this new direction. What is the resultant of the two displacements?

7. Compare the resultant of displacements of 5 km north and 6 km ecast with
the resultant of displacements of 6 km east and 5 km north.

8. Compare the resultant of displacement of 10 metres cast, 6 mctres north-
west and 5 metres west, with the resultant of displacements of 100 metres
east, 60 metres north-west, and 50 metres west.

9. Use diagrams to show that (a) @ +b = Bita (b) na+ nb +ne = n(@+B8+¢)

10. P represents a displacement of 10 m east and 7' a displacement of 15 m north-
east. Use trigonometric tables to caleulate (a) p + 77, (1) P — 74, (¢) ¢ — P.

11. A snail travels 2.0 metres north, turns 40° left, and proceeds 3.0 metres
further before stopping to rest. Calculate the resultant displacement.

12. Evaluate @ — b for ELLCh of the following pairs of displacement vectors:
(¢) @ = 5 ft cast, b_= 3 It east,
(#0) @ = 5 km east, b = 7 km east,

(77) @ = 4 m north, T = 3 m west.
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13. A firceracker explodes, breaking into two unequal pieces. The larger part
undergoes a displacement of 30 m north-west. The smaller part lands 80 m
south-cast of the larger part. What was the displacement of the smaller
part?

14. If you travel 200 metres south-east, what are the southerly and easterly 4
components of your motion? 3

15. An aircraft, with a ground speed of 500 mi/hr, is climbing steadily at
700 ft/min. What ave the horizontal and vertical components (@) of its
velocity, (b) of its displacement during 0.2 hr? ~ 4

16. A car is driven at a velocity of 72 km/hr cast for 0.50 hr, 48 km/hr north
for 0.25 hr, and 62 km/hr west for 0.50 hr. Calculate (a) the magnitude of
its displacement, (0) the magnitude of its average velocity.

17. The second hand on a classroom clock is 15 em long. (a) Calculate the speed

of its tip as it rotates. (b) State the velocity of the tip at 15 sec and at e
30 sec. (¢) Caleulate the change in its velocity between 15 sec and 30 sec. o3
18. Using vector diagrams, find the magnitude of the resultant of two simul- 4

taneous velocities of 30 em/seec and 50 em/sec (@) at an angle of 907,

(b) at an angle of 45° to cach other. -5

19. What is the air speed of a plane which takes 14 hrs to travel the 630 mi
between two cities when it has a 70 mi/hr tail wind?

20. A ship is moving east at 5.5 m/sec. A passenger strolls on the deck at a
rate of 1.5 m/sec. Find the magnitude of the velocity of the passenger
relative to the carth (@) when he walks toward the bow, (b) when he walles
toward the stern, (¢) when he walks across the deck.

21. A passenger in a boat finds that the speed of the boat relative to the water
is 5 mi/hr, and that the boat is pointing north-east. The water is flowing
north at 10 mi/hr. Find the velocity of the boat relative to the ground.

2. The pilot of an airplane wishes to travel west with a ground speed of
800 lem/hr. e knows that the wind is blowing from the north at 60 km/hr.
In what direction should he point the airplane, and what airspeed should
he maintain?

o
o

923. Tor the displacement-time graph shown in Tligure 3.15, (a) calculate the
average velocity during the first 4 seconds, (b) caleulate the instantaneous
veloeity at ¢ = 4 sec, (¢) draw the corresponding velocity-time graph.

24. Base your answers to this question on the graph shown in IMigure 3.16. This
graph shows the velocity of an object travelling along a straight line.
(@) Which portion of the graph represents a constant positive acceleration?
(b) Which portion of the graph represents zero acceleration? (¢) During
which portion of the motion was the displacement decreasing? (d) At what
point was the displacement o maximum? (¢) Sketch (¢) the corresponding

displacement-time graph, (é?) the corresponding acceleration-time graph.
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Fig. 3.15. For problem 23. Fig. 3.16. For problem 24.
25. rI.'he sc.coud hand on a watch is 1.5 em long. (a) Calculate the speed of its
tip as it rotates. (b) Statp the velocity of the tip at 30 sec and at 45 sec.
(¢) CzL]ptllate the change in its velocity between 30 see and 45 sec. (d) Cal-
culate its average acceleration between 30 sec and 45 sec.
26. rl:he vclocilty of a car changes from 30 mi/hr north to 40 mi/hr east in 20 sec
Calculate its average vector aceeleration. .
7 L ok
27. An. airplane ﬁy]_ng at a constant speed of 1000 km/hr exceutes a slow turn
which changes its cl|1'§:(:t1<)11 of travel from east to west. If the turn takes
80 seconds, calculate its average vector aceeleration.
28. ]‘Desuribe gualitu.‘r.ively the motion represented by the aceeleration-time
graph in IMigure 3.17. Sketch the corresponding velocity-time graph.
29. For the acceleration-ti 3 in I : i
} 1e .u,Le]el ation-time graph shown in Tigure 3.18, determine the rate of
change of acceleration at ¢ = 3 sec and { = 5 sec.
30. The iuiti.al sp(.eed of an object is 16 m/sec to the right. It has a constant
%L}ccel_er]al;wtfll of 4 m/sec? to the left. At what times is it at a position 30 m to
te right of 1ts starting point? Interpret the two answer i
( ‘ ‘ answers. Check by drav
the velocity-time graph. by draning
31,

In question 30, how long it, ]
30, g would it take the object to reach s iti
to the left of its starting point? : sk m g e
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0.6 :
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0.4

0.3

0.2

ACCELERATION (m/sec?)

0.1

32.

34.

36.

TIME (sec) ——=

Fig. 3.17. For problem 28. Fig. 3.18. For problem 29.

During the first quarter of the journey from a station A to a station B a
train is uniformly accelerated and during the last quarter it is uniformly
decelerated. During the middle half of the journey the speed is uniform.
Show that the average speed of the train is 2 of the maximum speed.

A train starts from rest, accelerates uniformly for 18 sec, travels for 0.5 min

at constant speed, and decelerates uniformly to rest in 10 sec. The total
distance travelled is 880 m. (a) Calculate the maximum speed attained.

(b) Plot the speed-time graph.

A car is observed to cross a street in 4.0 see. The street is 120 ft wide, and
the car is accelerating at 4.0 ft/sec?. Calculate its speed when it is half-way
across the street.

. Calculate the displacement of a ball during the fourth second of its fall

from rest.

A stone is thrown vertically upward with an initial speed of 24.5 m/sec.
(a) Find () its veloeity, and (72) its displacement, after 1, 2, 3, 4 and 5 sec.
(b) Plot the displacement-time graph, the velocity-time graph, and the
acceleration-time graph.

o 1 2 3 4 5 6 7 8

T

\
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] 37. A rifle is fired horizontally from a point 2.0 metres above the ground. The
—— <1 muzzle velocity of the bullet is 300 m/sec. Caleulate its time of flight, and
i the horizontal component of its displacement.
L S~ 38. A baseball thrown from shortstop to first base travels 30 m horizontally and
0.9 T~ B rises and falls 5.0 m. Iind the horizontal and vertical components of the
58 / ot s initial velocity of the ball. (Use ¢ = 10 m/sec?.)
: =
..f‘f N \:J?(]’G 39. An object projected with a horizontal velocity of 30 m/sec takes 4.0 sec to
0.7 y \ $ﬂ reach the ground. Assuming that air resistance is negligible, and that
06— / N g = 10 m/sec?, calculate (a) the height from which the object was projected,
’ / “fq\ (b) the magnitude of the object’s resultant velocity just before the object
05— f X strilces the ground, (c) the horizontal component of the object’s displacement.
0.4 »‘j \ 40. An airplane, executing a shallow dive, releases a homb. At the time of
| / release, the bomb has velocity components of 160 m/sec horizontally and
0.3 / 40 m/sec vertically. (a) If the height of release is 4.8 km, and if air resistance
: | reduces the vertical acceleration to an effective value of 8.0 m/sec?, calculate
0.2 the time of fall. (b) If air resistance reduces the horizontal velocity at the
o rate of 0.5 m/sec?, caleulate the horizontal displacement of the bomb during
' / its fall.

TIME (sec) ———

Fig. 3.18. For problem 29.
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3-20 SUMMARY

11

One point is in motion with respect to
another if the line joining them is
changing in length or direction.

. A scalar quantity has magnitude only ;

a vector quantity has magnitude and
direction. Distance, speed, and the
acceleration associated with unidirec-
tlonal motion are secalar quantities.
Displacement, velocity, and the ac-
celeration defined as rate of change of
velocity, are vector quantities.

. Tofind the sum (resultant) of 2 vectors,

place the foot of the second vector on
the head of the first. The resultant is
the line segment from the foot of the
first vector to the head of the second.

- To find the difference between two

vectors, place their feet together. Their
difference is the line segment joining

by

. The product of a vector and a number

the head of the second vector to the
head of the first.

is a vector having the same direction
and units as the original vector. The
product of a vector and a scalar is a
vector having the same direction as the
original vector, but different units.

The components of a vector are two
vectors (usually mutually perpendicu-
lar), whose resultant is the original
vector.

. The horizontal and vertical compo-

nents of the motion of a projectile may
be considered separately.

. If the motion of an objeet is not uni-

directional, but if the vector acceler-
ation is constant, the formulae
developed in Chapter 2 may be used,
provided that s, u, v, and a are treated
as vectors.




Chapter 4

Newton’s Laws of Motion

4-1 INTRODUCTION

In Chapters 2 and 3 we have discussed
only the description, or the kinematics,
of motion. We have made no attempt to
answer such reasonable and vital ques-
tions about motion as the following. Why
does an object start to move ? Under what
circumstances is its velocity constant?
What factors affect its acceleration? The
first clear answers to these questions were
stated by Sir Isaac Newton, and they
involve dynamies rather than kinematics.
Before we consider Newton’s contri-
butions, we shall consider some pre-
Newtonian ideas about the causes of
motion.

4-2 EARLY IDEAS ABOUT
MOTION

The early philosophers’ ideas about the
causes of motion were much like our own
ideas when we first started thinking about
the subject. In many cases we would agree
quite readily that, in order to cause an
object to start moving, stop moving, speed

up, slow down, or change direction, some-
thing else must push or pull on the object.
In other words, an object will not ac-
celerate unless an external foree is exerted
on it. But in certain situations we might
have some reservations about this general
statement—probably fewer reservations
than the early philosophers would have
had, for we have been conditioned to
recognize forces which they did not know
existed.

Horizontal motion on a rough surface
presented considerable difficulty. It was
known that an object rolling or sliding
along such a surface eventually comes
to rest without the application of any
obvious external force; indeed a constant
applied force is necessary to cause the
object to move with constant velocity.
Aristotle (384-322 B.C.) therefore con-
cluded that a constant force was neces
sary to maintain constant velocity, and
that, if a force did not act on a moving
object, that object would come to rest
Since Aristotle’s time we have learned to
recognize the existence of a force of fri etion
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1p, slow down, or change direction, some-
hing else must push or pull on the object.
1 other words, an object will not ae-
selerate unless an external foree is exerted
m it. But in certain situations we might
have some reservations about this general
statement—probably fewer reservations
than the early philosophers would have
had, for we have been conditioned to
recognize forces which they did not know
existed.

Horizontal motion on a rough surface
presented considerable difficulty. It, was
known that an object rolling or sliding
along such a swface eventually comes
to rest without the application of any
obvious external force; indeed a constang
applied force is necessary to cause .the
object to move with constant velocity.
Aristotle (384-322 B.C.) therefore con-
cluded that a constant force was neces-
sary to maintain constant velocity, :1_11(1
that, if a force did not act on a moving
object, that object would come to rest,
Since Aristotle’s time we have learned ta
recognize the existence of aforce of friction
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exerted by the surface on the object roll-
ing or sliding on it. The moving ong(zt,
then, comes to rest under the retarding
aetion of the force of friction. Moreover,
if the object is to move at constant
velocity, we must apply a force sufficient
to balance the force of friction. The resul-
tant or net force acting on the object is
then zero, and the object’s velocity re-
mains constant.

The ancients were puzzled also by the
fact that an object accelerates as it falls.
Apparently they did not recognize the
existence of the force of gravity. They
were puzzled too by the motions of the
sun, the moon, and the stars in paths that
were not straight lines, apparently with
no force acting. Thanks to Newton, we
now explain celestial motion in terms of
gravitational force. Before Newton’s time
it was common practice to explain the
acceleration of a falling object by saying
that 1t was part of “the internal urge of
bodies to scek the place proper to their
scheme of things,” and to explain celestial
motion by attributing to ‘“‘celestial
matter’” properties not possessed by
carthly matter. This explanation ob-
viously would not be accepted today when
carthly matter is projected regularly into
space and behaves predictably there. But
this explanation was questioned long
before the twentieth century; one of the
most noteworthy of the questioners was
Galileo Galilei (1564-1642).

4-3 NEWTON’'S FIRST LAW

Galileo reasoned that, since a ball roll-
ing uphill slows down and a ball rolling
downhill speeds up, then a ball rolling on
A horizontal frictionless surface should
continue to move with constant velocity
indefinitely. Sir Tsaac Newton, who was

born in the same year that Galileo died,
recoguized the truth of Galileo’s assump-
tion and included it in his famous book,
Philosophiae Naturalis Principia Mathe-
matica, published in 1687. It ig known
now as Newton’s First Law of Motion,
and is stated as follows:

Every body continues in its state of
rest or of motion at uniform speed in a
straight line, unless an unbalanced force
acts upon it.

This law is a purely negative statement
that the body will undergo no acceleration
unless an unbalanced force acts upon it.
Ttisimpossible of proof and did not readily
gain general aceeptance by many con-
temporaries of Galileo and Newton.
However, indirect evidence, similar to the
following, seems to indicate its validity.

(a) As has already been noted, no
stationary object beging to move of its
own accord. Indeed, in cases where
magicians seem to demonstrate otherwise,
the sceptical observer immediately beging
to search for hidden wires or other devices
which exert the necessary forces.

(b) A hockey player, particularly a
goal-tender, knows that aforce is required
to stop or even to slow down a fast-
moving puck. Although he has never ob-
served a puck which was subject to no
forces whatsoever, he does know that if
theiceissmooth the puck will slide farther
than if the ice is rough. The thoughtful
goalie may suspect that if the ice were
perfectly smooth, i.e., if there were no
friction, the puck would continue at con-
stant speed in a straight line indefinitely.

(¢) In baseball, a batter realizes that a
force is necessary to change the direction
of motion of the ball thrown by the
pitcher, and that the greater the change
in direction (a well hit ball as compared




to a foul tip) the greater is the force
required. If a ground ball takes a ‘“‘crazy
hop,” fielders know that some object or
irregularity on the ground exerted a force
to produce the change in direction. More-
over, the usual explanation for the fact
that a baseball can be made to curve is
simply an explanation of the fact that an
unbalanced foree is acting on the ball. In
all cases, the players assume that if no
unbalanced force acts on the ball, its
direction of motion will not change.

4-4 INERTIA

Newton’s first law implies that any
object resists a change in its velocity.
This resistance to acceleration is called
inertia. Many simple experiments may
be performed to illustrate the existence of
inertia, and hence, to illustrate Newton's
first law.

If a tablecloth is spread on a table and
a book ig placed upon it, the cloth may
be removed by a rapid jerk without mov-
ing the book. Indeed, an expert at this
trick can pull a silk cloth from under a
full set of dishes.

When a steady pull is exerted on a cord
attached to a heavy weight that is resting
on the floor, the weight may be lifted.
On the other hand, a quick jerk may
breal the cord.

A sixteen-pound shot with screw eyes
attached on opposite sides is suspended
by a loop of stout string; a similar loop
hangs below the shot (Fig. 4.1). When a
rod is placed within the lower loop and
steady pressure is exerted on the rod, the
string will break above the ball. Tf the
rod is raised a few inches within the loop
and brought down with a quick jerk, the
lower string will brealk.

-
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Many everyday experiences demon.
strate the inertia of stationary or moving
objects. A person shovelling snow cay
stop the shovel suddenly but the snow,
because of its inertia, continues forward,
Passengers standing on a bus brace them.
selves or grasp a firm support to avoid
being “thrown” forwards or baclkwardy
as the bus stops or starts suddenly. When
the vehicle turns sharply, the passengers
tend to continue in a straight line with
the result that they seem to be “‘thrown”
to one side.

4-5 FORCE—A VECTOR
QUANTITY

The word “force” was used repcatedly
in the discussion above, even though it
had not been previously defined. Nor will
it be defined here. In a sense Newtow's
first law defines force as that which is
necessary to accelerate an object.

Fig. 4.1. llustrating the inertia of an object at rest.
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Many everyday experiences demon-
rate the inertia of stationary or moving
hjects. A person shovelling snow can
op the shovel suddenly but the snow,
ecause of its inertia, continues forward,
assengers standing on a bus brace them-
Jlves or grasp a firm support to avoid
eing “thrown” forwards or backwards
s the bus stops or starts suddenly. When
he vehicle turns sharply, the passengers
-nd to continue in a straight line with
he result that they seem to be “thrown”
o one side.

_5 FORCE—A VECTOR
QUANTITY

The word “force’” was used repeatedly
1 the discussion above, even though it
ad not been previously defined. Nor will
t be defined here. In a sense Newton's
irst law defines force as that which is
\ecessary to accelerate an object.

Fig. 4.1. lllustrating the inertia of an object at rest:
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N (exerted by table)

= .

Yr (exerted by earth)

Fig. 4.2. Forces acting on a block at rest on a
table.

Forces may vary in magnitude and act
in different directions. Hence, force is a
vector guantity and the method for find-
ing the resultant of several forces is the
same as has been described in Chapter 3
for displacement and velocity vectors.
The resultant of several forces acting on
an object may very well be zero, in which
case the acceleration of the object will be
zero. Such 1s the case for a block at rest

Fig. 4.3. Forces acting on a car moving at con-
stant velocity. # ig the propelling force, F is the
force of friction, Vis the vertical force exerted by
the road, and Fg is the force of gravity.

onatable (I'ig. 4.2) and for a car travelling
at constant speed on a straight and level
road (Fig. 4.3).

In predicting the motion of an object,
we frequently draw what is called a force
diagram for the object. In drawing such
diagrams, we must remember that only
those forces which act on the object can
have any effect on the motion of the
object, and these are the only forces shown
on the force diagram. These forces are
applied by some agent outside the object,
and are therefore called external forces.
Moreover, the force which determines the
motion of the object is the net force—the
resultant of all of the forces shown in the
force diagram.

4—-6 SOME COMMON FORCES

Theforces which act on objeets to cause
them to accelerate may be of many types,
including a physical push or pull. One of
the most common forces is the force of
friction, a foree which always acts so as
to retard motion and which is rarely
absent from any system of objects in
motion,

The cause of friction between two solid
surfaces sliding over one another is evi-
dent from a study of IFigure 4.4. A surface
may appear to be perfectly smooth to the
unaided eye, but even the smoothest sur-
face when examined under a microscope

Fig. 4.4. When two surfaces are in contact, their
small projections interlock.




to a foul tip) the greater is the force
required. If a ground ball takes a “‘crazy
hop,” fielders know that some object or
irregularity on the ground exerted a force
to produce the change in direction. More-
over, the usual explanation for the fact
that a baseball can be made to curve is
simply an explanation of the fact that an
unbalanced force is acting on the ball. In
all cases, the players assume that 1f no
unbalanced force acts on the ball, its
direction of motion will not change.
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Newton'’s first law implies that any
object resists a change in its velocity.
This resistance to acceleration is called
inertia. Many simple experiments may
be performed to illustrate the existence of
inertia, and hence, to illustrate Newton's
first law.

If a tablecloth is spread on a table and
a book is placed upon it, the cloth may
be removed by a rapid jerk without mov-
ing the book. Indeed, an expert at this
trick can pull a silk cloth from under a
full set of dishes.

When a steady pull is exerted on a cord
attached to a heavy weight that is resting
on the floor, the weight may be lifted.
On the other hand, a quick jerk may
break the cord.

A sixteen-pound shot with screw eyes
attached on opposite sides is suspended
by a loop of stout string; a similar loop
hangs below the shot (Fig. 4.1). When a
rod is placed within the lower loop and
steady pressure is exerted on the rod, the
string will break above the ball. If the
rod is raised a few inches within the loop
and brought down with a quick jerk, the
lower string will break.
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Many everyday experiences demon.
strate the inertia of stationary or moving
objects. A person shovelling snow can
stop the shovel suddenly but the snow,
because of its inertia, continues forward,
Passengers standing on a bus brace them-
selves or grasp a firm support to avoid
being “thrown” forwards or backwards
as the bus stops or starts suddenly. When
the vehicle turns sharply, the passengers
tend to continue in a straight line with
the result that they seem to be “thrown”
to one side.

4-5 FORCE—A VECTOR
QUANTITY

The word “force’”’ was used repeatedly
in the discussion above, even though it
had not been previously defined. Nor will
it be defined here. In a sense Newton’s
first law defines force as that which is
necessary to accelerate an object.

Fig. 4.1. lNlustrating the inertia of an object at rest.
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Many everyday experiences demon-
trate the inertia of stationary or moving
bjects. A person shovelling snow can
top the shovel suddenly but the snow,
ecause of its inertia, continues forward,
assengers standing on a bus brace them-
elves or grasp a firm support to avoid
cing “thrown” forwards or backwards
s the bus stops or starts suddenly. When
he vehicle turns sharply, the passengers
end to continue in a straight line with
he result that they seem to be ‘“thrown”
o one side.

-5 FORCE—A VECTOR
QUANTITY

The word ‘“force’” was used repeatedly
n the discussion ahove, even though if
1ad not been previously defined. Nor will
t be defined here. In a sense Newton’s
irst law defines force as that which is
1ecessary to accelerate an object.

Fig. 4.1. lllustrating the inertia of an object at rest:
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o

YF (exerted by earth)
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Fig. 4.2. Forces acting on a block at rest on a
table.

Forces may vary in magnitude and act
in different directions. Hence, force is a
vector quantity and the method for find-
ing the resultant of several forces is the
same as has been deseribed in Chapter 3
for displacement and wvelocity vectors.
The resultant of several forces acting on
an object may very well be zero, in which
case the acceleration of the object will be
zero. Such is the case for a block at rest

Fa

Fig. 4.3. Forc% acting on a car moving at con-

stant velocity. /_;? the propelling force, F is the

force of friction, Vis the vertical force exerted by
=" :

the road, and Fg is the force of gravity.
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onatable (I'ig. 4.2) and for a car travelling
at constant speed on a straight and level
road (Fig. 4.3).

In predicting the motion of an object,
we frequently draw what is called a force
diagram for the object. In drawing such
diagrams, we must remember that only
those forces which act on the object can
have any effect on the motion of the
object, and these are the only forces shown
on the force diagram. These forces are
applied by some agent outside the object,
and are therefore called external forces.
Moreover, the force which determines the
motion of the object is the net force—the
resultant of all of the forces shown in the
force diagram.

4-6 SOME COMMON FORCES

The forces which act on objects to cause
them to accelerate may be of many types,
including a physical push or pull. One of
the most commaon forces is the force of
friction, a foree which always acts so as
to retard motion and which is rarely
absent from any system of objects in
motion.

The cause of friction between two solid
surfaces sliding over one another is evi-
dent from a study of I'igure 4.4. A surface
may appear to be perfectly smooth to the
unaided eye, but even the smoothest sur-
face when examined under a microscope

)
_

Fig. 4.4. When two surfaces are in contact, their
small projections interlock.
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shows little projections with hollows be-
tween them. When two plane surfaces are
in contact some of the projections of each
surface fit into the hollows in the other
gurface. Before sliding can take place,
the projections must be broken off or
forced clear of the hollows. Thus, when
a force is applied to make one surface
slide over another, there is a resistance
(force of frictiown) which opposes the ap-
plied force. This foree of friction is less
if the projections are small, i.c., if the
surfaces are smooth.

Fig. 4.5. lllustrating the cause of rolling friction.

The cause of friction in the case of a
solid object rolling on a solid surface is
shown in Figure 4.5. If a heavy ball rests
on a surface, it makes a depression in the
surface. In addition, the portion of the
ball which touches the surface is flattened
to some extent. Before rolling can take
place, the ball must either be forced out
of the depression, or the bulge of the sur-
face in front of the ball must be forced
out of the way. Thus, there is again a
force of friction which opposes the applied
force. This force of friction is less if the
surfaces are hard.

Other forces which frequently have to
be considered are magnetic and electric
forces. A magnetized or electrified object
can produce an effect on another object
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even though there is no physical con-
nection between them.

The most common foree producing
effects at a distance is the force of gravity.
This foree is diseussed fully in Chapter 6.
However, some facts concerning the force
of gravity must be discussed here.

4-7 GRAVITATIONAL FORCE AND
GRAVITATIONAL MASS

All of the objects whose motions we
will consider are composed of matter in
one of its three forms: solid, Tiquid or gas.
You are no doubt familiar with the word
mass, used rather vaguely to measure the
quantity of matter which an object con-
tains. You will be familiar too with the
use of a pan balance of some gsort Lo
measure the mass of an object. Equilib-
rium is attained when the earth exerls
equal gravitational forces on the masses
on each of the two pans. When the balance
thalances”’ we say that the mass of the
object being “yeighed” is equal to the
mass of the “standard masses’’ placed on
the other pan of the balance. The mass
obtained in this way is called the gravi-
tational mass of the object. Several facts
concerning gravitational mass should be
noted. (@) Gravitational mass is inde-
pendent of the object’s position. If the
balance “balances’” at one place, it will

balance at any and all positions in the

universe. (b) For a given type of material,
gravitational mass varies directly as the
volume of the object. The constant ratio
of mass to volume Is called the density
of the material. (¢) The weight ﬁ; of an
object is the gravitational force which
the earth exerts on it. The magnitude of

17(:. is directly proportional to the mass

of the object (sec Chapter 5). (d) An

A
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sven though there is no physical con.
1ection between them.

The most common force producing
ffects at a distance is the foree of gravity,
This force is discussed fully in Chapter 6,
However, some facls concerning the foree
yf gravity must be discussed here.

4-7 GRAVITATIONAL FORCE AND
GRAVITATIONAL MASS

All of the objects whose motions we
will consider are composed of matter in
one of its three forms: solid, liquid or gas.
You are no doubt familiar with the word
mass, used rather vaguely to measure the
quantity of matter which an object con-
tains. You will be familiar too with the:
use of a pan balance of some sort to
measure the mass of an object. Equilib-
rium is attained when the earth exerts
cqual gravitational forces on the masses
on each of the two pans. When the balance
“halances” we say that the mass of the
object being “weighed” is equal to the
mass of the “standard masses” placed on
the other pan of the balance. The mass
obtained in this way is called the gravi-
tational mass of the object. Several facts
concerning gravitational mass should be
noted. (@) Gravitational mass is inde-
pendent of the object’s position. If the

balance “balances” at one place, it will

balance at any and all positions in the
universe. (b) For a given type of material,
gravitational mass varies directly as tl}e
volume of the object. The constant ratio
of mass to volume is called Lhe;leusity
of the material. (¢) The weight Fg of an
object is the gravitational force which
the carth exerts on it. The magnitude of
Fi; is directly proportional to the mass
of the object (see Chapter 5). (d) An
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Fig.4.6. The trolley (mass 1_800
gm) and the suspended weights
(mass 200 gm) are accelerated by
a force equal to the weight of

200 gm.

object’s inertia depends on its gravita-
tional mass. You may verify this fact by
finding the gravitational mass of a cannon
ball and of a balloon, and by kicking each
in turn. The greater the mass, the greater
i5 the resistance to acceleration.

4-8 ACCELERATION AND
NET FORCE

Newton’s first law is a negative state-
ment to the effect that, if the resultant
force acting on an objeet is zero, the ac-
celeration is also zero. This law implies
that if the resultant force is other than
zero the object will undergo aceeleration.
Newton’s second law outlines the factors
tupon which this acceleration depends and
the quantitative relationships between
each of these factors and the acceleration.

Everyday experience indicates that
(@) the greater the net force applied to an
object, the greater is the acceleration of
that object, and (0) the greater the mass
of an object, the smaller is the acceleration
produced by the action of a given un-
balanced force. Moreover, the acceler-
ation seems to depend ouly on these two
factors, mass and unbalanced force. The
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quantitative nature of these relationships
will now be discussed.

A Fletcher's trolley may be used to
study the relationship between foree and
acceleration. The mass of the trolley car
can bealtered by adding additional masses
to specially-built receptacles in the body
of the car. To cancel the effect of friction,
one end of the track is raised slightly, so
that the car will not start of itself yet will
continue moving if once started. A string
isnow attached to the trolley and is passed
over a pulley; on the end of the string a
mass A7 is attached (IMig. 4.6).

If A consists of two 100-gram masses,
then the force which sets the car in motion
is the attraction of the earth on the 200-
grammass. Both the carand the 200-gram
mass arc accclerated by this force. A
tracing (IYig. 4.7) is made in the manner
deseribed in Section 2.4, and the acceler-
ation is found to be 98 em/sec?. A 100-
gram mass is now removed [rom M and
placed in aslot in the car. Thus the force
producing the acceleration has one-half
its former value, but the total mass we-
celerated is the same as in the fivst case.
The aceeleration is now found to be 49
em/sec?, one-half of its former value.
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Fig. 4.7. The force which produced the trace (a) was double that in (b). The total mass accelerated

was the same in both cases.

Further experiments with the trolley
confirm that the acceleration a of an ob-
ject of mass m is directly proportional
to the net force I acting on the object,
that is

a o« F if m is constant.

4-9 ACCELERATION AND MASS

The way in which acceleration varies
with mass for a constant applied force
may be demonstrated with I'letcher’s
trolley. The mass may be varied by plac-
ing additional masses in the slots in the
trolley. The accelerating force is the
weight of the masses attached to the end
of the string (Fig. 4.6), and is kept con-
stant. The acceleration is found to be
inversely proportional to the mass if the
net foree is constant. That is

B ot
a« if I 1s constant.
m

4-10 LABORATORY EXERCISES:
ACCELERATION, FORCE,
AND MASS

A dynamics cart, of the type used in
the Laboratory Exercises in Sections 2-11
and 3-14, may be used to investigate the
relationships among acceleration, force

and mass. Elastic bands are used to pro-
vide the accelerating forces; a recording
timer is used to record the motion; and
the accelerated mass may be varied by
placing bricks on the cart. The masses of
the cart and bricks may be obtained by
weighing them; it is convenient to use
bricks each of which weighs twice as much
as the cart. Sand in plastic bags may be
used in place of the bricks. The most
convenient unit of mass to use is “one
cart.”

1. Attach atapefrom arccording timer
to one end of the cart, and an elastic band
to the other end (Iig. 4.8). Have yow
partuer hold the cart in position. Use a
metre stick to stretch the elastic band to
a total length of about 70 em., as shown
in the photograph. If this extension of
the band is maintained, the band will
excrt a constant forece on the cart as the
cart moves down the track, after your
partner releases the cart. Your job is to
move along with the cart and to maintam
this constant extension of the band
throughout the motion. When you are
ready, signal to your partner to start the
timer and release the cart. Maintain the
extension of the elastic band until the

sart nears the end of the track.
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double that in (b). The total mass accelerated

nd mass. Elastic bands are used to pro-
ide the accelerating forces; a recording
imer is used to record the motion; and
he accelerated mass may be varied by
lacing bricks on the cart. The masses of
he cart and bricks may be obtained by
veighing them; it is convenient to use
riclks each of which weighs twice as much
s the cart. Sand in plastic bags may be
1sed in place of the bricks. The most
onvenient unit- of mass to use 1s “one
art.”

1. Attacha tapefrom arecording timer
0 one end of the cart, and an elastic band
o the other end (Fig. 4.8). Have your
sartner hold the cart in position. Use a
metre stick to stretch the elastic band to
» total length of about 70 cm., as shown
n the photograph. If this extension of
the band is maintained, the band will
exert a constant foree on the cart as the
cart moves down the track, after your
partner releases the cart. Your job_ is 1.:0
move along with the cart and to maintam
this constant extension of the band
throughout the motion. When you aré
ready, signal to your partner to start the
timer and release the cart. Maintain the
extension of the elastic band until the
eart nears the end of the track.
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When you are satisfied that you have
earried out the above instructions reason-
ably well, repeat the procedure using two
olastic bands in parallel, rather than one.
Do not change the accelerated mass, and
use the same extension of the elastic bands
as in the first case. Then repeat the pro-
cedure using three elastic bands, and four
elastic bands.

From each tape, calculate the acceler-
ation of the cart. Then, assuming that
the force exerted on the cart by the
sfretched bands is proportional to the
number of bands, draw a graph of force
(in bands) plotted against acceleration
(probably in em/tock?). What is the re-
lationship between acceleration and
force? Is the force exerted by the bands
the only force acting on the cart? Is the
assumption that the force exerted by the
bands is proportional to the number of
bands, a valid assumption ?

2. Use the procedure outlined in 1.
above, but this time keep the force (num-
ber of elastic bands) constant, and vary
the accelerated mass by placing bricks or
bags of sand on the cart. Calculate the
acceleration from the tapes for at least
four different masses. Plot acceleration
against mass. Replot the information in
an atlempt to obtain astraight-line graph.
What is the relationship between acceler-

ation and mass?

Fig. 4.8. If the rubber band is
keptextended a constantamount,

it applies a constant force to the
cart,
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4-11 NEWTON'S SECOND LAW

Both the acceleration and the force are
vectors, and they have a common direc-
tion. That is, the acceleration vector has
the same direction as the force vector.
Also,

since @ « F when m is constant,

1 :
and g o m when /' is constant,

Al

G
then @ o s when both I and m vary.

This relationship is Newton’s second law:
When an unhalanced (net) foree acts on
an object, the resulting acceleration is
directly proportional to the net force and
is inversely proportional to the mass of
the object.

4-12 INERTIAL MASS

The ratio %, a constant for any given
object, is frequently called the inertial
mass of that object. Since the ratio %

varies from object Lo object, different
objects have different inertial masses.
Suppose that a certain force causes object
4 to aceclerate at 0.5 m/sec? whereas the
same force causes object B to accelerate
at 1.0 m/sec?. Then the inertial mass of
A is double that of B. But, since the
acceleration of an object varies inversely
as the object's gravitational mass, the




gravitational mass of A is double that of
B. Similar reasoning in other cases leads
us to the conclusion that gravitational
mass and inerfial mass are proportional
to onc another. In fact, with a proper
choice of units (see the next section), they
are equal to one another.

What we are really saying here is not
that there are two kinds of mass, but two
different ways of comparing the masses
of two objects. We discussed ecarlier in
the chapter the eravitational method of
comparing masses by tyeighing.” How-
ever, even if the force of gravity were to
disappear, objeccts would still possess
mass. The masses of two objects could
then be compared by comparing the ac-
celerations imparted to them by a given
force. The masses would be inversely pro-
portional to the accelerations. 1f, for
example, a certain force imparts to a
standard kilogram an acceleration of 0.7
m/sec?, and also imparts to a stoue an
acceleration of 0.7 m/sec?, then the mass
of the stone is one kilogram. If thig same
force imparts to a brick an acceleration
of 1.4 m/sec?, then the mass of the brick
is 0.5 kilograms.

4-13 THE NEWTON AND
THE DYNE

The relationship @ o« o which is the

algebraic statement of Newton’s second
law, may be written
FoamagorF = lema

where k is a variation constant whose
value depends on the units used for 17",
m, and @. I'rom this relationship, unit
force may be defined in any system of
units as that force which gives unit mass

unit acceleration. Then

KINEMATICS AND DYNAMICS

= —

7 = kma becomes 1 = k X 1 X 1,

whence & = 1 and 7 = ma.

The M.IC.S. unit of force is the newton,
Oune newton is that foree which gives a
one-kilogram mass an acecleration of one
metre/second®. The C.G.8. unit of foree
is the dyne. Oue dyne is that force which
gives a one-gram mass an aceeleration of
one centimetre/sccond®,

It is probably best to use the MLICS,
gystem of units exclusively. Dynes may
readily be converted to newtons. Since
1 gm = 107 kg and one em = 1072
metres, 1 dyne = 107° newtons. In the
M.K.& system

F (in newtons)
= m (in kg) X T (in m/sec?)

Remember that the formula F = ma
is valid only if F is the net force. The
value of F must be caleulated by vector
addition as outlined in Chapter 3; it s
the resultant of all the external forees
acting on the object whose mass is m.

4-14 MIOMENTUM

— —
3 v— U i = -
Sinced = B the cquation F' = ma
may be written
S oy — mi
Fom- e

i
Iach of the two terms in the numerator
of the right side of this equation is the
product of a mass and a velocity. The
hamie momentum is given to this product,
Le.,
momentum = mass X velocity

Some physical meaning can he given
to the term momentum; it is that property
which an object possesses by virtue of
both its mass and velocity. A bullet tossed
against a structure may be ineffective
and fall to the ground, but the same bullet
fired with great veloeity from a gun may

T
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T = kma becomes 1 :ic X ]_»>< it
whence & = 1 and F' = ma.

The M.ILS, unit of forece is the newton,
ne newton is that force which gives g
1e-kilogram mass an acceleration of one
etre/second®. The C.G.S. unit of force
the dyne. One dyne is that force which
ves a one-gram mass an acceleration of
1e centimetre/second?.

It is probably best to use the M.IUS,
rstem of units exelusively. Dynes may
adily be converted Lo newtons. Since

gm = 10~ kg and one em = 107
ietres, 1 dyne = 107° newtons. In the
[.IL5. system

r (in newtons)
= m (inkg) X @ (in 111/5323) .

Remember thu_t, the formula F = ma
- valid only if F is the net force. The
alue of I must be caleulated by vector
ddition as outlined in Chapter 3; it is
he resultant of all tht external forces
cting on the object whose mass is m.

—14 MOMENTUM

—TT— Ti'? £ = -
Since @ = ——, the equation ' = mg
ritten
nay be writte . .
=2 my — Mmu
. dad

t
nach of the two terms in the numerator
f the right side of this equation is the
roduct of a mass and a velocity. The
Lame momentum is given to this product
B -
momentum = mass X velocity

Some physical meaning can be given
o the term momentum; it is that property
vhich aun objeel possesses by virtue of
yoth its mass and velocity. A bullet tossed
gainst a structure may be ineffective
wud fall to the ground, but the same bullet
fred with great velocity from a gun may
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pierce or even shatter the structure. The
mass of a straw is very small; but if the
(raw is moving with great velocity, as
is the casc when it is picked up in a
(ornado, it may penetrate a board one
inch thick. A 20,000-ton steamer may be
moving with a velocity of only a few
inches per second, but if it strikes a pier
it ecan do serious damage both to the picer
and to its own hull.

I'rom the above it appears that two
factors, namely, mass and velocity, de-
termine the effect that a moving body
has on any object that il strikes. The
greatest effect is obtained when a large
mass is moving with a high velocity.

4-15 ALTERNATIVE STATEMENT
OF NEWTON’'S SECOND
LAW

Referring to the equation
=3 —
7o — mil
t
o,
mv = final momentum
Sy T
mu = Initial momentum
— —
my’ — mu = change of momentum

my — mw _
and ;= rate of change of

momentum.

Thus the equation means: The rate of
change of momentum of an object is pro-
portional to the net foree applied to the
object, and the momentum change takes
place in the direction of the force.
(Momentum is a vector quantity.) This
is an alternative statement of Newton’s
second law,

If we use the gelta notation here,

F'=md

—

= A

becomes F — mA—:’

4-16 IMPULSE
my — mu
ot
rearranged in the form Ft = my — mw or,
using delj)& notation, F Al = m &. The
product £ or I At on the left side of this
equation is called the impulse exerted by
the net force Z on the mass . Impulse
1s a vector quantity.

Impulse = force X time

Some physical meaning can be given
to the term impulse. The total effect of a
force on an object obviously depends on
the magnitude of the force and also on
the time during which the force acts. The
total effect therefore depends on the prod-
uct of the force and the time interval.
The veloeity of a pitched baseball is
drastically changed when the batter hits
a home run. In this case a rather large
force is applied by the bat for a very
short time. In order that a sixteen-pound
shot be given the same change in velocity
as the baseball, a very much greater force
would be required or it would have to be
applied for a much longer time.

In the case of a baseball hit by a bat,
or of a tennis ball struck by a racket,
direct measurements of the force and the
time interval are very difficult to make.
In these cascs the measurcment of the
impulse may be obtained more readily
from the equivalent expression mo’ — mi,
the change of momentum of the object
to which the force is applied.

In the M.IX.S. system of units, momen-
tumn is measured in kg-m/see and impulse
innewton-sec. These units are cquivalent;

1 newton-sec = 1 kg-m/sec.

The equation I/ = may be

4-17 NEWTON’S THIRD LAW

Newton’s first law is obviously a special
5 ]
case of the second law; if " = 0, then
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Fig. 4.9. A horizontal force is applied to the first of two blocks, and both blocks move with the

same acceleration.

7 = 0. Moreover, the second law may be
used to develop the third law, which 1s
not g0 much a law of motion as a law
describing the forces of interaction of ob-
jects. Suppose, for example, that you are
gtanding in a very crowded street car.
You may justly claim that your neigh-
bour is pushing you, but he may claim,
equally correctly, that you are pushing
him. Each of you is in fact pushing the
other; each is pushing and being pushed.
The relationship between these forces of
interaction may be discovered as [ollows.

Suppose a horizontal force ?pushes an
object of mass m,, which in turn pushes
a second object of mass mg, all on a hori-
zontal frictionless surface (Fig. 4.9). Both
masses move with the same acceleration,
which we may calculate by using the

MASS m,

Fau P

Fig. 4.10. Force diagram for the block whose
mass is m1.

== —
formula F = ma for the whole system,
(We shall ignore any vertical forces
because they balance each other, and as g
result there is no vertical acceleration,)
Thus

=* _Tj‘__ (1)
=+ me 3

Now consider the force diagram for the
block of mass 7 (Fig. 4.10). The hori-
zontal force P exerted on this block is
balanced in part by the force Fa_; exerted
PX the second block. The net force is

P 4+ Fz 1. (The plus sign indicates a
veclor bum)_) [
P+ E% g = ma
'&" P _ﬁ—i (2)
m

For the block of mass ma (Fig. 4.11), the
_>

only force acting is the for ree Fie e\elted

by the first block. Using F = mg in this

case we obtcun_}

F1_2 = My E
7
] e S
and a=-_ (3)
Equating the_t;i,@;ht sldes of (1) and (2)
15 P P+ s 7a o1
ml 4+ m N my "
Pml Jr ng + Fg Lmy + ﬁ;_ 1 Mg = Pmy
th 1 (m 4+ mz} —sz
. = _ PWLQ
’ 1*2_1 T oy 4 m )

1y 5

N

0l
0]

LS

Fi¢
ma
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_MASSmM,

S

two blocks, and both blocks move with the

yrmula F — ma for the whole system,
We shall ignore any vertical forces
ecause they balance each other, and asa
ssult there is no vertical acceleration,)

'hus
— P )
8= my + ma

Now consider the force diagram for the
lock of mass m (I'ig. 4.10). The h(n‘.i-
ontal force P exerted on t}ﬁﬂf block is
jalanced in part by the force Fo_: exerted

the second block. The net force i
’l—l— Fy 1. (The plus sign indicates a
ctor sunn.
o %3_)+ T—!:.—r = m E)
5 . 7
a’ _ P + f‘z—} (2)
my

Por the block of mass ms (Fig_+4 11), the
ynly foree acting is the force FI_,; exerted
yy the first block. Using F' = ma in this
3086 WO ol)LauL’ .
Fxfz == i?l)g, a

il
nd @ = 1; ]1: 3)
Mquating the right {-,lde.s of (1) and (2)
P B P P4 Fg_

1111 —I— mz my
Pml - ng —+ Fa_l m + F; 1 My = Pwn

1‘2 1 (my + mz) = —sz

= sz
© e = T my + mg L
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Bquating the 11ght sides ot (1) and (3)

Fad F; 2
my + My Mg
B,
w Pms o
Iy = — (5)
my -+ Ms
- o} . ¥ I
(Comparing ({)ﬁ and () _
Fiqs = —F

Thus the forces which m, and m. exert
on each other are equal in magnitude but
oppposite In sign.

Equal and opposite pairs of forces occur
whenever two objects interact, even
though the objects are not in contact
with one another; the forces may be mag-
netic, electric or gravitational. There can
be no force unless two objects are in-
yolved; cach exerts a force on the other.
In general, tor every force exerted by one
object on a second object, there is an
equal and opposite force exerted by the
second object on the first. Thisis Newton’s
third law.

One of the forces is commonly called
an action force and the other a reaction
force and Newton’s third law is some-
times stated: reaction is always equal and
opposite to action. This statement omits
one important point: the action and re-
action forces are exerted on and by
different objects. The reaction to the force

Fig. 4.1, Force diagram for the block whose
mass is my.

exerted by 4 on B is the force exerted
by B on 4.

4-18 EXAMPLES OF
ACTION-REACTION PAIRS

The list of examples of Newton’s third
law is endless, for the law applies to any
situation. A few everyday examples
follow.

When a bat striles a ball, the bat exerts
a force on the ball and the ball exerts an
equal and opposite force on the bat.

If a finger is pressed against the surface
of a table, the table exerts on the finger
an equal force in the opposite dircetion.

The reaction to the weight of an object
(the gravitational force which the earth
exerts on the object) is the force with
which the object attracts the earth. If
the object is free to move, it will be ac-
celerated towards the carth, and at the
same time the earth will be accelerated
towards the object. However, because of
the great mass of the ecarth, its acceler-
ation is too small to be observed.

When a person steps ashore from a
small boat, the boat moves away from
shore. The force exerted by the person on
the boat causes the boat’s acceleration
away [rom shore; the force exerted by the
boat on the person causes his acceleration
towards the shore. If the boat is large, it
will experience little acceleration.

Consider the forces acting on a block
placed on a table (Fig. 4.2). The weight
Foof the_l’)ook acts vertically downwards;
a force N exerted by the table acts verti-

cally upwards. These forces are equal and
opposite, not because they constitute an
action-reaction pair, but because the ac-
celeration of the book, and hence the
resultant force acting on the book, is zero.




. . — . o v
The reaction to Fg is the gravitational
force exerted by the bool on the earth,
and the reaction to N is the [oree exerted

by the book on the table. cancel one another.

4-19
I

10.

11,
12,

13.

PROBLEMS

If an object is subject to no forces whatsoever, its velocity will remain
constant. Is the converse necessarily true?

Draw the foree diagram for a block of wood floating on water.

Why does a solid immersed in liquid appear to lose weight ? Draw the force
diagram for a stone suspended underwater from a string.

An aireraft is flying at a uniform speed of 600 km/hr relative to the air.
Draw the force diagram for the aircraft.

A brick is pushed along a rough floor. What forces are exerted by the brick
on the floor? What forces are exerted by the floor on the brick?

Calculate the magnitude of the resultant of forces of 10 newtons north and
20 newtons cast. Use a graphical method to find the direction of the resultant.
A force of 100 newtons north and a foree of 100 newtons west act on an
object. What is their resultant?

The same net force I imparts an acceleration of 6 m/sec?® to a 4-kg object
and an acceleration of 2.4 m/sec? to a second object. What is the mass of
the second object? What is the value of F'?

A net force of 0.6 newtons gives a mass m an acceleration of 0.18 m/sec?,
and another net force I” gives the same mass an acceleration of 0.45 m/sec®.
Caleulate F and m.

A net force of 20 newtons acts on an object whose mass is 4 kg. What 1s
the object’s acceleration?

What force will give a mass of 10 kg an acceleration of 50 em/sec??

Caleulate the force required to give a 0.49-kg mass an acceleration of
10 cm/see?.

What will be the acceleration of a 150-kg motoreycle if the net force acting
on it is (@) 75 newtons, (b) 225 newtons, (¢) 22.5 newtons ? In what direction
does the acceleration take place in each case?

A net foree of 0.6 newtons causes an objeet to accelerate at a rate of
0.3 m/sec®. What is the object’s mass?

A horizontal foree F is applied to a 2-kg block at rest on a table. When FF
is 1 of the weight of the block, the block moves at constant speed. Calculate
the value of F required to accelerate the block from rest to a speed of
3 m/sec in 4.0 sec.

The reaction force never acts on the
same object as the action force; hence,
an action-reaction pair of forces nevep

R
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The reaction foree never acts on the
vme object as the action force; hence,
n action-reaction pair of forces never
ancel one another.

whatsoever, its velocity will remain
rue?

“wood floating on water.

ppear to lose weight? Draw the force
rater from a string.

ed of 600 km/hr relative to the air.
ft.

What forces are cxerted by the brick
by the floor on the brick?

it of forees of 10 newtons north and
d to find the direction of the resultant.

force of 100 newtons weslh act on an

Jeration of 6 m/sec? to a 4-kg object
a second object. What is the mass of
of F'?

ass m an acceleration of 0.18 m/sec?,
e mass an acceleration of 0,45 m/sec”.

1 object whose mass is 4 kg. What 1s

an aceceleration of 50 ecm/sec?

, a 0.49-kg mass an acceleration of
)-kg motoreyele if the net force acting
s, (¢) 22.5 newtons? In what direction
ch case?

an object to accelerate at a rate of
s 7

2-kg block at rest on a table. When I
ok moves at constant speed. Caleulate
te the block from rest to a speed of

FORCE F (newtons)
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Fig. 4.12. For problem 17.

16. A shell of mass 1 kg is discharg itk
of mass 1 kg is arged with o speed of 4.5 X 10? m/sec from :
gun having a barrel of length 2.0 m. Calculate tl A : exorted on
the shell while it is in thebba.rrel. i SRR Tantintmcster o

il fﬁ(‘si c%c]t of thte l;w;) graphs in Figure 4.12, calculate (a) the impulse of the
ce between L = 1 sec and ¢ = 3 see, (b) the change in the :
the object on which the force acts, between ¢ = 0 ‘af?fd l :](;}Tézncntum .

)]ngt 1s the magnitude of the impulse imparted to an object by a force of

01 AN ¥ Mo 5 5 TR - 1 ol ¥

¢ ,ICWL{)Ilb m,tm'g for 5.0 sec¢? By how much will the momentum of the
object change during these 5.0 sec?

19. Caleulate the magni : i I
aleula agnitude of the 1impulse which causes (l eloci '
6.0-kg mass to change by 50 em/sec. i

20. ]SIEI'JDUSC Ith?b :1n|impulsc of 5.0 newton-see is applied to an object. By
w much does the velocity of the object change if its mas g et
() 2.5 kg, (c) 2.0 kg? Ject change if its mpss is (a) 5.0 ke;
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21.

22.

23.
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A constant force is applied to a 3.0-kg object initially at rest. The object

moves 25 m during the first 5.0 sec. Calculate the impulse of the force.

A 50-gm golf ball is hit by a club and given a speed of 40 m/sec. (@) Calculate

the impulse imparted to the ball. (b) If the club is in contact with the ball for
0.10 sec, caleulate the magnitude of the average torce exerted by the club
on the ball. (¢) What is the magnitude of the average force exerted by the

ball on the elub?

For each of the following cases, specify the reaction to the force mentioned,

making clear what the reaction is exerted by, and what it acts on: (a) the

force exerted by a bat striking a base

ball; (b) the force exerted by the earth

on a freely falling body; (¢) the force exerted by the earth on the moon.

24. Refute the following argument:

No object can ever accelerate, for each of the forces acting on it is balanced

by the corresponding reaction force.

4-20 SUMMARY

il

Newton’s First Law: An object will
not accelerate unless an external, un-
balanced force acts upon it.

A force is a push or a pull; its effect 1s
to cause any object on which it acts
to accelerate. Force is a vector
quantity.

. The inertia of an object is its resist-

ance to acceleration.

Newton’s Second Law: The acceler-
ation of an object is directly propor-
tional to the net force acting on the
object and inversely proportional to
the gravitational mass of the object.
The acceleration takes place in the
direction of the net force.

The inertial mass of an object is the

force : :

— ratio for that object. The
acceleration
inertial mass of an object is propor-
tional to its gravitational mass.

10.

The formula Fff? = m@ expresses
Newton’s Second Law mathemati-
cally. It applies, for example, if I is
in newtons, m in kilograms and a in
metres/sec.

1 newton = 1 kg-m/sec?

. The impulse of a force is the product

of the force and its time of actiow
TImpulse units are newton-sec.
The momentum of an object is the
product of its mass and its velocity.
Momentum units are kg-m/sec.

1 kg-m/sec = 1 newton-sec

. Newton’s Second Law: The rate of

change of an object’s momentum s
proportional to the net force applied
to the object. It may be written in

the form .

=3 Ay
F=m Al
Newton’s Third Law: For each force
exerted by an object 4 on another
object B, there is an equal and op-
posite force exerted by B on A.

D
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object initially at rest. The object
culate the impulse of the force.

n a speed of 40 m/sec. (@) Calculate
e club is in contact with the ball for
average force exerted by the club
f the average force exerted by the

he reaction to the force mentioned,
.d by, and what it acts on: (a) the
; (b) the force exerted by the earth
erted by the earth on the moon.

f the forces acting on it is balanced

= .

. The formula F = ma expresses
Newton’s Second Law mathemati-
cally. It applies, for example, if I" is
in newtons, m in kilograms and a in
metres/sec”.

1 newton = 1 kg-m/sec?

7. The impulse of a force is the product
of the force and its time of action.
Impulse units are newton-sec.

3. The momentum of an object is the
product of its mass and its velocity.
Momentum units are kg-m/sec.

1 kg-m/sec = 1 newton-sec

9. Newton’s Second Law: The rate of
change of an object’s momentum is
proportional to the net force appligd
to the object. It may be written 1n
the form -

P em
At

0. Newton’s Third Law: For each force
exerted by an object A on another

object B, there is an equal and op-
posite force exerted by B on A.

Chapter b

Motion Near the Surface

the Earth

5-1 INTRODUCTION

The force of gravity is perhaps the
commonest force which we know, and as
a result the acceleration of a falling object
is perhaps the most readily observable
acceleration. In Chapter 3 we gave this
acceleration the symbol gand stated that
7'was the same for all objects. In Chapter
4 we defined the weight, 17:; of an object
as the gravitational force which the earth
exerts on 1t and stated that the magni-
tude of F_‘; is directly proportional to the
mass m of the object. I'or the present we
shall continue to assume the truth of this
last statement, and use it to investigate
the factors affecting the valuc of ¢

5-2 FACTORS AFFECTING THE
ACCELERATION OF A
FALLING OBJECT

For an object falling in a vacuum, the
only fOr_c)e acting on the object is its
weight Fg acting down, and the down-

57

of

. . — 9
Ef_)a-l‘d acceleration is ¢. The formula
3 g :
F' = ma, applied in this case, becomes
=2

b - — F

Foe =mg, ory = ﬁ. But the statement

that Fis directly proportional to s means
e . .

that ?: is constant. Therefore 7’is con-

stant; all objects, regardless of mass, fall
with the same acceleration in a vacuum.

Historically, the order of the reasoning
in the above paragraph was reversed.
Galileo 1s said to have dropped two metal
balls, the mass of one being ten times
that of the other, from the top of the
leaning tower of Pisa. He found that they
struck the ground simultancously.
Newton released a guinea and a feather
simultaneously at the top of along vacuum
tube, and found that the coin and the
feather reached the bottom of the tube
at the same time. Thus, in ecases where
air resistance is negligible or non-existent,
¢ is independent of m. Note that this
experimental result, coupled with



Newton’s second law, indicates that g
is directly proportional to m, a conclusion
which is by no means intuitively obvious.

Prior to Galileo’s time it had been
assumed that the acceleration of a falling
object was dependent on the mass of the
object. This is a natural enough assump-
tion, for when objects fall in air the force
of gravity is balanced in part by air re-
gistance. This air resistance is propor-
tionally much greater for an object such
as a feather than for a coin or a heavy
metal ball. However the acceleration ob-
served in air cannot properly be called
an acceleration due to gravity, since it 1s
due to the resultant of gravity and air
resistance.

The term “acceleration due to gravity”
should be reserved, therefore, for cases in
which air resistance is negligible. Though

Fig.5.1. A newton balance records the weight of
a one-kilogram mass to be about 9.8 newtons.

KINEMATICS AND DYNAMICY

the magnitude of ﬁ’is independent of mass,
it is dependent on the object’s elevation
_ite distance from the centre of the earth,
The greater the elevation, the less the
weight of the object and therefore the
less the acceleration due to gravity
hecomes. Conversely, as an object falls
its elevation continually deercases, its
weight continually increases, and there-
fore its acceleration due to gravity con-
tinually increases. However, in the case
of objects falling near the earth’s surface,
the vertical displacement is so small iy
comparison with the radius of the earth
that the variation in ¢ is negligible.

Values of ¢ have been determined in
many localities throughout the world. At
sealevel on the equator, g = 9.781 m/sec?;
at the poles 9.831 m/sec?, and at Toronto
9.806 m/sec’. In the problems in this
chapter, as in Chapter 3, we shall use
g = 9.8 m/sec? or 32 ft/sec?, and assume
in all cases that the effect of air resistance
is negligible.

5—3 THE EARTH’S
GRAVITATIONAL FIELD

Tor an object falling in a vacuum, we
llé}ve already nOteg._)th'd-L the equafion
F = ma becomes Fg = mg. Thus at a
location where ¢ = 9.8 m/sec?, the weight
of a one-kilogram mass is 9.8 newtons.
Pigure 5.1 shows this fact rec sorded by a
newton balance—a spring balance cali-
brated in newtons. The weight vector, of
course, is directed down toward the cenfre
of the eartl, as is the acceleration \rectm‘
At places where the m{;gmfnd(, of 7is
9.7 m/sec?, the magnitude of If{, for a
one-kilogram mass is 9.7 newtons. The
gravitational force per unit mass is then
9.7 newtons per kilogram. The vector
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s magnitude of ¢isindependent of mass,
s dependent on the object’s elevation
ts distance from the centre of the earth,
e greater the elevation, the less the
ight of the object and therefore the
s the acceleration due to gravity
comes. Conversely, as an object falls,
elevation continually decreases, its
ight continually increases, and there-
e its acceleration due to gravity con-
wally incereases. However, in the case
objects falling near the earth’s surface,
e vertical displacement is so small in
mparison with the radius of the carth
at the variation in g is negligible.
Values of ¢ have been defermined in
any localities throughout the world. Af
alevel ontheequator, ¢ = 9.781 m/sec?;
the poles 9.831 m/sec?, and at Toronto
806G m/scc? In the problems in this
apter, as in Chapter 3, we shall use
= 9.8 m/sec® or 32 ft/sec?, and assume
all cases that the effect of air resistance
negligible.

_3 THE EARTH’S
GRAVITATIONAL FIELD

Ifor an object falling in a vacuum, we
wve already noted that the equation
" — ma becomes Iy = mg. Thus at a
cation where ¢ = 9.8 m/sec?, the weight
* o one-kilogram mass is 9.8 newtouns,
igure 5.1 shows this fact recorded by a
ewton balance—a spring balance cali-
rated in newtons. The weight vector, of
surse, is directed down toward the centre
f the carth, as is the acceleration vector,
t places where the magnitude ﬁof 78
.7 m/see?, the magnitude of Fg for @
ne-kilogram mass is 9.7 newtons. T he
ravitational force per unit mass is then
.7 newtons per kilogram. The vectors

VOTION NEAR THE SURFACE OF THE

drawn in Iigure 5.2 show, to scale, the
gmvita‘timml force per unit mass at dis-
tances 7, 1.5 and 2r from the centre of
(he earth, r being the radius of the earth.
[tigure 5.2 then shows a part of the gravi-
tational field of the carth; the magnitude
and direction of each field vector depends
on its position in the field.

Fig. 5.2. A portion of the gravitational field of
the earth.

5-4 THE PATH OF A PROJECTILE

In Chapter 3 we concluded, after
examining Figure 3.11, that (a) for a pro-
jectile whose motion has both horizontal
and vertical components, the two com-
ponents may be considered separately,
and (b) the horizontal component of the
projectile’s velocity remaing constant.

We may now use Newton’s second law
toverify these conelusions. In the absence
of air resistance, the only force acting is
the force of gravity. Since this force acts
down, it has no horizontal component,
and therefore the acceleration veetor has
ho horizontal component. As a result the
horizontal velocity remains constant.
.\[:n‘cover, the downward force is the same
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as if the projectile were falling vertically;
therefore the vertical acceleration is the
same as for a vertical fall. Thus the verti-
cal acceleration ig independent of the
horizontal motion; the two components
may be considered separately.

The equation of the path of a projectile

projected horizontally may be determined
from IMigure 5.3. Suppose that the con-
stant horizontal speed is v, and that the
projectile is at a point P(z, i) at a time
i sec alter projection.

Then x = vt (1)
and y = —Lg® (2)

From (1), t = %
Substituting in (2)
i,
Yy = *z(l'v_.z
2‘ 2
ora? = ——24
g
This equation is of the form a? = —4py,

HORIZONTAL DISPLACEMENT x

—_—

VERTICAL DISPLACEMENT y ————=

'
\j r_.f._»,-_—,.—u, K

Fig. 5.3. The path of a projectile.
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Fig. 5.4. A Canadian Black Brant Il rocket is fired from a special launch site at Resolute on
Cornwallis Island in the Canadian Arctic. The nose cone carried a special detector system for

measuring cosmic X-rays.

and is a portion of a parabola having its
vertex at the point of projection, and
which is symmetrical about the vertieal
line through this point.

The exercise for this chapter contains
further problems on projectile motion,
problems of a type first encountered in
Chapter 3. The basic methods outlined
in Chapter 3 still apply of course, and,
in addition, Newton’s second Iaw has to
be used in some cases. These problems
are of a Lype basic to short range artillery
worl, But nowadays rockets (IMig. H.4)
and earth satellites have much greater
range, and the dynamieal problems in-
volved are much more complicated.
Before we can hegin to consider this latter
type of problem, we must become familiar
with eircular motion.

5-5 CIRCULAR MOTION
Acceleration has been defined as rate
of change of velocity, veloeity being a
veclorquantity and therefore having both
magnitude and direction. Alost of the
instances of aeceleration discussed earlier
involved changes in the magnitude of the
veloeily vecetor. However, we have seen
thutt acecleration may result froma chiange
in the direction of the veloeity vector.
Consider o stone attached to w string
and swung about the hand, so that 1t
travels inoaocirele with constant speed.
Although (he speed of the stone remains
constant, the direction of motion is con-
tinually ehanging and therefore the stone
is being aecelernted. The foree necessary
to cause this aeceleration is ohviously
exerted on the stone by the string.
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from a special launch site at Resolute on
~one carried a special detector system for

.5 CIRCULAR MOTION
Acceleration has been defined as rate
change of velocity, velocity being a
ctor quantity and therefore having both
wenitude and direction. Most of the
tances of acceleration discussed earlier
rolved changes in the magnitude of the
locity vector. However, we have seen
at nceeleration may result fromachange
the direction of the veloeity vector.
Consider a stone attached to a string
d swung about the hand, so that it
wels in a circle with constant speed.
though the speed of the stone remains
nstant, the direction of motion s con-
aually changing and therefore the stone
being accelerated. The force necessary
- cause this ncceleration is obviously
certed on the stone by the string.
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5—-6 CENTRIPETAL FORCE

Figure 5.5 represents an object of mass
M moving with uniform speed in a cirele
whose centre is 0. In the position shown,
the instantaneous direction of motion of
M is along the tangent M A. Therefore
M A represents the direction of the ob-
ject’s velocity vector at this instant. If,
while in this position, the string were cut,
M would move off along the line M A.
However, if the string remains intact it
exerts a force on M which causes M to
move out of this straight path and travel
the curved path. This force, because it
appears to cause M to “‘seek the centre,”
is known as the centripetal force (cen-
trum, centre; petere, to seek).

Fig. 5.5. Uniform circular motion. The instan-
taneous velocity vector is tangent to the circle.

Centripetal force is the force which
must be exerted on an object to cause it
tofollow a circular path. It may be exerted
as & tension in a string, as a gravitational,
magnetic, or clectric force, by means of
friction, or in other ways. Centripetal
force acts towards the centre of rotation,
and hence at right angles to the direction
of motion. For, if it did not, it would have
& component in the direction of motion
and the speed of the object would change.

Centripetal force is therefore called a
centralforce. Since the acceleration vector
has the same direction as the foree vector
(Newton’s Second Law), the acceleration
produced by the centripetal force is
directed to the centre of the cirele. It is
called the centripetal or central acceler-
ation. Its effect is not to cause the radius
of rotation to decrease, but to cause the
object to move closer to the centre than
it would if the force were not acting.

5-7 MAGNITUDE OF
CENTRIPETAL FORCE

The magnitude of the centripetal force
required depends on three factors: the
mass of the object, its speed, and its radius
of rotation. The greater the mass, the
faster the movement, or the smaller the
radius of rotation, the greater will be the
centripetal force required. It can be shown
mathematically that the centripetal force
necessary to cause an object of mass m
to rotate at a constant speed » in a circle
of radius » is given by the formula

g, = ™
p
If m is in kilograms, » in m/sec, and r in
m, then F, 1s in newtons.

The mathematical development of this
relationship follows. Py and Py (I'ig. 5.6a)
are two positions on the circular path of
the rotating object; 71 and w; are the
velocity vectors at Py and Py respectively.
The vectors 7 and 7 are equal in magni-
tude but differ in direction; they are
perpendicular to the corresponding radii
0P, and OP,. Let angle P,OP; = 6, chord
PiPy; = z and arc P1P: = s

In IMigure 5.6 the vectors 7 and 7y are
drawn in their proper directions, origi-
nating from a common point A.

Then BC = Av
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(b)

Fig. 5.6. (a) The velocity vectors at two points
on a circular orbit. (b) Construction for deter-
mining the change in velocity.

Since each of the velocity vectors is per-
pendicular to the corresponding radius,
the angle between the vectors is equal to
the angle between the radii, i.c., ZBAC
= 0.
Since OP; = 0Py and AB = AC
AOPP, ||| AABC

. OP, _ PPy
"AB  BC
(B
o T Av

where 7 is the radius of the circle and »
is the constant magnitude of the velocity
vector.
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]
A ==2.g
=

and the magnitude of the average ac.
celeration is

_A v o

AL At

Now if Py — I, x — s, and the magni.
tude of the instantaneous acceleration g
P, 1s given hy the relationship

V.S

r Al

a

a =

But A8 the magnitude » of the constan

velocity.

n?

The formula ¢ = - may be written i

other forms. If T'is the period of rotation
and f is the requency of rotation,

2mr i
B = ==t = 2
T /
42p R
and a = 5 = dip[?

Note also that as Py — Py, § — 0, and
that BC (Iig. 5.60) is essentially perpen-
dicular to AB. Therefore the vector Ay,
and hence the acceleration vector a arc
directed toward the centre of the circle

Let us now assume that Newton's
Second Law, which we developed for
straight line motion, holds also for circular
motion. You will test the validity of this
assumption in the Laboratory Exercise
described in Section 5-8. If we use the
Second Law formula, # = ma, for cireular
motion, we find that the magnitude of
the centripetal force necessary to produce

0

: oo W !
o centripetal acceleration — 1s given by
r

: my? ",
the formula F, = g The lorce vector

like the acceleration vector, is directed
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1d the magnitude of the average ae.
Jleration is

ow if Py — Py, @ — s, and the magni-
ide of the instantaneous acceleration af
1 is given by the relationship

b8

i e D
r Al
8 . :
ut A8 the magnitude » of the constant
clocity.
v v®
A=y = —
r 7
; 9* = |
The formula ¢ = - may be written in

ther forms. If 1" is the period of rotation
nd [ is the frequency of rotation,

2mr
¥ = Y5 = 2af
T f
4y 0
] a = — = 4a'rf?
nd i of

Note also that as P, — Py, 8 — 0, and
hat BC (Ifig. 5.6D) is essentially perpen-
icular to AB. Therefore the vector A,
nd hence the acceleration vector a are
irected toward the centre of the eircle

Let us now assume that Newton's
ccond Law, which we developed for
traight line motion, holds also for circular
rotion. You will test the validity of this
ssumption in the Laboratory Iixercise
escribed in Section 5—8. If we use the
econd Law formula, /' = ma, for circulat
rotion, we find that the magnitude of
he centripetal force necessary to produce

O]

. . v . .
_centripetal acceleration - 1s given by

. M i :
he formula I, = Fx The force vectoly

ke the aceeleration vector, is directed
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toward the centre of rotation,

1t should be realized that the actual

force applied may not be equal to the
centripetal force required to maintain
circular motion. Under these ecircum-
stances, uniform circular motion does not
cur. Two examples follow:
(a) Mud is thrown from a rotating
pieycle wheel when the force of adhesion
of the mud to the tire is less than the
centripetal force required to cause the
mud to follow the same circular path as
the tire.

(b) For a space satellite circling the
earth, the only force acting on the satel-
lite is the gravitational force exerted by
the earth. For a stable circular orbit, this
gravitational force must be equal to the
centripetal force required for that orbit.

(419

5-8 LABORATORY EXERCISE:
CENTRIPETAL FORCE

If Newton’s second law holds for circu-

; my? i35
lar motion, then F, = — = 4dxmrf?,

where m is the mass in kg of the rotating
object, r1s the radius of rotation in metres,
[ is the frequency of rotation in revolu-
tions per sec, and F, is the centripetal
forceinnewtons. Youmay test thevalidity
of this formula with the apparatus shown
in Iigure 5.7.

The apparatus consists of a metal rod
about one metre long, to which a spring
balance calibrated in newtons is attached.
One end of a nylon cord is attached to
the balance. The cord passes through a
polished glass tubing at the upper end
of the rod, and the other end of the cord
8 attached to a rubber ball. The length
of the cord between the glass tubing and
the ball should be from 0.5 metre to
1.0 metre,

Hold the rod vertically, using both
hands as shown. Praclise whirling the
ball in a horizontal cirele with constant
speed, so that the spring balance registers
a constant force. When you have had
sufficient practice, proceed to take meas-
urements as follows.

Whirl the ball at constant speed and
note the reading of the spring balance.
IIave your partner determine the time
required for the ball to make 50 revolu-
tions. At the same time you should note
the position of the point of the balance
hoolc with respect to the circular gradu-
ations on the rod. When your partner
has finished timing the 50 revolutions,
you may cease the whirling.

Fig. 6.7. Apparatus for measuring centripetal
force.
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The mass m of the ball may be deter-
mined by weighing the ball. The radius
of rotation of the ball is the distance from
the glass tube to the centre of the ball,
when the hook of the balance is in the
position which you noted as the ball was
being whirled. Measure this distance.
Calculate the frequency f from the data
which your partner recorded.

Compare the value of the product
4r*mrf? with the value of F, which you
read from the spring balance. Repeat the
procedure several times. You may vary
m by using balls (or rubber stoppers) of
different sizes. You may vary r by ad-
justing the position of the balance on the
metal rod. You may vary the frequency
of rotation by whirling the ball at dif-
ferent speeds.

Within the limits of experimental error,
is F, = 4atmrf*? Does Newton’s second
law hold for circular motion?

5—9 EARTH SATELLITES

The successful launching of an earth
satellite is achieved by the use of multi-
stage rockets. The prediction of the effect
of the first stages must take into account
the fact that the acceleration due to
gravity changes significantly during the
gatellite’s climb. The final stage is fired
horizontally when the satellite reaches
the desired height, and is designed to
impart to the satellite the speed neces-
sary to set it in a eneular orbit about
the earth.

Suppose we represent the satellite’s
orbital speed by », and the radius of its
orbit by R. Then the central acceleration

2
.V s : f i3
15 5 and this acceleration, if the orbit is

to be circular, must be equal to g, the
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acceleration due to gravity at that alti-
tude. That is,
.U2

Y

The radius of the earth is about 6.4 x
10% m; therefore, at a height of 500 km,
R =6.9 X 10°m. At this height g = 8.4
m/sec? approximately. Then » = /gR
= 7.6 X 10° m/sec. Under these con-
ditions, then, the speed that must be
imparted to the satellite by the rocket’s

final stage is about 18000 mi/hr.

We may calculate also the time re-
quired for the satellite to orbit the earth
once. The distance travelled is the cir-
cumference 27 R of the orbit, approxi-
mately 43.3 X 10° m. The speed » we
calculated as 7.6 % 103 m/sec. Therefore
the time required is

43.3 X 10°m
7.6 x 10° m/sec
= 5.7 X 10° sec = 95 min.
In practice, the correct combination of »
and R is seldom achieved, and the orbit
is elliptical rather than circular.

We need to be clear about one further
phenomenon in connection with earth
satellites. An astronaut in an orbiting
space capsule is commonly said to be
weightless, or to experience weightless-
ness. These terms do not mean that the
force of gravity acting on him is zero;
indeed it is the forece of gravity which
causes him to be centrally accelerated.
If it were not for this force acting on him
and on the capsule, both would travel in
a gtraight line far out into space. Actually,
as we saw in the calculations above, the
acceleration due to gravity is about 8.4
m/sec?, and therefore his weight is about
8.4 + 9.8, or about 0.86 of his weight
or the surface of the earth.

D
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ation due to gravity at that alti-
['hat is,

.UZ
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;, then, the speed that must be
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tage 1s about 18000 mi/hr.

may calculate also the time re-
for the satellite to orbit the earth
The distance travelled is the cir-
rence 2r R of the orbit, approxi-
r 43.3 X 105 m. The speed » we
vted as 7.6 X 10° m/see. Therefore
ne required is
43.3 X 10°m

7.6 X 10* m/sec
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 surface of the earth.
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The situation is that both the astronaut
and the capsule are equally centrally
accelerated and therefore the astronaut
exerts no force on the materials upon
which he is sitting or standing, and they
exert no forces on him. Since we usually
judge our weight by the magnitude of
these forces, we say we are weightless if
these forces are absent. Moreover, even
though the astronaut may be moving
through space at about 18000 mi/hr, he
is not aware of this fact for he is not
moving relative to the capsule. We con-
sidered relative motion briefly in Chapter
3; let us look more closely at it now.

5-10 FRAMES OF REFERENCE

Consider the sensations experienced by
an astronaut in a space capsule during
re-entry into the earth’s atmosphere,
during which time the capsule slows down
rather quickly. If he tries to apply
Newton’s second law, he notes that with
respect to, or in the frame of reference of,
the capsule, he is not moving, but he feels
a force acting on him. In the frame of
reference of the capsule, then, Newton’s
second law does not apply. The reason
is that the capsule is accelerating;
Newton’s second law does not hold in an
accelerated frame of reference.

You may have noted a similar effect
if you have ridden in a closed truck as it
rounds a curve on a highway. Loose ob-
jects on the floor of the truck slide or roll
across the floor; they are in motion rela-
tive to the truck with no force acting on
them. Tf you wish to make their motion
accord with Newton’s second law, you
must invent a force which you say is
acting on them—a fictitious force. How-

ever, in an unaccelerated frame of
reference, these fictitious forces are not
necessary. Again, Newton’s second law
does not apply in an accelerated frame
of reference.

You may wonder, then, if we should
apply Newton’s second law to the motions
of objects on the surface of the earth.
Surely the earth itself is rotating on its
axis, and therefore constitutes an accel-
erated frame of reference in which
Newton’s second law is at least slightly
invalid, and therefore requires a small
fictitious force to restore its validity.

The classic experiment which indicates
that the carth is indeed rotating was first
performed by the I'rench physicist
Toucault. This experiment is performed
with a pendulum consisting of a very
heavy bob suspended by a wire 10 metres
or more in length. If this pendulum is set
vibrating, its inertia is great enough that
it will continue to vibrate for several
hours. Asit vibrates, its plane of vibration
continually rotates. The situation is most
readily understood for a [oucault pen-
dulum vibrating at the earth’s geographic
north or south pole. Here the plane of its
vibration rotates 360° every 24 hours;
perhaps it would be more reasonable to
say that the plane of vibration remains
fixed in space and that the earth rotates
beneath it.

Foucault’s experiment indicates that
the earth does rotate, and that frames of
reference attached to the earth are really
accelerated frames in which Newton's
laws are not valid. However, the effects
of the earth’s rotation are so small that
they may be ignored except in the most
precise experiments.
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10.

11,

12.

PROBLEMS

Assume, where neeessary, that
g = 9.8 m/sec?
= 0.8 newtons/kg
at or near the surface of the earth.

. What is the weight, at the surface of the earth, of (a) a ball of mass 0.05 kg,

(b) & man of mass 100 kg, (¢) a truck of mass 3.0 X 10° kg?

. The weight of a boy at the surface of the earth is 588 newtons. (a) What is

his mass? (b) What would be his weight at an elevation where the gravita-
tional field was 8.0 newtons/kg ? (¢) What would his mass be, at the elevation
given in (b)?

. A wooden block, sliding along a horizontal floor, is acted upon by a force

of frietion equal to 109, of the weight of the block. The block comes to rest
from a speed of ¥ m/sec, in 4 see. I'ind a.

. An clevator having a mass of 1400 kg ascends with an acceleration of

0.50 m/sce?. What is the tension in the cable supporting the elevator?

An 8-kilogram mass and a 12-kg mass are suspended from opposite ends of
a string which passes over a pulley. What will be the acceleration of the
masses when the system is released ? What assumptions did you make in
solving this problem?

. Consider the relationship s = $yt*. (a) What is the effect on s of changing ¢

by a factor of 4?7 (b) By what factor must { change if s is to change by a
factor of 37 (¢) If s is plotted versus ¢, what sort of graph vesults? (d) How
could you obtain a straight line graph from this relationship ? Try to do so,
agsuming, for the sake of simplicity, that ¢ = 10 m/sec®.

. Suppose that the net force applied to an object is equal to the weight of

the object. What will be the object’s acceleration ?

. A stone falls freely from rest. Using g = 10 m/sec?, find (a) its speed at the

end of each of the first five seconds, (b) its average speed during cach of the
first five seconds, (c¢) the distance it falls during each second, (d) its distance
from the starting point after 1, 2, 3, 4, and 5 sec.

A stone which is dropped from a cliff strikes the ground in 5 seconds.
With what speed does it strike the ground? How high is the chiff ?

A stone dropped from the top of a tower hits the ground with a speed of
60 m/sec. Find the height of the tower and the time required for the stone
to reach the ground.

A 45.0-gm golf ball is dropped from a height of 160 em to a level solid
conerete floor. It rebounds to a height of 90.0 em. Calculate (a) the impulse
given to the ball by its own weight, during its fall, and (b) the impulse given
to the ball by the floor. State in each case the direction of the impulse.
After having fallen from rest for 2 seconds, a 2-kg mass strikes a pile of
sand and penetrates it to a depth of 10 em. Find the average force exerted
by the sand on the mass.

. A body of mass 2 kg falls freely from rest. Caleulate the rate of change of

its momentum.

-
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14.

16.

17.

18.

19.

20.

21.

23.

A mass of 300 gm rests on a smooth table. From it two horizontal light
strings run in opposite directions. Each string runs over a smooth pulley,
and to the end of one string is attached a mass of 90 gm. To the end of the
other string is attached a mass of 100 gm. How far will the masses move in
2 sec after being released ?

. From the top of a eliff 90 m above a lake, a stone of mass 1.5 kg is thrown

horizontally with a speed of 10 m/sec. Air resistance in both the horizontal
and vertical planes has the effect of a retarding force equal to 19, of the
weight of the stone. When and where will the stone strike the water?
I'rom a window 44.1 metres above ground level, a ball is thrown with a
horizontal veloeity of 5 metres per second. What time is required for its
descent to the ground? How far horizontally does 1t go? Make a sketch
showing its path. Calculate its resultant speed at the time of impact with
the ground.

An object follows a circular path with a constant speed of 8.0 m/sec. It
changes direetion by 180° in 2.0 sec. Caleulate (a) the magnitude of its
change in velocity, (b) the magnitude of its average acceleration during
the 2.0 sec.

Assume that, under the attractive force of the carth, the moon revolves
about it in a circular path with constant speed. (@) Is the moon accelerated
toward the earth? (b) If your answer in (a) is yes, account for the fact that
the speed remaing constant. (¢) Why does the force exerted on the moon by
the earth not cause the moon to move closer to the earth?

(a) A train goes round an unbanked railway curve; (b) an automobile goes
round an unbanked highway curve; (¢) a boy stands on a moving swing.
In cach of these three cases, state: upon what body, upon what part of the
body, and in what direction the centripetal force acts.

A circular ring with a groove on the inside rests in a vertical position. A
marble rolls in the groove at high speed so that it does not leave the groove.
Show, in a diagram, the vertical forces which act on the marble when it is
(a) at the lowest point in its path, (b) at the highest point. Label the
forces, indicating what they are exerted by.

. W y ; !
Show that the expression -4 has the units of acceleration.

02
. Consider the relationship I, = T%. What is the effect on I, of (@) changing

m by a factor of 3, (b) changing v by a factor of 3, (¢) changing r by a
factor of {7 Interpret each of the changes in terms of vehicles rounding
curves in a road.

A car of mass 1.5 X 10% kg travels around a circular curve at a speed of
25 m/sec. If the radius of the curve is 75 m, calculate the centripetal force
acting on the car. What exerts this centripetal force?

. A 1500-kg mass rotates at a constant speed of 12 m/sec in 4 circle of radius

200 m. Calculate the magnitude of the centripetal force acting on the mass.

. A one-kilogram stone is whirled in a vertical circle at the end of a string

1.5 m long. The constant speed of the stone is 5 m/sec. What is the tension

67




68

b=l

™

KINEMATICS AND DYNAMICS

in the string, (a) when the string is horizontal, (b) when the stone is at the
top of the circle, (¢) when the stone is at the bottom of the circle?

26. The moon i1s an earth satellite with a period of about 27% days. Its radius
of rotation (the distance from the earth to the moon) is 3.8 X 10° km,
(a) Calculate the magnitude of the moon’s centripetal acceleration. (b) State
the direction of the aceeleration. (¢) What force causes this acceleration?
(d) How does this force compare with the similar force at the carth’s surface?

5-12 SUMMARY
1.

The magnitude of g, the acceleration
due to gravity, 1s independent of mass
but is dependent on elevation,

. The gravitational force (weight) per

unit mass is ¢ newtons/kg. That is,
Fo = myg
TFor a projectile,
(a) the path is parabolic,
(b) the horizontal and vertical com-
ponents of motion may be con-
sidered separately.

. Circular motion, even at constant

speed, 1s accelerated motion, because
the direction of the velocity vector is
continually changing,
The following formulas apply for cir-
cular motion at constant speed.
0]
o=t
»
mu?
r
Both the centripetal acceleration and
centripetal force are directed to the
centre of the circle.

P, =

. I'or an earth satellite in a stable cir-

cular orbit, o
v =gk
7 2R

v

. Newton’s Second Law is not valid in

accelerated frames of reference. In
order to malke the second law seem to

apply in accelerated frames of refer-
ence, we invent fictitious forces.

. The wide applicability of Newton’s

Second Law in unaccelerated frames

of reference should now be evident.

The eases we have investigated are

summarized below.

(a) Tf the force vector and the velocity
vector have the same direction,
the effect of the force is to increase
the magnitude of the velocity vec-
tor, without changing its direction,

(b) If the force and veloecity vectors
have opposite directions, the effeet
of the force is to decrease the mag-
nitude of the velocity vector,
without changing its direction.

(c) If theforce vector is perpendicular
to the veloeity vector, the effect of
the force is to change the direction
of the velocity vector without
changing its magnitude. Circular
motion results.

(d) In all other cases, the effect of the
force is to change both the direc-
tion and magnitude of the velocity
vector. This is the case for pro-
jectile motion. In these cases, the
motion is most readily analysed
by considering componentsparallel
to, and perpendicular to, the force
vector.

In all cases, the vector law F =md

applies.
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tal, (b) when the stone is at the
e bottom of the circle?

d of about 274 days. Its radius
b the moon) 13 3.8 X 10° km.
entripetal acceleration. (b) State
force causes this acceleration?
ilar foree at the earth’s surface ?

oly in accelerated frames of refer-

e, we invent fictitious forces.

e wide applicability of Newton’s

ond Law in unaccelerated frames

reference should now be evident.

¢ cases we have investigated are

nmarized below.
If the force vector and the velocity
vector have the same direction,
the effect of the force is to increase
the magnitude of the velocity vec-
tor, without changing its direction.
If the force and velocity vectors
have opposite directions, the effect
of the force is to decrease the mag-
nitude of the velocity veector,
without changing its direction.
If the force vector is perpendicular
to the velocity vector, the effect of
the foree is to change the direction
of the velocity vector without
changing its magnitude. Circular
motion results.

. In all other cases, the effeet of the
force is to change both the direc-
tion and magnitude of the velocity
vector. This iz the case for pro-
jectile motion. In these cases, the
motion is most readily analysed
by considering componentsparallel
to, and perpendicular to, the force
veetor.
all cases, the veetor law F = md

plies.

Chapter 6

Universal Gravitation

6—1 INTRODUCTION

We noted in Chapter 4 that the orbital
motion of the planets, apparently in the
absence of any force acting on them,
puzzled the early philosophers. We noted,
too, their unusual explanation that celes-
tial matter possessed properties which
terrestrial matter lacked. It was not until
the seventeenth and eighteenth centuries
that the problems of celestial motion were
solved in terms acceptable to us today.
The names of two of the men involved—
Galileo and Newton—are already familiar
to us, but there were many more who
contributed a great deal. Who these others
were, what their contributions were, how
they arrived not only at a kinematic
description but at a dynamic solution for
celestial motion is a very interesting and
instructive story. As we shall see in this
chapter, they eventually discovered that
aforceisresponsiblefor planetary motion.
They described in mathematical terms
the magnitude of that force, and they
put an end to the theory that celestial
and terrestrial mechanies differ. Only a
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very brief outline of this story can be
given here.

6-2 EARLY IDEAS ABOUT
THE UNIVERSE

More than twenty centuries ago scien-
tists had assembled considerable infor-
mation concerning astronomy. They
observed that the so-called fixed.stars
seemed to move on spherical shells with
the earth at their common centre (see
Fig. 6.1). But seven celestial bodies—the
sun, the moon, Mars, Mercury, Venus,
Jupiter and Saturn appeared to move
among the stars. Moreover, the motion
of the latter five seemed erratic, and the
name planet (wanderer, in Greek) was
applied to all seven. How could their
motions be explained ?

Harly explanations made two basic
agsumptiong, both of which seemed
reasonable at the time—and for many
years later. The first assumption was that
the universe was geocentric (earth-
centred); that the earth was stationary
at the centre of the universe. The second
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Peter M. Millman, National Research Counctl, Otlawa, Canada

Fig. 6.1. This time-exposure photograph shows the apparent circular motions of other stars about
the pole star. This circular motion led early astronomers to believe that stars rotated on spherical
shells with the earth at the centre.
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parent circular motions of other stars about
s to believe that stars rotated on spherical
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agsumption was that any celestial object
should follow a perfect path, and that a
eirele was a perfeet path.

The Greelk philosopher Plato (427-347
B.C.) assumed that the orbit of cach
planet was confined to a sphere whose
centre was the earth. The spheres them-
selves rotated and carried the planets with
them. Morcover, they did not necessarily
rotateindependently, but were considered
to be connected to one another. This con-
nection seemed necessary to explain the
observed complex motion of the planets.
Other proposed systems, notably those
of the Greek scholars Apollonius and
Hipparchus, also considered planetary
motion as the resultant of several super-
imposed circular motions. Tventually,
between 100 and 200 A.D., Ptolemy of
Alexandria perfected a geocentric system
of eircular motions superimposed on cir-
cularmotionswhich, though cumbersome,
deseribed and predicted planetary motion
quite accurately. This Ptolemaic system
remained in vogue for many centurics.

6-3 COPERNICUS AND BRAHE

Nicolaus Copernicus (1473-1543) was
a Polish astronomer who felt that the
Ptolemaic system was too complicated.
Accordingly he devised a system which
retained the Ptolemaic insistence on cir-
cular motion but which assumed that the
universe was heliocentrie, or sun-centred.
The Copernican theory proved to have
some advantages over the Ptolemaic sys-
tem but it appeared to have some flaws.
Forthisreason, and becauseit represented
a violent break with the established geo-
centric schools of thought and with the
theology of the day, it did not readily
gain acceptance.
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One of those who rejected Copernicus’
theory was the Danish astronomer, Tycho
Brahe (1546-1601). Brahe proposed a sort,
of compromise; he assumed that the sun
rotated about the earth but that the
planets rotated about the sun. However,
Brahe’s great contribution was not an
improved theory, but a very large number
of very accurate observations of positions
of planets. One of the effects of this newly
available information was to show that
the Copernican system, complicated ag
it was, was not sufficiently accurate to
describe the orbits properly. A more ac-
curate description was necessary.

6-4 THE WORK OF KEPLER

Johannes Kepler (15671-1630) had
worked with Brahe prior to the latter’s
death, and carried on Brahe’s work. ITe
differed from Brahe in two important
respects; he believed in the Copernican
heliocentric theory, and he was a mathe-
matician rather than an experimenter.
He set out to fit Brahe’s precise obser-
vations to a Copernican system of uni-
form ecircular motion, and after several
years had to admit that he could not do
it. Kepler then spent years searching for
ways to amend the Copernican theory
to make it applicable to Brahe’s data.
His main amendment constituted a major
break with all earlier theories; he con-
cluded that the orbits of the plancts were
not circular, but elliptical. As a result,
all of the complicated theorizing about
superposition of circular motions was no
longer necessary; the Copernican theory
became relatively simple.

This law of elliptical paths was the
major one of three laws which Iepler
discovered from Brahe's data.
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1. Each planet moves about the sun
in an elliptical orbit with the sun at one
focus of the ellipse.

2. The straight line joining the sun
and a given planet sweeps out cqual areas
in equal intervals of time (Iig. 6.2).

3. The squares of the times of revolu-
tion of the planets about the sun are
proportional to the cubes of their mean
distances from the sun.

Kepler did not explain why the planets
move in accordance with these laws; he
merely stated that they must move ac-
cordingly in order to satisfy observations
made by Brahe and others. These laws,
then, state the kinematics of the planetary
system;itremained for Newton to analyse
the dynamics of that system.

6-5 GALILEO AND NEWTON

Kepler and Galileo were con temporaries
who frequently exchanged views. Both
were adherents of the Copernican theory
when few others were, and both were
accustomed to expressing their findings
in mathematical language. Galileo was
the first to use a telescope for observation
of astronomical phenomena, and with the
telescope he observed many facts which
were 1ot in agreement with a Ptolemaic
view. He discovered, for example, that
Jupiter had four satellite planets rotating
about itself. Certainly here was a portion
of the universe which was not geocentric.

Moreover, Galileo came close to realiz-
ing something that we must realize too
if we are to understand Newton’s work,
which we shall presently describe. Both
a geocentric and a heliocentric system
can be used to describe the kinematics

?‘
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of the planetary system, but only a helig.
centric gystem can be used for a dynamiey|
congideration, if we are to apply tg
celestial motion the same laws of motioy
that we have learned to use for objecis
on the surface of the earth. We choose
the heliocentric system basically because
it iz convenient to do so, in the sense that
the laws which then apply are universal,

Fig.6.2. Planetary motion. The planetmoves from
ato b in the same time as it moves from ¢ to d, and
the areas sab and scd are equal.

Newton, as we know, had developed a
system of mechanics based on Galileo’s
law of inertia, now known as Newton’s
Tlirst Law. When he turned his attention
to the problem of celestial mechanics, he
felt that the same laws should apply. His
first problem then was to decide what
force was acting on the planets to causc
them to move in accord with Kepler's
laws. Tradition hag it that hig mind was
directed to the force of gravitation by the
sight of a falling apple in his garden. Al
any rate, Newton began by agsuming that
all objects in the universe exert gravi-
tational forces of attraction on one
another. Then he showed mthhG;natim.dl)’
that this force must be a central foree
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1e planetary system, but only a helio-
ric system can beused for a dynamieal
sideration, if we are to apply to
stial motion the same laws of motion
. we have learned to use for objeets
he surface of the earth. We choose
heliocentric system basically because
convenient to do so, in the sense that
laws which then apply are universal,

6.2. Planetary motion. The planet moves from
b in the same time as it moves from ¢ to d, and
areas sab and scd are equal.

lewton, as we know, had developed a
tem of mechanics based on Galileo’s
of inertia, now known as Newton’s
<t Law. When he turned his attention
he problem of celestial mechanics, he
that the same laws should apply. His
t problem then was to decide whaf
e was acting on the planets to cause
m to move in accord with Kepler's
¢, Tradition has it that his mind was
acted to the force of gravitation by the
Wt of a falling apple in his garden. Af
s rate, Newton began by assuming that
objects in the universe exert gravi-
jonal forces of attraction on one
yther. Then he showed-n1athgp1atically
.t this force must be a central force,
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if the planet’s motion is to obey IKepler’s
second law. For an elliptical orbit, this
central foree is directed to one of the foci
of the ellipse.

Newton’s next step was to prove that,
if the planet is to follow an elliptical
orbit, the central force must be inversely
],1-01301'11'1011&1 to the square of the planet’s
distance from the focus to which it is
directed.

The development of this inverse square
relationship between force and distance
is rather difficult if the orbit is elliptical,
hut relatively easy if the orbit is circular.
The magnitude of the central acceleration
of a planet rotating in a circular orbit of
radius 7, with period 7', is i;:; (Sect. 5-7).
Hence, if the mass of the planet is m, the
magnitude of the central force acting is
given by the relationship

F, = m———

But, according to INepler’s third law
(Sect. 6-4),

T? = kr®, where k is a constant.
4l 47’

Therefore, I, = m=— = m—
i ot r? fer?

That is I, « ‘1‘12.
But what exerts the force ? Newton knew
that the earth attracted the apple, and
therefore he reasoned that the sun,
positioned at the focus of the ellipse,
attracted the planet. Further consider-
ations led him to propose what we now
call the law of universal gravitation.

6-6 THE LAW OF UNIVERSAL
GRAVITATION

Newton decided that the gravitational
force of attraction which two objects exert
on each other was directly proportional
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to the mass of each. This was probably
an “intelligent guess” on Newton’s part;
we have noted in Chapters 4 and 5 that
the assumption that the weight of an
object is dircetly proportional to its mass
correctly predicts that the acceleration
due to gravity is the same for all objects,
regardless of mass. The law of universal
gravitation may then be stated as follows.

The force of attraction between any
two bodies is directly proportional to the
product of their masses and inversely
proportional to the square of the distance
between their centres of mass.

If m and M are the masses of the two
bodies and r is the distance between their
centres of mass, the magnitude of the
force I with which each body attracts
the other is given by

Fy « m# md

?.E

FG:G

where ¢ is a numerical constant called
the gravitation constant.

6—-7 A TEST OF THE LAW OF
GRAVITATION

Newton tested the inverse square law
of gravitational force by comparing the
known centripetal acceleration of the
moon toward the earth with the acceler-
ation predicted by an inverse square law.
His reasoning was essentially as follows.
The gravitational force exerted by the
carth on an object near its surface causes
the object to fall toward the earth with
an acceleration of 9.8 m/sec?. The dis-
tance from the centre of the earth to the
moon is approximately 60 times the radius
of the earth. Therefore, if the inverse
square law of gravitational foree is cor-
rect, the gravitational force exerted by
the earth on the moon should cause the
moon to fall toward the earth with
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; 9.8 j
an acceleration of 602 m/sec?, or about
307

2.7 % 10 m/sect. That is, the centri-
petal acceleration of the moon is predicted
to be about 2.7 X 10-% m/sec®.
But the centripetal acceleration of an
object can be calculated from the formula
ey
=
the moon in an orbit about the earth,
T = 27.3 days = 2.4 » 10° see
7 = 60 X (radius of earth)
= 3.8 X 105 m
e 4 X 3.14* X 3.8 X 108
(2.4 X 10%)?2
= 2.6 X 107 m/sec?
That is, the central acceleration of the
moon is 2.6 X 10~ m/see®. The remark-
ably close agreement between the actual
value and the predicted value of the
moon's central aceeleration was atriumph
for Newton’s law of gravitation.

(Sect. 5-7). For the motion of

6—-8 THE CAVENDISH
EXPERIMENT

Laboratory verification of Newton's
law of universal gravitation and the de-
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Fig. 6.3. The apparatus used in the Cavendish experiment.

(b)

termination of the value of the gravitation
constant G was first made by Henry
Cavendish in 1798 using a plan suggested
by Newton. A modern form of the ap-
paratus is shown in Iigure 6.3.

Two small silver spheres of equal mass
(1 gm each) are fastened to the ends of
a thin light wire about 5 em long. The
wire is supported by a rod with a small
mirror attached. The whole system is
suspended by a long, fine, quartz fibre
and is carcfully protected from air cur-
rents by a glass case. The silver spheres
and their supporting rod will vibrate in
a horizontal plane when assembled; the
unit, including the suspending fibre, is
called a torsion pendulum. It will finally
come to rest when the fibre is entirely
untwisted.

Two heavy lead spheres (about 3000
gm each) are brought into position, one
on cach side of the suspended system
(Tig. 6.3a) and each quite close to one of
the silver spheres. The gravitational foree
between the silver spheres and the lead
spheres causes the suspended system to
rotate slightly. However the resisting

R
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(b)

avendish experiment.

nation of the value of the gravitation
ant G was first made by Henry
ndish in 1798 using a plan suggested
ewtow. A modern form of the ap-
us is shown in Figure 6.3.
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torsional force exerted by the fibre soon
palances the attracting force between the
gpheres, and the pendulum will come to
rest. The positions of the two large spheres
are then reversed as shown in Tigure 6.3b.
The gravitational attraction now pro-
duces a rotation of the pendulum in the
opposite direction. A beam of light re-
flected from the small mirror on the
pendulum makes it possible to measure
the angle through which the pendulum
is turned. From this measurement, to-
gether with the elastic constant of the
quartz fibre, its length and diameter, #
can be calculated. By substituting in the
formula,
ro = ¢4

the value of G can be determined. The
most recent measurements indicate that
the value of 7 i3 6.67 X 10~ when 7,
is in newtons, m and A7 are in kilograms,
and r is in metres, That is, ¢ = 6.67 X
10~ newton-metres?/kilogram?®.

The gravitational attraction between
two objects of normal size is very small.
The gravitational attraction between a
2-Idlogram stone and a 3-kilogram stone
25 em apart may be calculated as follows:

6-10 PROBLEMS

Assume, where necessary, that:

; 2 X3
= 6.67 X 101 x 2= 2°

. 0.25°

= 3 X 1078 newtons approximately.
The gravitational force becomes appre-
ciable only when at least one of the objects
hag a large mass.

newtons

6-9 MORE RECENT
DEVELOPMENTS

Albert Einstein’s general theory of
relativity is based in part on the fact that
an inertial determination of the mass of
an object yields a result equivalent to
thut obtained by the gravitational
method. We have already noted this fact
and stated that it was not logically pre-
dictable. Einstein’s theory goes beyond
Newton’s law of gravitation and malkes
minor modifications in it. For most pur-
poses, the differences between the pre-
dictions of Newton’s law and Einstein’s
theory are not observable. However, in
exceptlional circumstances, Einstein’s
modification is necessary. One set of ex-
ceptional circumstances oceurs in con-
nection with a very small irregularity in
the orbit of the planet Mercury. This
irregularity is not predicted by Newton’s
law, but it is explained by Einstein’s
theory.

the gravitation constant = ¢ = 6.67 X 101 newton-metres?®/kg?
the acceleration due to gravity = ¢ = 9.8 m/sec?

the mass of the earth = M,

X 10* kg

= 6.0
the radius of the earth = », = 6.4 X 108 m

mM

L. For the relationship Fj; « R what is the effect on Fg of (a) changing m

by a factor of 4, (b) changing M by a factor of 0.75, (¢) changing » by a
factor of 4/37?
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9. Compute the gravitational attraction between two balls, cach of 2-kg muass, 2
if their centres are 20 em apart. Cl
3. A 2-kilogram mass is placed 1 metre away from a 5-kilogram mass. Caleulate
(a) the gravitational force exerted by the 2-kg mass on the 5-kg mass,
(b) the gravitational force exerted by the 5-kg mass on the 2-kg mass.
4. The force of attraction of the earth on the moon ig 4.1 X 10% newtons,
With what force does the moon attract the earth?
Calculate the force of attraction between 2 objects of masses 900 gm and
400 gm placed 10 em apart.
6. Caleulate the gravitational force of attraction between o proton of mass
‘ 1.67 X 1027 kg and an electron of mass 9.11 X 10-3 kg, if they are
* 5 % 10~ m apart, as they are in a normal hydrogen atom. State the order
of magnitude of this force, in newtons.
How far above the earth must an object be in order that it may lose 109,
of its weight?

S =

o

-1

; M
8. Given that F, = gﬂ%‘—“ and I'; = mg, calculate the mass of the earth.

9. Find the acceleration of a falling object on Mars, given that the radius of
Mars is & that of the earth, and the mass of Mars is & that of the earth.

10. The planet Jupiter has a masgs of 1.9 X 1027 kg and a radius of 7.2X10™m.
Calculate the acceleration due to gravity on Jupiter.

11. The period T of an earth satellite at a distance R from the centre of the 7=
earth may be calculated if the period and distance of another satellite—the I
moon, for example—are known. Kepler’s third law (Section 6-4) states that imp
R « 72 If the radius of the moon’s orbit is 3.8 X 10° km, and its period is ther
27 days, calculate the period of a satellite at an average height of 1200 km. ke

12. What must be the height of an earth satellite if its period is to be the same EFs
as that of the earth? (Use the data given in Question 11 ) g

| s e

of t

imp

6-11 SUMMARY Rs _ ) enc

1. A heliocentric system is superior to a © T2 S 8 constant for all planct lisic
geocentric system in deseribing the R is mean distance from the sul

dynamics of planetary motion. to the planet; 7' is the period d 7.

2. Kepler's Laws: revolution of the planet. |
() The planets move in elliptical 3. Newton’s Law of Universal Gravite and
orbits about the sun. The sun is tion: Any two objects attract on IMig
at one focus of the ellipse. another with a force which is directly rele

(b) The straight line joining the sun proportional to the mass of each of th B,
to the planet (i.e., the focal radius) objects, and inversely proportional i SWil
sweeps out equal areas In equal the square of the distance belwed! obsi

their centres. the

times.
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tween two balls, each of 2-kg mass,

y from a 5-kilogram mass. Calculate
the 2-kg mass on the 5-kg mass,
¢ 5-kg mass on the 2-kg mass.

- the moon is 4.1 X 10* newtons,
the earth?

en 2 objects of masses 900 gm and

traction between a proton of mass
nass 9.11 % 10~ kg, if they are
nal hydrogen atom. State the order

't be in order that it may lose 109,

calculate the mass of the earth.

t on Mars, given that the radius of
ass of Mars is % that of the earth.
10?7 kg and a radius of 7.210™m.
ty on Jupiter.

. distance R from the centre of the
1d distance of another satellite—the
s third law (Section 6—4) states that
it is 3.8 X 10° km, and its period is
ite at an average height of 1200 km.
tellite if its period is to be the same
en in Question 11.)

() ,T:: is a constant for all planets
R is mean distance from the sun
to the planet; T is the period d
revolution of the planet.

. Newton’s Law of Universal Graviti-
tion: Any two objects attract oné
another with a force which is directly
proportional to the mass of each of the
objects, and inversely proportional @
the square of the distance betweel
their centres.

Chapter 7/

The Conservation of

Momentum

7-1 INTRODUCTION

In Chapter 4 we defined the terms
impulse and momentum and learned that
they were related by the formula FAL =
mAv. In words, this formula states that
the impulse FAt imparted to an object
by the action of a force I' for a time At
isequal to m Av, the change in momentum
of that object. We will now consider the
impulses and momentum changes experi-
enced by two objects involved in a col-
lision, impact or explosion.

7-2 IMPACT OF TWO OBJECTS

Two identical ivory or steel balls 4
and B are suspended side by side as in
Figure 7.1. A is drawn aside to C and
released. Its speed increases until it strikes
B, when it suddenly comes to rest. B
8Wings up to D, and the distance BD is
observed to be approximately equal to
the distance AC. It would seem, then,
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that the speed of B immediately after
impact is equal to the speed of A imme-
diately before impact. Since the masses
of A and B are equal, it follows that the
momentum of B after impact is equal to
the momentum of A bhefore impact, or
that the momentum lost by A4 is equal to
the momentum gained by B.

The validity of this reasoning may be

AT H iy

Fig. 7.1. The impact of two objects.
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tested mathematically with the aid of
Newton’s second and third laws, During
the impact, A exerts on B a force I,
and B exerts on A a force Fa. According
to Newton’s third law,
F- T,
If we now multiply each side of this
equation by At, the time of duration of
the impact, we obtain
Fial = —Faal

That is, the impulse imparted to B by A
is equal and opposite to the impulse im-
parted to A by B. According to Newton’s
second law, impulseis equal tomomentum
change as noted in full above. In this
case, then, the momentum change for A
is equal and opposite to the momentum
change for B. This prediction may be
verified experimentally with Fletcher’s
trolley.

7-3 MEASUREMENT OF
MOMENTUM CHANGES

When Fletcher’s trolley is used for
momentum measurements, one end of the
track is raised sufficiently to cancel the
effect of friction. A car on the track will
then move at constant speed if ouce
started. The masses of two cars 4 and B
are determined, and the cars are placed
on the track. The brush is positioned so
that a tracing can be talken on A before
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and after it collides with the stationary
car B. A coupling device on the cars
ensures that, when 4 strikes B (Iig. 7.2),
the two cars will couple automatically
and move off together. Figure 7.3 shows
the resulting trace. The speed of A before
impact, caleulated from the wave length
of the long waves, was 0.58 m/sce. The
common speed of the two cars after im-
pact, calculated from the wave length of
the short waves, was 0.28 m/sec. The
mass of trolley A was 1.41 kg, and the
mass of trolley B was 1.47 kg,
Momentum before impact

= 1.41 % 0.58 kg-m/scc

= 0.82 kg-m/sec.
Momentum after impact

= 2.88 % 0.28 kg-m/sec

= 0.81 kg-m/sec.
These two momenta are approximately
equal.

The above procedure may be varied by
adding masses to cither trolley or to both,
and by giving A different speeds. The
tracings will differ, but in each case a
comparison of momenta will show that
the total momentum after impact is equal
to the total momentum before impact.

The following conclusion then scems
valid for two objects in cases where the
motion is confined to one straight line
The momentum lost by one object is equal

Fig. 7.2. Fletcher’s trolley ar-
ranged to demonstrate the law of
conservation of momentum.
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:t, calculated from the wave length
2 long waves, was 0.58 m/see. The
1on speed of the two cars after im-
caleulated from the wave length of
hort waves, was 0.28 m/sec. The
of trolley A was 1.41 kg, and the
of trolley B was 1.47 kg.
entum before impact

= 1.41 X 0.58 kg-m/sec

= (.82 kg-m/sec.
entum after impact

= 2.88 X 0.28 kg-m/scc

= 0.81 kg-m/sec.
e two momenta are approximately
L.
e above procedure may be varied by
1o masses to either trolley or to both,
by giving A different speeds. The
ngs will differ, but in each case a
yarison of momenta will show that
otal momentum after impact is equal
e total momentum before impact.
e following conclusion then seems
| for two objects in cases where the
on is confined to one straight line.
momentum lost by one object is equal

| Fig. 7.2. Fletcher's trolley ar-
ranged to demonstrate the law of
conservation of momentum.
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Fig. 7.3. Tracing showing the effect of impact when the cars are coupled together. The period of

the brush was 0.2 sec.

to that gained by the other, or the total
momentum after impact is equal to the
total momentum before impact. That is,
momentum is conserved. If we give the
gymbol 7' to the momentum of the system,
then P’ does not change during the impact;
that is, ﬁ) = 0. Or:if A_f)l represents the
change i11_13101110|1t11;11 of one of the objects,
and if Ap, represents the change in
momeuntum of the other object, then
Apy = —Aps.

Fig. 7.5. Positions of the two
carts before the "explosion' takes
place.

7—-4 LABORATORY EXERCISE:
MOMENTUM CONSERVATION
IN AN EXPLOSION

Most dynamics carts have a spring
loaded plunger at one end (Fig. 7.4). The
plunger, when “cocked,” is held in posi-
tion by acatch; the plunger may be “fired”’
by tapping the vertical pin at the front
of the cart.

Place two empty carts on the track
(Iig. 7.5) so that one cart is just touching
the cocked plunger of the other. Tap the
pin to release the plunger. What seems
true of the velocities of the two carts
after the explosion? What secems to be
true of the momenta of the two carts?

Repeat the above procedure with one
of the carts loaded with one, two, or three
bricks. What conclusion arc you tempted
to state?

You may make quantitative measure-
ments as follows. The masses of the carts
and bricks may be found by weighing
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them. (In some cases, the manufacturer
has arranged that the mass of a brick is
double that of the cart. You may then
use “‘one cart’”’ rather than one kilogram,
as the unit of mass). The speeds of the
carts could be determined by attaching
a tape from a recording timer to-each of
the carts, but this procedure proves to be
unnecessary. If the two carts travel for
the same length of time, the distances
they travel are proportional to their

Fig. 7.7. Apparatus used to investigate momen-
tum changes in a two-dimensional collision.

KINEMATICS AND DYNAM[

Fig.7.6. The carts hit the bumy,
ers simultaneously.

speeds. The distances can be measure|
readily ; the ratio of the distances is eqyy)
to the ratio of the speeds.

You can arrange that the two car
travel for the same length of time py
choosing the proper starting point, t,h&[
is, by altering the position at which the
“explosion’” takes place. If the carts hi
the bumpers at the ends of the track
simultaneously (Fig. 7.6), their times of
travel are equal. Adjust the starting point
until you hear the carts hit the bumpers
at the same time. Then, for each can,
measure the distance travelled by the
end which struck the bumper. Compare
the total momentum of the two carts
before the explosion with the total
momentum of the two carts after the
explosion. Repeat the procedure and cal-
culations for various loads.

7-5 LABORATORY EXERCISE:
A TWO-DIMENSIONAL
COLLISION

In the collisions discussed in Sections
7-3 and 7-4, the two colliding objects
moved along a single straight line path,
both before and after collision. We will
investigate next a glancing collision, one
in which several directions of mofion are
involved, and in which the vector nature
of momentum has to be taken into
account.

Set up the apparatus shown in I'igure
7.7. Check to ensure that the lower portion
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Fig.7.6. The carts hit the bump.
h ers simultaneously.

Is. The distances can be measured
ly ; the ratio of the distances is equay]
e ratio of the speeds.

yu can arrange that the two cartg
11 for the same length of time by
sing the proper starting point, that
¢ altering the position at which the
losion” takes place. If the carts hit
bumpers at the ends of the track
ltaneously (I'ig. 7.6), their times of
ol are equal. Adjust the starting poing
~you hear the carts hit the bumpers
1e same time. Then, for each cart,
ure the distance travelled by the
which struck the bumper, Compare
total momentum of the two carts
re the explosion with the total
ientum of the two carts after the
ssion. Repeat the procedure and cal-
sions for various loads.

 LABORATORY EXERCISE:
A TWO-DIMENSIONAL
COLLISION

the collisions discussed in Sections
and 7—-4, the two colliding objects
ed along a single straight line path,
. before and after collision. We will
stigate next a glancing collision, one
hich several directions of motion are
lved, and in which the vector nature
nomentum has to be taken info
unt.

t up the apparatus shown in Figure
Check to ensure that the lower portion
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of the curved ruler is horizontal. Place a
large sheet of white paper on the floor as
show. Release a steel ball from some
known position on the ruler, and note the
approximate point of impact of the ball
on the paper. Place a sheet O,f carbon
paper (carbon side down) over this area
of the white paper. Release the ball from
the same initial position at least ten more
times, letting it fall on the carbown paper
ench time. Remove the carbon paper and
mark the mean (average) point of impact
of the ball.

Now place another steel ball (of the
same mass as the first one), on the end
of the supporting bolt (IMig. 7.8). This
second ball should be in such a position
that it will be struck a glancing horizontal
blow, as the first ball leaves the ruler.
Release the first ball from the same posi-
tion on the ruler as before, and note the
approximate points of impact of the inci-
dent ball and the strucl ball. Place sheets
of carbon paper in these two positions,
and repeat the procedure at least ten
times. Remove the carbon paper and mark
the mean points of impact of the two
balls (Fig. 7.9). Then use the plumb line
(Fig. 7.7) to project the initial position
of the centre of the struck ball onto the
white paper.

Calculate the momentum of the inci-
dent ball before collision, and of both
balls after collision, keeping the following
facts in mind. (a) The masses of the two
balls are equal. (b) The time of fall of
either of the balls is independent of the
horizontal velocity of the ball (see
Sections 3-17 and 5-4). (¢) The position
of the centre of the incident ball is not
the same as the position of the centre of
the struck ball. (d) Momentum is a vector
quantity.
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Fig. 7.8. The stationary ball on the right will be
struck a glancing blow by the moving ball.

Fig. 7.9. Photo showing three mean points of
impact: A, when no collision takes place; B, for
the incident ball; C, for the struck ball.
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Is momentum conserved in this
collision ?

7—-6 CONSERVATION OF
MOMENTUM IN GENERAL

Before we assume that momentum is
conserved in all cases of collision or ex-
plosion, we need to discuss at least two
further questions and their answers.

(@) Is momentum conserved when
more than two objects are involved ? The
answer 1s yes, for the argument involving
Newton’s third law which we used in

Physics Department, University of Weslern Ontario

Fig.7.10. Multiple flash photograph of a collision
between two billiard balls. The ball on the right
was stationary before the collision.

Fig. 7.11. The vector sum ofE:' and FQ’ =7

Section 7-2 applies equally well to all of
the forees of interaction among any num-
ber of objects.

(b) Is momentum conserved when the
paths of the objects before and after col-
lision are not in the same straight line?
The answer is yes again; the vector sum
of the momenta before collision is equal
to the vector sum of the momenta after
collision. Consider I'igure 7.10, a multiple
flash photograph of a collision between
a moving hall and a stationary ball. The
speeds of the balls are proportional to the
distances travelled by ecach in a given
time interval. Since the masses of the
balls are equal, the momenta of the halls
are also proportional to these distances.
This fact was used in drawing Figure 7.11.
In this diagram, p; represents the momen-
tum of the first ball before collision, and
Py’ and p¥ represent the momenta of the
first and second balls, respectively, after
collision. R is the vector sum of Py’ and
7, and R is found to be equal to 7. In
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.11. The vector sum of 5} and ,B"i = P

m 7-2 applies equally well to all of
rees of interaction among any num-
f objects.

Is momentum conserved when the
of the objects before and after col-
are not in the same straight line?
mswer is yes again; the vector sum
» momenta before collision is equal
e vector sum of the momenta after
on. Consider Figure 7.10, a multiple
photograph of a collision between
ving ball and a stationary ball. The
s of the balls are proportional to the
nces travelled by each in a given
interval. Since the masses of the
arc equal, the momenta of the balls
lso proportional to these distances.
fact was used in drawing Figure 7.11,
s dingram, i represents the momen-
of the first ball before collision, and
1d P3 represent the momenta of the
wnd second balls, respectively, after
ion. R is the vector sum of 7%/ and
nd R is found to be equal to pi. In

THE CONSERVATION OF MOMENTUM

this case, then momentum is conserved,
You should have found that momentum
was conserved in the two-dimensional
collision deseribed in Section 7-5.

Momentum is conserved, too, in col-
lision in which the motions are not con-
fined to one plane. There is then a general
law of conservation of momentum which
may be stated as follows: In all cases of
impact, collision, or explosion involving
two or more objeets, the total momentum
of the objects before impact 18 equal to
the total momentum of the objects after
collision. This law may he used to predict
the effects of any and all collisions or
explosions.

7-7 WORKED EXAMPLES

ExamrLe 1

A shell of mags 16 1b leaves the muzzle
of a gun with a speed of 2000 ft/sec.
I'ind the velocity of recoil of the gun if
the mass of the gun is 1000 lb.

SOLUTION
The total momentum before the gun
is fired 1s zero, and therefore the total
momentum after firing must also be zero.
Then, if ¥’ represents the velocity of
the gun after firing, in ft/see, and if the
direction of motion of the shell is taken
as the positive direction,
momentum of shell after firing
= 16 » 2000 Ib-ft/sec
momentum of gun after firing
= 10007’ 1b-ft /sec
216 X 2000 + 10008 = 0
7= —32
Therefore the velocity of recoil of the
gun = 32 ft/sec.

ExavrLn 2

An uranium atom undergoes fission,
that is, it “explodes” and breaks up into
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two parts of masses 2.4 X 107 kg and
1.4 X 107 kg. Assuming thal the atom
was initially at rest, caleulate the ratio
of the speeds of the two parts.
SoLuTION

Let v, represent the speed of the larger
part and v, represent the speed of the
smaller part. The total momentum before
the explosion is zero, therefore the total
momentum after explosion must also be

zZero.
2.4 X 107%9 + 1.4 X 1059 =0

2.4 X 10727, = —1.4 X 1023
7 l4axio®
® - 2.4 x 10w 098

Therefore the magnitude of the ratio of
v Lo vg 18 0.58,
ExampLz 3

A rockel is propelled as a result of the
very rapid ejection of exhaust gas from
the rear of the rocket. Given that the
initial mass of the rocket and fuel is 5000
leg and that 400 kg of fuel is burned in
accelerating the rocket to a speed of 600
m/see, calculate the velocity of the
exhaust gases,

SoLuTIoN

Let the velocity of the exhaust gases,
relative to the ground, be 7 m/sec, and
consider the direction of motion of the
rocket as the positive direction.

4600 X 600 + 4007 = 0
T = —6.9 X108

Therefore the velocity of the exhaust
gases 18 6.9 X 10* m/sec backward rela-
tive to the ground.

7—-8 PROPULSION OF ROCKETS
AND SATELLITES

The third worked example above indi-
cates the only method by which propul-
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sion in a vacuum can be achieved. The
propellers of a propeller-driven aireraft
exert a backward foree on the air; the air
exerts a reaction force on the propellers
(and hence on the aircraft) which causes
the aircraft to move forward. But the
reaction force available at high altitude
is very small, and in a vacuum it does
not exist. A space vehicle can therefore
change its speed or direction only by

KINEMATICS AND DYNAM[e

ejecting some material in a direction op
posite to that of the desired acceleratiy,
vector. The material ejected 1s frequeng,

called “reaction mass” and usually ta, |

the form of exhaust gases. However, ay
material “thrown overboard’ would m("_
duce the same effect. This type of py,
pulsion, of course, is not limited tq
vacuum; it is used in air by rockets wy
by jet aircraft.

(:J!

6.

7-9 PROBLEMS

1. A boy, sliding on very smooth ice near the shore of a lake, comes to vest

50 feet from shore. How can he get back to the shore?

The following unbalanced forces act consecutively on a 1.6-kg dynamics
cart for the times stated: 0.5 newtons for 2.0 see, 1.2 newtons for 1.5 sec,
4.0 newtons for 0.5 sec. (¢) Draw the force-time graph. (b) I'rom the graph
determine the total impulse imparted to the cart. (Assume that all of the
forees act in the direction of motion of the cart.) (c) State the total change
in momentum of the cart. (¢) What is the final speed of the cart?

A Tletcher trolley car, weighing 1.2 kg and travelling on a smooth, level
track, with a speed of 50 cm per sec, collides with a stationary car of mass
1.5 kg and imparts to it a speed of 30 em per sec. Caleulate the speed of the
first car just after impact.

A mass of 10 grams with a speed of 300 ¢cm/sec strikes a mass of 30 grams
and stops. With what speed does the 30-gram mass move?

Two masses, 4 and B, of 4 kg and 5 kg respectively, are travelling in the
same direction— A with a speed of 60 em per sec and B with a speed of
50 e¢m per sec. A strikes B, is coupled to it, and the two move on together.
Find their common speed.

A 30-gm bullet is fired with a speed of 300 metres per scc into a block of
wood which is free to move. If the mass of the block is 1230 gm, what will
be the speed which it gains from the impact of the bullet?

A 24kg boy, running at a speed of 3.0 m/sec, jumps into a stationary
12-kg wagon. What will be the initial speed of the wagon with the boy in it?
(Assume that he jumps into the wagon from the rear.)

. A stationary fireeracker with a mass of 120 gm bursts into two pieces which

fly off in opposite directions with speeds of 6 m/sec and 2 m/sec. What are
the masses of the two fragments?

A stationary uranium atom disintegrates into two fragments, the mass of
one of the fragments being 60 times that of the other. Immediately after the
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10.

11.

12.

13.

14.

16.

disintegration, the heavier fragment has a velocity of 2.5 X 10° m/sec
toward the west. Calculate the initial velocity of the lighter fragment.

Suppose that in the laboratory exercise outlined in Section 7-4 you find
that one cart travels 0.75 m while the other travels 1.25 m. Calculate
(a) the ratio of the speeds of the two carts, (b) the ratio of their masses,
(¢) the ratio of their accelerations while the plunger is pushing them apart,
() the ratio of the impulses imparted to the carts.

A 2.0-kg grenade moving toward the south with a speed of 30 m/sec
explodes into a 1.6-kg part and a 0.4-kg part. After the explosion, the
1.6-kg part has a velocity of 50 m/sec toward the east. (a) Use a vector
diagram to determine (¢) the momentum, (¢z) the velocity, of the 0.4-kg
part. (b) Check your answers to (a) by determining the southerly and
westerly components of the momentum of the 0.4-kg part, and hence the
magnitude of its momentum and velocity.

A 2.0-kg rifle has a barrel 50 em long. It fires a 4-gm bullet with a muzzle
velocity of 200 m/sec. Find (a) the recoil velocity of the rifle, (b) the average
force acting on the bullet while it is in the barrel.

The explosion in a 400-kg gun acts on a 2-kg shell with an average force of
5.0 X 10% newtons throughout the length of the 2.0 metre barrel. Calculate
(a) the muzzle velocity of the shell, (b) the recoil velocity of the gun.

Three coupled freight cars, each of mass m, are travelling with a constant
speed u on a straight and level track. They collide with 2 coupled stationary
cars, each of mass m. If all 5 cars are coupled together after the collision,
what is their common speed ?

. A 400-kg gun, free to recoil horizontally, fires a 20-kg shell with a velocity

of 800 m/sec at an angle of 60° with the ground. Calculate the horizontal
recoil velocity of the gun.

A 1000-kg car travelling at 36 km/hr strikes a tree and comes to rest in
0.1 see. (a) Calculate the order of magnitude of the force exerted by the
tree on the car. (b)) What mass has a weight of the same order of magnitude
as the force calculated in (a)?

7-10 SUMMARY

& Far = mAv; that is, the impulse
imparted by a force to an object is.
equal to the change in momentum of
an object. (Impulse is measured in
newton-seec, momentum in kg-m/sec).

2. The Law of Conservation of Momen- 3
tum: In any interaction involving a
system of two or more objects, the

forces act from outside the system).

mass.”’
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total momentum of the system after
the interaction is equal to the total
momentum of the system before the
interaction. (It is assumed that no

Rockets and satellites propel them-
selves in space by ejecting “reaction




Chapter 8

Work and Kinetic Energy

8—1 INTRODUCTION

Two of the most important coneepts in
mechanics are the concepts of energy and
work. You are no doubt familiar with
these concepts from earlier science courses
—too familiar perhaps to realize that the
formulation of these concepts required
several centuries. The purpose of this
chapter is to discuss these concepts, indi-
cating a few of the stages in the history
of their development, and for the most
part taking advantage of reasoning that
has been done by many scientists over
several centurics.

8—2 THE EFFECT OF A FORCE

When we studied momentum, we
learned that the net force acting on an
object is proportional to the rate of change
of momentum of the object. This relation-
ship, however, makes no mention of the
distance the object moves while the force
acts. It was Galileo who first asked a
question similar to the following. “Is there

any relationship between the distance the
object moves and the object’s velocity
change ?” This question may be answered
quite readily with the aid of Newton's
Second Law and one of the motion
formulae.

Consider a body of mass m initially at
rest at A on a frictionless surface (Fig,
8.1). Let a force I' act on it, causing it to
move with uniform acceleration a from
A to B. Let the displacement AB be s,
and let the speed of the body at B be .
I'rom Newton’s Second Law,

F = ma (1)
T'rom the formula »2 = w® + 2as, (&
membering that w = 0 in this case),
v? = 2as
La = o
Substitute in (1)
my*
F = o5
or Fs = gmit (2)

There is, then, a relationship involving
s and ». Galileo did not carry out the
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lationship between the distance the
, moves and the object’s velocity
¢ ?’ This question may be answered
readily with the aid of Newton’s
vd Law and one of the motion
lae.
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v = 2as
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ere is, then, a relationship involving
1 ». Galileo did not carry out the
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Fig. 8.1. AL B, the kinetic energy of the object
is § mv2.

above analysis, of course, but scientists
in succeeding generations did. Moreover,
the terms F's and $m? oceurred, not only
in this context but in other relationships,
go frequently that each was eventually
given a name. The term Fs is called the
work done by the force on the object,
and the term #mp? is called the kinetic
energy of the object. Let us consider each
of these concepts in turn.

8—-3 MEASUREMENT OF WORK

When a boy pulls a sled, the rope by
which he exerts a force on the sled (Ifig.
8.2) is not horizontal, but the sled itself
moves horizontally. The horizontal com-
ponent of the force is IFecos 8, and the
worle done by the force on the sled is
Fs cos 6. In general, the work TV done
by a foree on an object is defined as the
product obtained when the displacement
of the object i1s multiplied by the com-
ponent of the force in the direction of the
displacement. That is,

W = Fscos @

However, if 8 = 0, as is the case in
Figure 8.1, cos § = 1 and
W = Fs

Several consequences of this definition of
work must be noted.

(@) W = 0if cither I or 5 is zero. Thus
the meaning of the word work in physics
may be different from its meaning in
everyday language. In common usage,
We sometimes say we are working even
though we are exerting no physical force
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(c.g., studying) or even though the object
on which we exert a force undergoes no
displacement (e.g., pushing on a wall).
The definition of work in physies is, and
must be, a restricted gquantitative
definition.

(b) W = 0 when 6 = 90° for then
cos @ = 0. Cases in which a foree aets on
an object as the object undergoes a dis-
placement at right angles to the force
vector are fairly common. When an ob-
ject is carried horizontally at constant
speed from one position to another, the
object undergoes a horizontal displace-
ment, and a vertical force, equal to the
weight of the object, must be exerted to
support the object. However, no work is
done by this force on the object since the
force vector is at right angles to the dis-
placement vector. (Note that we did not
say that no work is done in this case.
Work may very well be done within the
muscles of the person carrying the load,
but no work is done on the object by the
vertical force.) A similar situation occurs
in conneetion with cireular motion (Sect.
5-7). The centripetal force is directed
toward the centre of the circle; the in-
stantaneous direction of displacement is
along the tangent. Since these two direc-
tions are at right angles to one another
the centripetal force does no work on the
rotating object.

Xh
F

b {
T o L

Fig. 8.2. The horizontal component of Fis F cos §.




88

(¢) Within the limitations set oul in
(a) and (b) above, the definition W = I's
makes sense. We automatically feel that
the work necessary to lift a 2-kg load
3 metres is double the work necessary to
lift a 1-kg load 3 metres, because the
force necessary in the first case is double
that in the second case. That is, we feel
that 1 should be directly proportional
to I, and this in the case. Moreover, we
also feel that the work necessary to lift
a 2-kg load 6 metres is double the worl
necessary to lift the same load 3 metres.
That is, we feel that W should be directly
proportional to s, and thig, too, is the
case.

(d) The units of work are products of
the units of force and distance. In the
M.IC.S. system, the unit of work is the
newton-metre, commonly called the joule.

1 joule = 1 newton-metre

(e) Work is a sealar quantity, for the
common direction of the force and the
displacement has no bearing on the
amount of work done. We never, for
example, say “5 joules of work in a
westerly direetion.”

(/) The work done by a forece may be
determined graphically. Recall the argu-
ment used in Section 2-10(c) to prove
that the area under a speed-time graph
is the distance travelled during the time
intervul under consideration. A similar
argument leads us to the coneclusion that
the area under a force-distance graph is
equal to the work done in the distance
interval under consideration. The shaded
area in Tigure 8.3 is the work done by
the force as the distance increases from
s to 8. This graphical method is most
useful when the foree is not constant.

KINEMATICS AND DYNAM](yq

8-4 WORKED EXAMPLE

A force applied to a 5-kg mass gives
a uniform acceleration of 80 em/sec? |
theresulting displacement in the directjy,
of the force is 10 metres, caleulate t),
work done by the foree on the mass,

SOLUTION
m = b kg
a = 0.80 m/sec?
Since I' = ma
=5 x0.80 = 4.0 newtang
Hence the force required is 4.0 newtong,
Since W = Fs
W = 4.0 > 10 newton-metres
That is, the work done is 40 joules.

8-5 OUR IDEAS ABOUT ENERGY

ITaving defined and discussed the term
I's on the left side of the equation
I's = +ma?, let us now turn our attention
to the term Lme?, which has been defined
as the kinctic energy of the object.

The word enecrgy is one which we use
frequently both in physiecs and n normal
conversation. Though we may find energy
hard to define precisely, we usually have
a fairly clearidea of what the word means,
1f, for example, we know someone who
habitually works hard, we are tempted
to say that he must have a great deal of
energy, and that he uses that energy to
do work., We excuse our failure to work
by saying that we lack encrgy. We say
that gasoline contains energy, beceause it
can be used in motors to do work. I"uels
possess energy beeause, when they bu,
heat is produced, and the heal can be
used to do work. Perhaps the common
definition of energy, as the ability to do
work, conveys our ideas about cnergy
reasonably well.

Wi
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WORKED EXAMPLE
force applied Lo a 5-kg mass gives i
iform acceleration of 80 em/sec? I
csulting displacement in the directioy,
e foree is 10 metres, caleulate the
done by the force on the mass,
TION

m = 5 kg

a = 0.80 m/sec?
mee I' = ma

F 5 % 0.80 = 4.0 newtong
:¢ the force required is 4.0 newtong,
ince W = I's

W = 4.0 x 10 newton-metres
.18, the work done is 40 joules.
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The term energy is used in physies with
essentially this meaning. However, the
concept of energy developed very slowly.
The Dutch physicist, Christian Huygens
(1{‘;29—1695), encountered the product
1t frequently in his calculations, and
1 1695 the German scientist Wilhelm
Leibniz gave this product the name “vis
viva.” Tventually the name was changed
to kinetic energy. What we need to show
here is Lhat this choice of name was a
wise one, that is, that it is in accord with
our ideas of energy outlined above.

g8-6 KINETIC ENERGY

Doesamoving object possess the ability
to do worl? A hammer resting on the
head of a nail exerts on the nail a force
equal to the weight of the hammer, but
the same hammer in motion can exert a
much greater foree on the nail. That is,
the hammer can do work because it is
moving, and therefore we say it possesses
energy. The adjective kinetic is derived
from a Greek verb meaning “to move.”
Kinetic energy is therefore the energy that
an object possesses because 1t is moving,.

Upon what factors, then, would we
expect the kinetic energy of an object to
depend ? Certainly we expect it to depend
on the mass of the object—the more mas-
sive a hammer is, the more effective it s
for driving nails. And certainly it depends
on the speed of the object—the faster the
hammer is moving the farther it will drive
the nail. Thus the expression fmy? for the
kinetic energy of a moving object seems
qualitatively correct.

We may verify the relationship quan-
titatively as follows, still referring to the
hammer and the nail. The nail exerts on
the hammer a force F which reduces the
speed of the hammer to zero from an

initial speed w. The work done by this
force on the hammer as the hammer and
nail move a distance s is Fs. Since F =
ma, v = u? + 2as, and v = 0,

Fs = mas = —imu?
But the hammer, according to Newton’s
third law, exerts on the nail a force — F.
The work done by the hammer on the
nail = —Fs = +Imu®. Therefore the
hammer of masgs m, moving with speed w,
was able to do work of magnitude $mu?,
and we have justified the formula $me?
for the kinetic encrgy of any object of
mass m, moving with speed v.

The equation Fs = 4mw® tells us that
the work done by the net force acting on
an object is equal to the increase in that
object’s kinetic energy. Therefore the
area under a force-distance graph (IMig.
8.3) 1s a measure not only of the work
done, but algso of the change in kinetic
energy.

Since the energy of an object is a
measure of the work an object can do,
an object which can do 5 joules of worlk
is said to possess 5 joules of energy. The
formula

(F) ———

FORCE

i n
N

5 Sz

DISTANCE (5) —

Fig. 8.3. The area under a force-distance graph
is the work done by the force.
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By = $mv?
thus tells us that the kinetic energy Ex
of a mass m kg moving with a speed of
v m/sec is #mv? joules. The increase in Ey
of a mass m which accelerates from speed
u to speed v is given by the formula
AE, = tm(v? — u?)

Energy, like work, is a scalar quantity.
However, we can and do speak of in-
creases and decreases in energy. If the
force acting on an objectis in the direction
of the object’s motion, the object gains
kinetic energy as it speeds up. If the
force is in a direction opposite to the
direction of motion, the object loses
kinetic energy as it slows down.

The kinetic energy possessed by an
object is equal to the work that was done
on it to accelerate it from rest to its
present speed. In spite of the fact that
our original development of the equation
Fs = 3mv? assumed a constant force and
acceleration, it can be shown that the
kinetic energy is independent of how and
when the force was applied.

8—-7 TRANSFER OF KINETIC
ENERGY IN COLLISIONS

When one object collides with another,
the speed and momentum of one of the
objects increase and the speed and
momentum of the other object decrease.
We have already shown that there is no
change in total momentum; the momen-
tum gained by one object is equal to the
momentum lost by the other. Momentum
is congerved. Is kinetic energy conserved,
that is, does the kinetic energy lost by
the one object equal the kinetic energy
gained by the other object? Let us
examine the situation mathematically.

Conservation of momentum in a col-
lision means that

KINEMATICS AND DYNAMj |

Mty + Molls = M1 + Mg, (I
Conservation of kinetic energy in g o
lision would mean that

Imadl + dmau; = dmawt + fmyp?

or  mui + meus = mwi + mayd @
Equation (2) cannot be obtained fyg,
equation (1); the two equations are j,
dependent of one another. Thus conge,
vation of momentum does not necessay,
imply conservation of kinetic energy, \‘\":‘
might suspect then that in some collisigy,
kinetic energy is conserved, and in sop
it 18 not. This we shall find to be the case, |
whether kinetic energy is conserved
not depends on the nature of the collidin |
objects.

8-8 ELASTIC COLLISIONS ‘

A collision between two billiard ball
or between a ball and a bat, or betwee
a ball and a floor, takes place too rapidly
for us to observe it in detail. Therefor
we will begin our study of collisions with
an analysis of a much slower collision. If
is not a collision in the usual sense, buf
an interaction between two magnets. A
large magnet (Fig. 8.4) is placed at one
end of the track of a Fletcher’s trolley.
Another large magnet (or several smaller
magnets) is taped to the top of a car
placed on the track. The north poles
(marked N and N in the photograph) o
the two magnets face one another. (It
is advisable to tape a block of wood to |
the stationary magnet, to prevent the ‘
two magnets from approaching one
another too closely.) \

Move the car to the end of the track,
as far as possible from the stationary
magnet, and give it a gentle push. As the
car travels toward the stationary magnet,
its speed gradually decreases, due to the
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My + Molly = M1 + Moty (1}
iservation of kinetic energy in g col.
m would mean that
%mlu? + %'mzui = %mlvi + %’mgvﬁ

man] + mpvy = mw; + mav; (9
1ation (2) cannot be obtained fygp
ation (1); the two equations are iy
endent of one another. Thus consep.
ion of momentum does not necessarily
ly conservation of kinetic energy. W
ht suspect then that in some collisiopg
etic energy is conserved, and in somg
not. This we shall find to be the case;
sther kinetic energy is conserved o
depends on the nature of the colliding
ects.

8 ELASTIC COLLISIONS

. collision between two billiard balls,
etween a ball and a bat, or between
all and a floor, takes place too rapidly
us to observe it in detail. Therefor
will begin our study of collisions with
analysis of a much slower collision, It
ot a collision in the usual sense, but
interaction between two magnets, A
e magnet (Fig. 8.4) is placed at one
of the track of a Iletcher’s trolley,
yther large magnet (or several smaller
rnets) is taped to the top of a car
ced on the track. The north poles
wrked N and N in the photograph) of
two magnets face one another. (If
dvisable to tape a block of wood t0
stationary magnet, to prevent the
y magnets from approaching one
ther too closely.)
Tove the car to the end of the track
far as possible from the stationary
snet, and give it a gentle push. As the
travels toward the stationary magnet;
speed gradually decreases, due to the
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Fig- 8.4. Arrangement of appa-
ratus to demonstrate a slow elas-
{ic interaction. B

repelling force between the two north
poles. If the push is gentle enough, but
not too gentle, the car stops momentarily
very close to the stationary magnet, and
then retreats with gradually increasing
speed.

The slope of the track can be adjusted
so that the car returns to its starting
point, moving with its original speed. The
series of photographs in Figures 8.5 and
8.6 are a record of such a case. Figure 8.5
traces the motion of the car at intervals
of 0.4 sec, from the time the north poles
are 0.65 metres apart as the car moves
in, until the car stops momentarily near
the large magnet. Figure 8.6 traces the
motion over the same path as the car
retreats. Hereafter we shall call the
minimum distance between the magnets
the distance of closest approach. And,
since the magnetic force is not very large
when the north poles are more than 0.65
metres apart, we shall call 0.65 metres
the range of interaction in this case.

The position of the pointer attached to
the front of the car indicates the distance
between the magnets in each photograph.
The first series of photographs (Fig. 8.5)
18 almost exactly the reverse of the second
series (Fig. 8.6). Therefore the speed, and

hence the kinetic energy, of the car, is
dependent only on the position of the car
and not on its direction of motion. What
must have been true of the net force
acting on the car, if kinetic energy is
conserved in this manner?

Suppose the force-distance graph as the
car approaches the magnet is as shown
in Figure 8.7. O A is the distance of closest
approach, and OB is the range of inter-
action. The area of figure ACB is the
work done by the force on the car. But
this area is also the kinetic energy lost
by the car on the way in. Since this kinetic
energy is completely regained by the car
on the way out, the force-distance graph
for the retreating car must be identical
to this one. That is, the net force acting
on the car must depend on its position
only, and not on its direction of motion.

The interaction described above is
characteristic of what is called an elastic
interaction. If the force of interaction of
two objects depends only on their sepa-
ration, the interaction is elastic; that is,
both momentum and kinetic energy are
conserved. Conversely, if we find that
both momentum and kinetic energy are
conserved in an interaction, we conclude
that the interaction was elastic.
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Fig. 8.7. Force-distance graph for the car ap-
proaching the magnet.

Iixamine the multiple-flash photograph
(Fig. 8.8) of the collision of two billiard
balls. T'he masses of the two balls were
equal. Was this an elastic collision ?

Let us now compare the billiard ball
collision (Ifig. 8.8) with the magnetic
imteraction (Figs. 8.5 and 8.6). The
billiard ballg, after making contact with
each other, exert forees on each other,
and deform each other slightly. This stage
corresponds to the first, or approach, stage
of the magnctic interaction (I'ig. 8.5).
Then restoring forces from within the
billiard balls cause the deformations to
disappear. This stage corresponds to the
second, or retreat, stage of the magnetic
interaction (I'ig. 8.6).

Neither of the billiard balls comes to
rest during the collision. Each is slowed
down, during the first stage of the collision,
by the force exerted on it by the other
ball. As a result, the total kinetic energy
of the two balls decreases, becoming a
minimum at the distance of closest ap-
proach. In the magnetic interaction, the

minimum kinetic energy is zero, a con-
dition which occurs at the distance of
closest approach. If the collision is elastic,
the lost kinetic energy is completely re-
gained as the balls or magnets separate.

We may draw another qualitative con-
clusion. At the distance of closest
approach, the billiard balls are neither
approaching one another nor separating
from one another. Therefore their veloci-
ties must be equal at this moment, or
their relative velocity must momentarily
be zero. The velocity of the trolley in the
magnetic interaction is also zero at the
distance of closest approach.

Physics Department, University of Western Ontario

Fig. 8.8. Multiple flash photograph of a collision
between two moving billiard balls.
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8-9 LOSS OF KINETIC ENERGY
IN INELASTIC COLLISIONS

An inelastic object, for example a piece
of plasticine, does not resume its original
shape after having been deformed; no
restoring force is available. Tew objects
are completely inelastic; some restoring
force acts, but it is less than the average
force which produced the deformation.
As aresult, if two inelastic objects collide,
the kinetic energy lost during the first
stage of the collision is not completely
regained during the second stage; kinetic
energy is not conserved. Later we will
discuss the question of what happens to
the energy lost, whether it just disappears
or appears in another form.

8-10 CALCULATIONS
ASSOCIATED WITH
ELASTIC COLLISIONS

One of the major applications of the
principles concerning clastic collisions is
in the field of nuclear physics. Protons,
neutrons, alpha particles and other sub-
atomic particles collide; their paths can
be detected and their speeds calculated.
The collisions appear to be perfectly
elastic. I'rom observations made in such
experiments, counsiderable information
about the particles can be obtained by
caleulation. The calculations are much
simplified if the collision is head-on, and
if one of the particles is initially at rest.
The following two equations were devel-
oped in Section 8.7.

Mt Moty = mpy + mave (1)
mu; + mas = mw; + mavy,  (2)
Assuming that w, = 0, we obtain
MUy, = MYy + Mol
or Mmi(vy — w) = —mats (3)
and ma = mw; + ma;
or mi(} — ul) = —maj (4)

KINEMATICS AND DYNAM| g

Dividing equation (4) by equation (3
we obtain

)

v U = (f))
Thus, it any two of these speeds ay
known, the third can be caleulated.
IProm (5), ve = U -+ W
Substitute in (3)
m(n — w) =

7‘]?&2(U| + '1!«1)

My — MUy = —Mely — Mall
vi(my + my) = wi(my — M)
My — Ny
or = T wT,gu' (6)

That is, assuming that the masses of the
particles are known, the initial speed of
the first particle can be caleulated if ity
final speed can be measured, or the fing
speed can be predicted if the initial speed
1s knowi.

Substitute the value of v, from (6) in (5),

Ny — Mo
——U + UL = W
my + me
my — Mme + my + me
or Vg = Uy
my + me
: 2m, .
1.C. P = ————— U 7
my 4+ my )

Therefore the final speed of the second
particle can be caleulated, knowing the
masses and the initial speed of the first
particle.

In spite of the seemingly complete
analysis of this collision, we should not
agsume that all collision problems can be
analysed readily. Remember that the
above analysis applies only when a
moving object collides head-on with a
stationary object. Moreover, at no time
in this chapter have we given much
thought to what happens during the col-
lision, hut have simply compared Lthe
situation immediately after the collision
with that immediately before the collision.
We shall consider the problem of energy
changes during a collision, in Chapter 9.

3(
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8-11 PROBLEMS

50

40

N W
o o

FORCE (newtons)
=)

Where necessary, use g = 9.8 m/sec?.

1. How much work is done on a 20-kg bale of hay (a) when it is lifted 2.0 m,
(b) .Whe“ 1t 1s held stationary 0.5 m off the ground, (¢) when it is transported
horizontally at a constant velocity of 0.5 m/sec.

2.- (a) A force does 150 joules of work on an object while the object undergoes
a displacement of 30 m. What is the magnitude of the force? (b) A net force
of 90 newtons does 45 joules of work on a brick, What is the magnitude of
the displacement of the brick?

3. A body of mass 30 gm falls freely from rest for 4.0 sec. Caleulate the work
done on it by the force of gravity.

4. The net force acting on an object varies with the object’s displacement s
according to the graph shown in Figure 8.9. Calculate the work done by the

force on the object (a) between s = 0 and s = 2m, (b) between s = 2m and
s = 6m, (c) between s = Gm and s = 8m.

5. In Figure 8.10, the displacement units are missing. However, ABCDE
represents 26 joules of work. I'ill in the units on the displacement axis.

™
- p
—_—

Fy
N\w

‘@ Al/
\ g °
\—
c
w \\ c
o 2 . =
[
o
L
1
2 4 6 8 0 E D
DISPLACEMENT s (M) —— DISPLACEMENT =—s=—
Fig. 8.9. For problem 4. Fig. 8.10. For problem 5.
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A bicyele of mass 20 kg travels down a hill with a uniform acceleration of
1.5 m/sect (a) Calculate the net force acting on the bicycle. (b) Calculate
the work done by the net force each 10 m. (¢) Calculate the kinetic energy
imparted to the bicyecle cach 20 m.

. Caleulate the kinetic cnergy of a baseball whose mass is 1.0 kg and whose

&

speed is 5.0 m/sec. How much work would a pitcher have to do on the
ball to impart this much kinetic energy to it?

A bullet of mass 0.02 kg has a speed of 500 m/sec. Calculate its kinetic
cnergy.

An electron in a television picture tube has a speed of 3.0 X 107 m/sec.
(@) If the mass of the electron is 9.1 X 107 kg, caleulate its kinetic energy.
(b) How much work was done on it to provide this kinetic energy?

The mass of a proton is 1.7 X 107%7 kg. Calculate the speed of a proton
when it has 3.4 % 107® joules of kinetic energy.

Compare the kinetic energics of two objects A4 and B, having masses 7 and
my and speeds v, and vy, respectively, if my :me = 1 :5, and vy tve = 21 1.

A box of mass 0.75 kg moving with a speed of 40 cm/sec is brought to rest
in a distance of 1.5 m by the force of friction exerted by the rough surface
on which the box moves. Caleulate the magnitude of the force of friction.

A force of 8 newtons is applied to a 0.5-kg ball initially at rest on a hori-
zontal, frictionless table. Caleulate (@) the kinetic energy of the ball after it
has moved 3 metres, (b) the speed of the ball after it has moved 3 metres.

A 2.0-kg cart is accelerated from rest by a net force which varies with the
distance the cart travels, according to the graph in Iligure 8.11. (a) How
much work does the force do on the cart in the first 4.0 m? (b) How much
kinetic energy does the cart guin between the distances 4.0 m and 8.0 m?
(¢) What is the speed of the cart after 9.0 joules of work have been doneonit?

. In Figure 8.12, forces labelled positive act in the direction of motion of the

object; those labelled negative oppose the motion. The object under con-
sideration has o mass of 2.0 ke and was initially at rest. Calculate its
kinetic energy and speed (a) when s = 2m, (b) when s = 4m, (¢) when s =
6m, (d) when s = 8m.

Was kinetic energy conserved in (a) the Fletcher’s trolley collision described
in Seetion 7-3, (b) the cart explosion which you carried out for Section 74,
(¢) the two-dimensional collision which you carried out for Section 7-5 ?

A shell of mass 5 kg ig fired with a speed of 500 m/sec by a 100-kg gun.
(a) Tlind the kinetic encrgy of the shell. (b) If the gun is free to move, find
its kinetic energy of recoil.

. A steel ball, A, whose kinetic energy is 4.0 joules, collides with another

steel ball, B, whose kinetic energy is 1.4 joules. The collision is clastic, and
alter the collision, the kinetic energy of B is double that of A. Caleulate the
kinetic energy of A and of B after the collision.
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Fig. 8.11. For problem 14. Fig. 8.12. For problem 15.

An object of mass 1.0 kg and speed 0.40 m/sec collides with a 3.0-kg
objeet which is initially at rest. The forces of interaction depend only on
the separation of the two objects. Calculate the velocity of cach after the
collision.

A neutron of mass 1.67 X 1077 kg, travelling at a speed of 10° m/see,
collides with a stationary deuteron whose mass is 3.34 X 1027 kg. The col-
lision is elastic, and the particles do not stick together. Caleulate the speed
of each after collision.

. Two spheres, A4 and B, are involved in a perfectly elastic, head-on,

collision. The speed of A before collision is 10 m/sec; B is at rest. After
collision B acquires a velocity of 16 m/sec. The mass of A is four times
that of B. (@) What is the speed of 4 after impact? (b) What percentage of
A’s kinetic energy is transferred to B?
In Section 8-10, the following equation (equation 6) was developed:

my — Me

Py =
: M+ mg M

(a) What is true of v, if (2) my > ma, (22) my = my, (120) ma < me? () Check

your mathematical predictions experimentally.
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23.

24.

25.

(@) Consider a head-on collision between a moving ball 4 and a stationary
ball B of equal mass. Prove that, if the collision is elastic, A stops and B
acquires a speed equal to the initial speed of A.

(b) Consider a glancing collision between a moving ball 4 and a stationary
ball B of equal mass. Prove that, if the collision is elastic, the paths of 4
and B after collision are at right angles to each other.

A ball on the end of a string 40 em long rotates in a horizontal circle with
constant kinetic energy of 8 joules. (@) Calculate the centripetal force
exerted by the string on the ball. (b) How much work does the centripetal
force do on the ball during each revolution?

If the centripetal force acting on a rotating object did work on that object,
what would be the effect on the energy possessed by the object? Is this

actually the case? What conclusion must be drawn?

8-12 SUMMARY

il

3.

Work = force X displacement
W = Fscos 8
and ¥ have the same direction,
0 and cos § = 1.
Then W = Fs.
1 joule = 1 newton-metre.

IfF
ﬁ:

The centripetal force does no work on
a rotating object, and does not change
the energy of the object.

The work done by the net force acting

w3

on an object is equal to the increase in
kinetic energy of the object. That i,
Fs = tm(»* — u?)

. The area under a force-distance graph

= W = AEg.

An interaction between two objects is
elastic if the force of interaction de-
pends only on the separation of the
two objects.

Inanelasticinteraction, kinetic energy

isconserved, in addition to momentum.
That is, A_f) = 0 and AEx = 0.

E
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Chapter 9

Potential Energy

9-1 INTRODUCTION

In Chapter 8 we noted that kinetic
energy disappeared during the first stage
of an elastic collision. During the second
stage of the collision this kinetic energy
is completely recovered, so that the total
kinetic energy of the two objects is the
same immediately after the collision as
it was immediately before. However, we
need to discuss more fully this disappear-
ance and reappearance of kinetic energy.
Does any or all of the energy really dis-
appear; or is any or all of it temporarily
transformed to another form?

9-2 STORED ENERGY

We shall try to answer these questions
by considering again the slow elastic
interaction which we considered first in
Section 8-8. Figures 8.5 and 8.6 are re-
produced here for your convenience. (See
Figures 9.1 and 9.2.) We found in Section
8-8 that the kinetic energy of the car at
a given position on the way in was the
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same as its kinetic energy at that position
on the way out. The reason for the ob-
served conservation of kinetic energy
(before and after) is that the net force
acting on the car depends on distance
only, and not on the direction of the car’s
motion.

But kinetic energy is not conserved
during the interaction; it becomes zero
at the distance of closest approach (Fig.
9.1f or Fig. 9.2a). However, at this stage
of the interaction, the magnetic force is
able to, and is about to, do work on the
car. That is, because the two magnets
have been brought close together, energy
has been stored in the system. This stored
energy, or stored work, is called potential
energy, and is given the symbol Ep.
Because the interaction is elastic, the
potential energy of the system, when the
car s at the distance of closest approach,
is equal to the kinetic energy lost by the
car on the way in. Moreover, the poten-
tial energy lost by the system, as the car
returns to its original position, is equal
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Fig.9.1. Kinetic energy disappears dur-
ing the first stage of a magnetic inter-
action.

Physics Department,
University of Weslern Ontario

Fig. 9.2. Kinetic energy reappears dur-
ing the second stage of a magnetic inter-
action.
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to the kinetic energy gained by the car
on the way out.

Let us now examine the corresponding
energy relationships when the car is at
some intermediate position. At the stage
shown in Figure 9.1¢, the car has lost
some kinetie energy and the system has
gained some potential energy. Is the
kinetic energy lost equal to the potential
energy gained? Here again the answer
depends on whether the interaction is
elastic, that is, whether the force acting
depends on separation only. If the col-
lision is elastic,

ALy = —AR»
or Allg + AE, = 0
or Iy + FEpis constant.

|E

\

|
|
|
I
I
|

=.D
i i
L/ B

i

S —

Fig. 9.3. Mechanical energy is conserved during
an elastic interaction.

Any one of the three equations above
15 2 mathematical statement of the law
of conservation of mechanical encrgy.
During elastic interactions—interactions
not affected by internal or external fric-
tional forces—the sum of the kinetic and
potential energies remains constant. Any
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kinetic energy which disappears is con-
verted entirely to potential energy and
vice versa,

Conservation of mechanical energy for
the magnetic interaction (Figs. 9.1 and
9.2) is shown graphically in Iigure 9.3.
When the car is at position A (al the
limit of the range of interaction), the
energy is entirely kinetic and is equal to
the area of figure ACE. When the car is
at position €' (at the distance of closest
approach), the energy is entirely poten-
tial and is equal to the area of figure
ACE. When the car is at some inter-
mediate position B, the energy is partly
kinetic and partly potential. The kinetic
energy at B is cqual to the area of figure
BCED; the potential energy at B is equal
to the arca of figure ABD.

9-3 GRAVITATIONAL
POTENTIAL ENERGY

Suppose an object of mass m (I'ig. 9.4)
is elevated a distance Ah in the earth’s

.-
/ \\
[ e
/
\\ ei??
Ah
MASS [ @&~ )
m

Fig. 9.4. When an object is elevated, its gravi-,
tational potential energy increases.
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gravitational field. The force necessary
to cause it to move upward at constant
speed (that is, without any change in
kinetic energy) is equal to the weight myg
of the object. The work done on the object
is then mgAh, and because of this work
that was done on it, the object is able to
do worle that it was unable to do before.
If a string is attached to the object and
passed over a frictionless pulley to a
second object of mass m as shown in
Figure 9.5, and if the first mass is given
a slight downward push it can elevate
the second mass through a distance Ah.
Thus any object possesses potential
energy because of its position in the earth’s
gravitational field. This energy is called
gravitational potential energy and wegive
it the symbol E4. The change AL in an
object’s gravitational potential energy as
it undergoes a change Ah in height is
given by the formula

HEIGHT of [N .
RELEASE .
m . S P
o P
= 9
o - w
“ 5
< i
s (W)
-
= w
8}
w =
E
2 =
" (@)
o N\ =
P \‘-\'.\ EG
8] .
E i
= o o
(é) (4:’;,& .
ax” d
AN
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A
|
ah|
|
¥

Fig. 9.5. The gravitational potential energy of an
object gives it the ability to do work on a second
object.

AR o = mgAh
As an object falls, its kinetic energy
increases and its potential energy de-
creases, If thefall takes placein a vacuum,
or if, for practical purposes, air resistance

ENERGY

Fig. 9.6. The sum of the kinetic and gravitational potential energies of a falling object remains

constant.
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is negligible, mechanical energy is con-
served, that is,
AEK == AE e = 0

In other words, the total energy of the
object remains constant. We shall not go
through all of the reasoning involved here;
it is the same as that for the trolley dis-
cussed earlier in this chapter. Note that
the force of gravity is essentially constant
if Ahis small, and that its value does not
depend on whether the object is moving
up or down. Figure 9.6 shows the relation-
ship between the kinetic energy Fy, the
gravitational potential energy K and the
total energy L.

9-4 WORKED EXAMPLE

A projectile of mass 20 kg is projected
vertically upward with an initial speed of
50 m/sec. Iind (a) its original kinetic
energy, (b) its kinetic energy after 2 sec,
(c) the change in its gravitational poten-
tial energy during these 2 sec.
SoLuTION
(a) By = Fmo?
3 X 20 X 50% joules

= 2.5 X 10%joules
() Using the formula » = w 4+ at, and
choosing the downward direction as the
positive vector direction,
v = (=50 4+ 9.8 X 2) m/sec
= —30.4 m/sec

That is, the upward speed of the projec-
tile at the end of 2 sec is 30.4 m/sec.

Be = % X 20 X 30.4% joules
= 0.2 X 10% joules
(¢) AEgx = 9.2 X 10%joules

— 2.5 X 10*joules

—1.6 x 10*joules

If mechanical energy is conserved,

Allg = —Ally = +1.6 X 104joules.
That is, the increase in E, = 1.6 X 104
joules.

The increase in I may be calculated

by another method.
s = ut + fat?
Ah = (B0 X 2 — + X 9.8 X 4) metres
= 80.4 m

AL, = mgAh
20 X 9.8 % 80.4 joules
1.6 X 10 joules

[l

If

9-5 LABORATORY EXERCISE:
POTENTIAL ENERGY

(a) The force-exlension ralio for a
spring. The extension s of a spring depends
on the magnitude of the force F used to
stretch the spring. To determine the
nature of the relationship between I' and
s, hang a spring from a support (Fig.
9.7a). Mark the position of the lower end
of the spring. Now hang a 0.5 kg mass
on the end of the spring and mark the
new position of the lower end of the spring
(Fig. 9.7b). The distance between the two
markers is the extension s, The foree in
this case is the weight of the 0.5 kg mass,
that is, 4.9 newtons.

Repeat the above procedure for several
different masses, being careful not to
streteh the spring too far. Draw a graph
with s as abscissa and F as ordinate. Is
the graph a straight line, within the limits
of experimental error? If the graph is a
straight line, what is the relationship
between /' and s? What is the slope of
the graph ? The slope—the constant value

s
of S called the force constant, or

force-extension ratio, of the spring, and
is usually given the symbol k. The
equation of the graph is then F = ks.

() Potential energy stored in o spring.
When a spring is stretched, work is done,
and potential energy is stored in the
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Fig. 9.7(a). An unloaded spring hanging verti-
cally.

spring. If the interaction is elastie, the
work done by the force stretching the
spring is equal to the potential energy
stored in the spring. The potential energy
may be caleulated from the force-
extension graph (IMig. 9.8). The potential
energy stored at extension s; is the area of
triangle O A B and is equal to 304 « AB.

304 « AB = sl

But Iy = ks,

& By o= 2hst
Similarly the potential encrgy stored
when the extension is s. is the area of

triangle OCD and equals Hks;.

The increase in potential energy as the
extension increases from s; to ss is
ik(s; — &) and is equal to the area of
figure ABDC.

KINEMATICS AND DYNAMICy
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SRR ey

Fig. 9.7(b). The same spring stretched by a 0.5
kg mass.

Calculate the potential energy stored
in the spring for extensions of 20, 25 and
30 cm, and theincrease in potential energy
as the extension inereases from 20 em to
30 em. If your graph of foree versus ex-
tension 1s not a straight line, the increase
in potential energy must be found from
the area of figure ABDC on the graph,
and not from the expression +k(s; — s)).

(¢) Changes tn potential energy. Ilang
a one-kilogram mass on the spring and
support it with your hand (I'ig. 9.9a) so
that the extension is about 20 ¢m. Mark
the position of the lower end of the spring,
Releage the mass, and mark the position
of the lower end of the spring when the
mass is at its lowest point (Ifig. 9.90).
Several trials may be necessary. Calcu-
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. 9.7(b). The same spring stretched by a 0.5
nass.

saleulate the potential energy stored
he spring for extensions of 20, 25 and
m, and theincrease in potentialenergy
he extension increases from 20 cm to
em. If your graph of force versus ex-
sion 18 not a straight line, the increase
otential energy must be found from
area of figure ABDC on the graph,
| not from the expression $k(s; — s}).
c) Changes in potential energy. Hang
ne-kilogram mass on the spring and
port it with your hand (Iig. 9.9a) so
t the extension is about 20 em. Mark
position of the lower end of the spring.
ease the mass, and mark the position
he lower end of the spring when the
s 13 at its lowest point (Fig. 9.90).
eral trials may be necessary. Calcu-
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Fig. 9.8. Force-extension graph for a spring.
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Fig. 9.9(a). The one-kilogram mass is supported
by hand, limiting the extension of the spring to
about 20 cm.

late the increase in the potential energy
stored in the spring, and the loss of gravi-
tational potential energy of the mass. Are
the two quantities equal ? Did you expect
them to be equal? Is mechanical energy
conserved in this interaction? Is it an
clastic interaction?

9-6 CALCULATION OF AEg
WHEN Ah IS LARGE

The change in an object’s gravitational
potential energy cannot be calculated
from the formula AE, = mg Ah if Al is
g0 large that ¢ varies appreciably. In such
cases, a more general formula must be
used; the development of this formula
follows.

4
|

L A

Fig. 9.9(b). When the mass is released, it falls
to the position shown here.
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We have seen in Chapter 6 that the
gravitational force Fg exerted by the
earth on an object of mass m at a dis-
tance r; from the centre of the earth is
given by the formula
B GmM

G TE
where M is the mass of the earth and G
is the gravitation constant. If this gravi-
tational force remains constant, the work
necessary to elevate an object from a
distance r; to a distance 7, from the earth’s
centre (Fig. 9.10) is given by W = Fs.

6 W = SN

?‘2 (TZ - 7"])
1

But the force does not remain constant,
and 7} is not the correct denominator to
use here, nor is 7;. By means of mathe-
matics beyond the scope of this book, it
may be shown that the denominator
should be ryrs.

GmM (ry — 1)

.. W —
Ty
or W = GmM (1— = l)
1 Te

But the work done against gravity is equal
to the gravitational potential energy
gained by the object.
el AEG = GmM(L i 1)
1 T'g
9-7 ZERO OF GRAVITATIONAL
POTENTIAL ENERGY

When does an object in the earth’s
gravitational field possess zero gravita-
tional potential energy? This question
does not really need to be answered, for
aknowledge of the change in gravitational
potential energy is all that is necessary
in most cases. However, formulae and
calculations are simplified if we make an
arbitrary choice of the level at which E4
ig zero. Two such choices are widely used.

KINEMATICS AND DYNAMICg

(a) Heights of buildings are usually
measured from ground level; that is, the
height of the ground is taken as zerq
Similarly, the gravitational potentig]
energy of an object may he taken as zepq
at ground level, or at any other convenient,
level. If heights are measured from thig
level, the formula AF ¢ = mg Ah becomes
E,; = mgh.

BG———j
|
|
|
|
I
|

fa

Fig. 9.10. Work must be done to elevate an ob-
ject in the earth’s gravitational field.

(b) Another choice is frequently made
when discussing the motions of earth
satellites. In this case, the value of Fg
for an object is said to be zero when the
object is at an infinite distance from the
centre of the earth. Since the value of I¢
increases as the distance from the centre
of the earth increases, it follows that the
value of E¢ is negative at any finite dis-
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POTENTIAL ENERGY

tance from the earth’s centre. Let us
examine the situation mathematically.

Suppose an object is at a distance r
from the centre of the earth, and is then
removed to an infinite distance. Substi-
tuting in the formula

71 T2
we obtain AE, = GmMG = 0)
. AEG = GT:M

But the final value of E is zero, there-
fore the initial value of Iy must have
GmM

been — . (There is an easy analogy

here. If the temperature increases 5
degrees to a final value of zero, then the
initial temperature must have been —5
degrees). Therefore, assuming zero po-
tential energy at an infinite distance from
the earth, the potential energy at any
finite distance r is given by the formula

Eo = _G?]:M

9-8 ESCAPE ENERGY AND
ESCAPE VELOCITY

Suppose that we wish to launch an
earth satellite which is meant to escape
from the earth’s gravitational field rather
than to go into orbit. What minimum
speed and kinetic energy must the satellite
have? As it moves away from the earth,
its kinetic energy decreases and its po-
tential energy increases. If we ignore the
effects of air resistance in the initial stages,

AE; = —AF;
But ABg = —GTM
where r, is the earth’s 1-acfius.
5 Aty = Sl

é
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The minimum kinetic energy at launch-

ing must be Sl for then the kinetic

T
energy at infinite distance would just be
zero, This works out to about 9.4 X 10
joules for a 3000 pound satellite. This
energy is called the escape energy of the
satellite;it depends on the satellite’s mass.

The escape velocity is the minimum
initial speed (upward) which the satellite
must have in order to escape. It is in-
dependent of mass, because

GmM
7

_2G0M
T oor
The escape velocity works out to about
11.2 km/sec, or about 25000 mi/hr.

By = tmw® =

and S 2

9-9 BINDING ENERGY

The total energy E of a satellite is the
sum of its potential and kinetic energies.

GmM
oy
This total energy may be positive, zero,
or negative. If the total energy is positive,
thesatellite can escape with kinetic energy
to spare. If the total energy is zero, it can
just escape. If the total energy is nega-
tive, the satellite cannot escape; it is
bound to the earth.

Suppose that the total energy is — 107
joules. If the satellite is to escape, its
energy must be at least zero; that is,
107 joules of energy must be supplied to
it, This 107 joules of energy is called the
binding energy of the satellite, In general,
for any object in the gravitational field
of the earth,

Binding Energy =

GmM |

—F = - — gmyt

E = tmy?
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‘ 9-10 PROBLEMS

‘ Where necessary, usc
g = 9.8 m/sce? at or near the earth’s surface
G = 6.67 X 10~ newton-metres®/lg?

. mass of earth = 6.0 X 10* kg

r racdius of carth = 6.4 X 10°m

\

|

\

1. List as many systems as you can in which encrgy is stored and released
later.

2. Consider the trolley apparatus shown in Figures 9.1 and 9.2. If the track is
level, kinetic energy is not conserved. Explain.

3. In some areas electric motors are used to elevate water to reservoirs. Later,
the water is released to turn generators to produce electricity. Discuss the
procedure from the point of view of conservation of mechanical energy.

4. A book weighing 12 newtons is lifted 3.0 m. Calculate (a) the work done on
the boolk, (b) the change in its potential encrgy.

5. A 60-gm mass projceted vertically upward reaches its maximum height in
5 scconds. Caleulate (@) the speed of projection, (b) the initial kinetic
energy, (¢) the maximum height, and (d) the gravitational potential energy
at maximum height. | ~

6. A boy on a sled starts at rest at the top of an icy hill. If the vertical height ‘ )
of the hill is 15 m, and if his speed at the bottom is 10 m/sec, what per cent
of his initial potential energy was not converted into kinetic energy ? 5

7. A hoist lifts a 3-kg stone to a height of 100 m and then drops it. What is 5
the kinetic energy of the stone when it is half-way to the ground?

8. A stone of mass 0.20 kg is carried in a helicopter which is hovering 200 m
above the ground. (a) What is the gravitational potential energy of the stone | -
relative to the ground? (b) The stone is thrown vertically down with an
initial speed of 7.0 m/sec. Caleulate (z) its kinetic encrgy after it has
fallen for 5 sec, (i7) its gravitational potential energy after it has fallen
for 5 sec.

9. A pendulum consists of a 50-gm mass on the end of a string 60 em long.
The mass is pulled aside until the string makes an angle of 60° with the
vertical, and is then released. What will be its maximum speed as it vibrates?

FORCE (newtons)

10. A box of sand of mass 10 kg hangs at the end of a long, light rope. When a
‘ bullet of mass 45 gm and moving horizontally strikes the box and remains

buried in it, the box swings until it is 15 cm above its initial height, Caleulale
. the initial speed of the bullet. 0

11. A 0.2-kg bullet travelling horizontally at 500 m/sec strikes and imbeds
itself in a stationary wooden block suspended at the end of a long wire,
causing the block to swing. If the mass of the block is 200 kg, calculate
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(a) the speed of the bloek immediately after impact, (b) the maximum
height to which the block rises as it swings.

12. A 1.0-kg object is projected up from the top of a cliff at an angle of 60°

ie/earthis surinoe with the horizontal. If the eliff 15 40 m high and the initial speed of projection

‘11‘?5‘1'03' /ke? of the object is 20 m/sce, caleulate the magnitude of the velocity of the
| ‘;; object when 1t is 10 m above the earth’s surface at the basc of the cliff.

) 13. The force-extension graph for a spring is shown in Figure 9.11. Calculate
ch energy is stored and released (a) the worlk that must be done to extend the spring (7) 0.2 m, (47) 0.4 m,
(b) the potential energy stored in the spring when the extension is (z) 0.2 m,
igures 9.1 and 9.2. It the track is (1) 0.4 m.

lain. 14. The force-compression graph for a spring is shown in Figure 9.12. Caleulate
(@) the potential energy stored in the spring when it is compressed 0.1 m,
(b) the work necessary to compress it 0.4 m, (¢) the potential energy lost by
the spring as its compression changes from 0.4 m to 0.2 m.

levate waler to reservoirs. Later,
 produce electricity. Discuss the
rvation of mechanical energy.
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half-way to the ground?

N
(=]

licopter which is hovering 200 m _
onal potential energy of the stone v 4
thrown vertically down with an /
| its kinetic energy after it has 7
ential energy after it has fallen

w

-
(&}

—
o

the end of a string 60 cm long.
makes an angle of 60° with the
its maximum speed as it vibrates?

FORCE (newtons) —s—

/7

FORCE (newtons)
N

—
(7]

end of a long, light rope. When a
tally strikes the hox and remains
above its initial height. Calculate

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

t 500 m/sec strikes and imbeds EXTENSION (m) — = COMPRESSION (m) ———

nded at the end of a long wire, )
of the block is 200 kg, calculate Fig. 9.11. For problem 13. Fig. 9.12. For problem 14.
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16.

17.

18.
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. IMigure 9.13 is an idealized graph showing the force required to pull a bow

string back, plotted against the distance the string is pulled. A small hoy
can pull the string back a distance 04, a man pulls it back a distance OB,
Compare (@) the kinetic energy imparted to an arrow by the man with the
kinetic energy imparted to the same arrow by the boy, (b) the initial speeds
of the two arrows.

Figure 9.14 shows the constant force of 49 newtons exerted on a 5-kg mass
by the earth’s gravitational field, at heights from 0 to 40 metres. I'rom the
graph, determine the potential energy of the mass at a height of 40 m. Now
assume the mass falls from this height to the ground. I'rom the graph,
determine its potential and kinetic energies at heights of 30, 20, 10 and 0
metres.

A toy rifle contains a spring whose force constant is 300 newtons/metre,
When it is cocked, the spring is compressed 5 em. Calculate the maximum
speed with which it will fire a lead shot of mass 5 gm.

Fifty joules of worl is done in compressing a spring having a force-compression
ratio of 2.0 X 10% newtons/metre. (@) How far is the spring compressed ?

Ny

V4
r

40

30

FORCE ——»

20

N
FORCE (newtons) ——=—

’/ 10

A B 0 10 20 30
DISTANCE —— HEIGHT (m) ——=

Fig. 9.13. For problem 15. Fig. 9.14. For problem 16.

40

POTEN

22
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he force required to pull a bow
e string 18 pulled. A small boy
an pulls it back a distance OB,
y an arrow by the man with the
y the boy, (b) the initial speeds

rewtons exerted on a 5-kg mass
from 0 to 40 metres. From the
s mass at a height of 40 m, Now
 the ground. IFrom the graph,
s at heights of 30, 20, 10 and 0

onstant 1s 300 newtons/metre.
| 5 em. Calculate the maximum
mass 5 gm.

pring having aforee-compression
v far is the spring compressed ?

0 10 20 30
HEIGHT (m) ——=

Fig. 9.14. For problem 16.

40

POTENTIAL ENERGY

19.

20.

23.

24,

25.

26.

27.

(b) The compressed spring is used to project a 0.5-kg mass vertically
upward. Caleulate (i) the speed of projection, (#) the maximum height
attained by the mass.

One end of a spring is hooked to a support; the other end hangs [ree.
Twenty joules of work is required to pull the free end down 0.50 m from
1ts rest position. How much additional work must be done to pull the free
end down an additional 0.50 m?

: 1 .
Show that the expressions Gml/ (?11 — ;) and mgAh arve, for practical
2

purposes, equal, when 7 is very nearly equal to 7.

. A ball of mass 0.2 kg is thrown vertically upward with an initial kinetie

energy of 49 joules. How high will it rise?

. A satellite of mass 900 kg is projected vertically upward from the earth’s

surface with an initial kinetic energy of 7.0 X 107 joules. Neglecting air
resistance, caleulate (@) the maximum height attained, () the initial kinetic
energy 1t would have needed to keep going indefinitely, (¢) the initial speed
it would have needed to keep going indefinitely.

A 600-kg satellite is projected vertically upward from the earth’s surface
and reaches a maximum height of 6000 km. Assuming that the effects of
air resistance arc negligible, caleulate (a) the change in its gravitational
potential energy during the ascent, (b) its initial kinetic energy, (¢) the
kinetic energy it woul(l have necdcd in order to escape, (d) its binding
energy.

Consider the relationship f, = —

GmM
”'-,), . (a) How does E change as r

changes? (b) How does E; change as m changes?

(a) Calculate the gravitational potential energy of a 120-kg satellite at a
distance of 8000 km from the centre of the earth. (b) Using your answers
to question 24, and to part (a) of this question, stflte (%) E for a 120-kg
satellite, 16,000 km from the centre of the carth, (44) I, for a 180-kg satellite,
16,000 km from the centre of the carth, (si7) E, for a 360-kg satellite,
24,000 km from the centre of the earth.

Calculate the escape energy for a 400 kg satellite.
A space vehicle designed as a lunar probe is launched and arrives at the

upper limit of the earth’s atmosphere. At this point its kinetic encrgy is
0.5 X 10" joules and its potential energy is —0.6 X 10 joules. (a) Will

the satellite escape? (b) If not, what is its binding energy ?

R

1[TH)
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radius » is given by the formula v

KINEMATICS AND DYNAMI(g

98. Tn Section 5-9 we showed that the speed v of a satellite in a circular orbit of

+/gr. We also know that ¢ e i Show

72 b

that the speed decreases as the radius of the orbit inereases. What effect does
an increasge in the radiug of the orbit have on the period of the satellite?

29. Show that the kinetic encrgy of a satellite in a stable civeular orbit is
exactly + of its escape energy at the altitude of the orbit.

9-11 SUMMARY

. Potential energy is stored energy.
. During an clastic interaction, me-

chanical energy is conserved. That is,
AEK = AE[}.

If Ahis small, AE,; = mg Ah. If Ahis
large, Ali; = Gmﬂ’[(L — 1‘)

4 )
If I, is taken as zero at an infinite
distance from the earth, then,
_GmM

(a) I (at distance r) = o

(b) Escape energy of a satellite =

GmM

r. !

(c) Escape velocity of a salellite =

T, ?

(d) Total energy of a satellite =

mup? G'mMM

2 p !

&

(e) Binding energy of a satellite =

GmdL my?
r 9
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f a satellite in a cireular orbit of
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We also know that g « = Show

orbit increases. What effect does
m the period of the satellite?
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Escape energy of a satellite
GmM
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Escape velocity of a satellite

20M
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Total energy of a satellite
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Binding encrgy of a satellite
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Chapter 10

Conservation of Energy

10-1 INTRODUCTION

Inaninelastic collision, the total kinetic
energy after collision is less than the total
kinetic energy before collision, and yet
the potential energies of the colliding
objects have not changed. Mechanieal
energy (kinetic plus potential energy) is
not conserved,

As an object falls through air, it ac-
celerates for atime, but eventually reaches
a limiting constant speed. Thereafter as
it descends it loses gravitational potential
encrgy but does not gain kinetic energy.
Again, mechanical energy is not conserved.

As a curling stone slides along a sheet
of ice, it slows down and comes to rest.
It loses kinetic encrgy but it does not
gain potential energy, and again the total
mechanical energy decreases.

The one common factor in all of these
cases seems to be friction. The foree of
frietion exerted by the ice on the curling
stone, the force of friction exerted by the

air on the falling object, and internal
friction within colliding objects seem to
be responsible for the energy losses. But
what becomes of this lost energy ? What,
is the effect of the work done by the
forees of friction?

10-2 THE EFFECT OF FRICTION

The answer to the above questions is
fairly obvious to anyone who has warmed
his hands by rubbing them together, or
started a fire by rubbing two sticks to-
gether. Triction is responsible for the
production of heat.

In some cases, the amount of heat pro-
duced may be so small that it passes
unnoticed. This ig true for a curling stone
sliding on ice, and for a stone falling
through air for a short distance. Here the
rate of loss of mechanical energy is low.
On the other hand, the nose cone of a
satellite re-entering the earth’s atmos-
phere becomes very hot. In this case, the
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rate of loss of mechanical energy is high.

It may be, then, that the loss of me-
chanical energy in frietional interactions
is balanced by the production of heat.
As a result, we may be able, by consider-
ing heat as a form of energy, to say that
energy is conserved in inelastic inter-
actions. Before we cometo this conclusion,
we must show that the heat energy pro-
duced is proportional to the mechanical
energy which disappears.

10-3 THE MECHANICAL
EQUIVALENT OF HEAT

Prior to 1800, heat was not considered
to be a form of energy, and units other
than those used for measuring mechanical
energy were adopted for measuring quan-
tities of heat. The calorie, for example, is
defined as the quantity of heat required
to raise the temperature of one gram of
water one centigrade (Celsius) degree. In
the half century following 1800, experi-
ments made it clear that heat could be
considered as a form of energy.

In 1798 Count Benjamin Rumford
(1742-1814) established that, in boring
cannon, the amount of heat evolved had
little relation to the quantity of shavings,
the sharpness of the tools, or the kind of
metal, but was proportional to the amount
of mechanical work expended. The pre-
cise relationship between the heat pro-
duced and the mechanical work expended
was not determined, however, until James
Joule (1818-1899) performed a series of
experiments between 1843 and 1850. In
one experiment, water was churned by
paddles and the rise in temperature of
the water was compared with the me-
chanical work done in turning the paddles.
In another experiment, mercury con-

KINEMATICS AND DYNAMICS

tained in an iron vessel was stirred with
an iron paddle. In yet another experi-
ment, heat was produced by rubbing two
iron rings together under mercury. In all
of these experiments, Joule found a con-
stant ratio (within the limits of experi-
mental error) between the heat produced
and the mechanical work done. This con-
stantratioiscalled the mechanical equiva-
lent of heat and is denoted by the symbol
J. ThusJ = %{, W
ecal work done and H is the heat produced.

The apparatus used by Joule in the
water-churning experiment is illustrated
in Figure 10.1. Paddles immersed in water
in a calorimeter are turned when masses
M; and M, descend and turn the spindle
of the wheel. The mechanical work done
is ealculated by multiplying the sum of
the weights of the masses M, and M, by
the distance through which they fall. The
heat produced is measured by multiply-
ing the mass of the water plus the water
equivalent of the calorimeter by the rise
in temperature.

Since Joule's time, many experiments
have been carried out to determine the

here W is the mechani-

value of the ratio % The value com-

monly aceepted now is 4.186 joules per
calorie; that is 1 calorie of heat energy is
equivalent to 4.186 joules of mechanical
energy.

10-4 THE NATURE OF
HEAT ENERGY

Experiments such as those performed
by Joule indicate that heat may be con-
sidered as a form of energy. But what
sort of energy is it—a new form or one
related somehow to either the potential
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Fig.10.1. The apparatus used in Joule's experiment to determine the mechanical equivalent of heat.

or kinetic energy with which we are
already familiar? The molecular theory
of matter, which also was developed in
the nineteenth century, helped answer
this question,

The molecular nature of matter became
evident as the result of many experiments,
particularly in the field of chemistry. A
molecular model was constructed which
pictured a gas as being composed of mole-
cules in rapid motion, and separated from
one another by distances which are large
compared with the dimensions of the mol-
ecules themselves. This model provided
explanations for many properties of gases.
We cannot discuss all of these explana-
tlons here; weshall discuss only the energy
of the molecules, for it is this energy
which accounts for their heat content.

Molecular motion may be of several
forms. (a) The molecule may be under-
going motion in a straight line and possess
kinetic energy of translation. This kinetic
energy is the same as the kinetic energy
of moving objects which we considered in
Chapter 8. The molecules of monatomic
gases undergo translational motion only.
(b) Polyatomic gas molecules (molecules

composed of several atoms) may rotate
and therefore possess rotational kinetic
energy. (¢) In polyatomic molecules, the
atoms may vibrate within the molecule
and therefore possess kinetic energy of
vibration.,

The kinetic energy of translation of a
gas molecule can be shown to be pro-
portional to the absolute temperature of
the gas. This means that we may consider
the temperature as a measure of the
average kinetic energy of translation of
the molecules. Rotational and vibratory
motions do not affect the temperature.

It would seem, then, that the total
heat content of a gas would be the sum
of the average kinetic energies of trans-
lation of all the molecules. This is true
for a monatomic gas, but for polyatomic
gases the rotational and vibrational ener-
gies have to be considered as well. In
addition, potential energy changes due
to changes in the arrangements of the
atoms in the molecules may have to be
taken into consideration.

The higher the temperature of an
object, the more rapidly its molecules
move. If the rapidly moving molecules
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of a hot object or a hot portion of an
object collide with the more slowly mov-
ing molecules of a colder object or a colder
portion, some kinetic energy is transferred
to the latter. Thus heat flow or conduction
may be explained, in part at least. (There
is considerable evidence of electron trans-
fer as well.)

If heat energy is removed from a sub-
stance, by conduction or other means,
the molecules slow down aud the tem-
perature drops. The average distance
between molecules decreases, and the
substance contracts or may even undergo
a change of state, from a gas to a liquid,
or from a liquid to a solid.

10-5 THE LAW OF
CONSERVATION OF ENERGY

Having chosen to define heat as a form
of energy, we are tempted to counclude
that there is a law of conservation of
energy which applies universally. Before
we malee such a conclusion, let us review
the cases which we have considered in
Chapters 8, 9 and 10.

(a) Inmteractions free of [riction. IHere
we include elastic collisions, objects fall-
ing in a vacuum, and the motion of a
pendulum. Friction may not be com-
pletely absent in all of these examples,
but its effect is negligible, and therefore
little heat is produced. The encrgy which
we have to consider then is either kinetic
or potential.

In an elastic collision, no potential
energy is gained permanently by either
of the colliding masses. Therefore, if there
is a law of conservation of energy, kinetic
encrgy should be conserved. This wefound
to be the case.

KINEMATICS AND DYNAMICS

When an object changes elevation (ang
this includes the mass at the end of the
suspension wire in a pendulum), its poten-
tial energy changes. IHowever, we have
found that its kinetic energy changes too,
and that AB, = —AFq We found 4
similar relationship when we considered
the trolley in a magnetic field (Sect. 9-2),
Again, a law of conservation of encrgy
seems to be applicable.

(b) Friclional interactions. Here we
include inelastic collisions and objects
falling through air or other fluids. In fact
we include any interaction in which
friction reduces the total mechanical
energy of the system of objects which we
consider. The mechanical energy of such
a system—often called the mechanical
energy of bulk motion—is not conserved.
If we are to insist that a law of conser-
vation of energy applics here, we must
look for internal energy which is stored in
the system. We find it in the changed
molecular energy, that is, as heat, which
we decided to call a form of energy. When
we conclude, as a result of experiment,
that 1 calorie = 4.186 joules, we awe
really assuming that all of the mechanical
energy lost is converted into heat cnergy.
This assumption is not an unreasonable
one. We feel convinced (though we cannot
proveit), that energy should be conserved,
and that no other recognizable forms of
encrgy are produced.

As a result of countless experiments
involving energy in many forms, 1t seems
likely that encrgy is always conserved.
Energy may be' transformed from one
form to another, but the total amount
of energy after the transformation ig the
same as the total amount of energy before
the transformation. The application of
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this prineiple to ascale which encompasses in applying it to smaller systems; in fact
the whole universe is now under investi- it has achieved the status of being one
gation. But we feel reasonably confident of the basic laws of science.

10—-6 PROBLEMS

Assume, where necessary, that
1 caloriec = 4.2 joules
g = 9.8 m/sec?

1. A force of 0.5 newtons moves a 100-gm mass at a uniform speed of 50
em/sec on a rough horizontal swrface for 30 sce. Caleulate (a) the force of
friction, (b) the work done by the applied force, (¢) the heat produced.

2. A body of mass 8 kg falls from a height of 80 m into a pile of sand. If all
the kinetic energy at impact is transformed into heat energy, find the
number of calories of heat produced.

3. Calculate the rate, in joules/see, at which heat is being produced when an

object of mass 5 kg falls through air at a constant terminal velocity of
100 m/see.

4. A ball of mass 0.5 kg is dropped from a height of 250 m and strikes the
ground with a speed of 40 m/sec. Caleulate the heat produced as a result
of the friction between the ball and the air.

5. A 3.6 gm bullet is fired horizontally through a 4.8-kg wooden block sus-
pended by a long cord. The bullet emerges from the block with % of the
speed with which it enters, and the block starts to move at 12 em/sec. IMind
(a) the speed with which the bullet enters the block, (b) the kinetic cnergy
lost by the system as a result of the collision, (¢) the heat produced.

10-7 SUMMARY 2. The heat produced as a result of an

inelastic interaction is proportional to
the mechanical energy lost,
I calorie = 4.19 joules
. Heat may be considered as molecular
energy is lost. These losses can be ac- mechanical energy.
counted for by considering the heat 4. Ttseems likely that energy is conserved
produced to be a form of energy. in all interactions.

1. As a result of an inelastic interaction,
kinetic energy is lost, and during an
inelastic interaction, mechanical 5
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ANSWERS

1. (a) 68 km/hr
2. (@) (d) 37% mi (#¢) 182 mi/hr
3. (b) Average speed = 20.6 em/scc
4. (a) (£) 60 km/hr (22) 40 km/hr
(b) (4) 0.5 hr (%) 1.5 hr
(¢) 1.0 hr
() (7) 120 km '_M,) (77) 80 km
5. (2) 24m; 18 m © () 6 m/sec; 4.5 m/sec
7. 0.24 m/sec; 0.72 m/sec; 1.92 m/sec?
8. (@) 1.0,1.5, 2.0, 2.5, 3.0, 3.5 (b) 1.75 km /hr/sce
9. (a) 2 m/sec? 10. 75.6
12. (b) 75 em/sec (e) 78.0
13. 4 m/sect 14. 6.31 m
15. (a) (%) 2, 6, 10, and 14 m/sec (22) 4 m/sec? (¢17) 10 m/sec
16. Av is (a) doubled (b) tripled
17. s changes by a factor of
(@) 9 (b) 0.7
18. v changes by a factor of
(a) 2 () V3
19. 1 m/sec?; 10 m/sec 20. 10 m/sec

21. 30 m/sec; —2 m/sec? 22. 140 m
23. 45 m/sec
24. 6 sec later, 36 m from the starting point

25. 6 m/sec?; 8 m/sec

Chapter 3—Section 3-19, page 37

1. 15 mi/hr; 2 min

5. (a) (z) 9.4 cm (27) 18.8 cm (247) 37.7 em

(#7) 12 em down  (44) zero

(D) (¢) 8.5 cm, 45° below horizontal to right
6. 3.5 mi north
10. (a) 23.2 m, 27° north of cast
(¢) 10.6 m, 3° east of north
11. 4.7 m, 24° west ol north
(77) 2 km west

(b) 10.6 m, 3° west ol south

12, (¥) 2 ft east (121) 5 m, 53.1° north of east
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13. 50 m south-east 14, 141 m; 141 m Cha
15. (@) 500 mi/hr; 700 ft/min (b) 100 mi; 8400 ft
16. (e) 13 km (b) 10.4 km/hr

17. (a) 1.57 em/see

\ (b) 1.57 em/sec down; 1.57 cm/sec to the left <
‘ (c) 2.21 em/sec to the centre €
18. (@) 58.3 em/sec (b) 74 cm/sce
19. 290 mi/hr é
' 20. (@) 7.0 m/sec (b) 4.0 m/sec (¢c) 5.7 m/sec 8
21. 14 mi/hr, 15° east of north 22. 4° north of west, 802 km/hr
23. (a) 0.25 m/sec (b) —3 m/sec 9
24. (a) LF (b) BC 11
(¢) DF (d) D 12
25. (a) 0.157 em/sec 14
(b) 0.157 em/sec to the left; 0.157 em/sec up 16
(¢) 0.221 em/sec to the centre 17
(d) 0.015 em/sec? to the centre 22,
26. 2.5 mi/hr/sec, 37° south of east 27. 25 km/hr/sec west
29. 0.225 m/sec?; —0.06 m/sec? 30. 3 see, b sec _23'
31. 9.0 sec 33. (a) 20 m/sec 2{'
34. 31 ft/sec 35. 34.3m 25.
36. (a) () 14.7 m/sec up; 4.9 m/sec up; 4.9 m/sec down; 14.7 m/sec down; 26.
24.5 m/sec down
(77) 19.6 m up; 29.4 m up; 29.4 m up; 19.6 m up; zero
37. 0.64 sec; 192 m 38. 15 m/sec; 10 m/sce Chap
39. (@) 80 m (b) 50 m/sec (¢) 120 m
40. (a) 30 sec (b) 4.6 kun L.
2;
Chapter 4—Section 4-19, page 54 ) z
\ 4.
6. 22.4 newtons 7. 141 newtons north-west 6.
8. 10 kg; 24 newtons 9. 1.5 newtons; 3.3 kg 8.
10. 5 m/sec? 11. 5 newtons 10.
12. 4.9 X 1072 newtons 12.
13. (@) 0.5 m/sect (b) 1.5 m/sec? (¢) 0.15 m/sec?
14. 2 kg 15. 6.4 newtons
16. 5.1 X 10* newtons Chapt‘
17. (a) 0.90 newton-sec; 14 newton-gec (b) 1.8 kg-m/sec; 24 kg-m/sec
18. 35 newton-see; 35 kg-m/sec 19. 3.0 newton-sec 2
20. (a) 1.0 m/sec (b) 2.0 m/sec (c) 2.5 m/sec 3
21. 30 newton-sce 5.
22, (a) 2.0 newton-sec (b) 20 newtons (¢) 20 newtons 7.
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{ e idl, am Chapter 5—Section 5-11, page 66
)

“1;” 8‘1190 & 1. (a) 0.49 newtons  (b) 9.8 X 10°newtons  (¢) 2.94 X 10¢ newtons
4 Jomn/hr 2. (a) 60 kg () 480 newtons (c) 60 kg

3. 3.9 4, 1.44 X 10* newtons 5. 1.96 m/sec?

6. (@) s changes by a factor of 16 B

(b) t must change by a factor of /3 (¢) a parabola

cm/sec

=

The acceleration due to gravity

(6] 5.7 m/ees 8. (a) 10, 20, 30, 40 and 50 m/sec (b) 5,15, 25, 35, and 45 m/sec

Y & 15 95 9k 5 5 5 ar 25
‘110rth of west, 802 km/hr 9 i;) I:: igé.zg’n‘id’ 0 4b ](g) 1%42(1;1 e;L%,.SlO,S;ud ot
'? m/sec . 11. (a) 0.252 newton-sec down (0) 0.441 newton-sec up
g 12. 3.86 X 10% newtons 13. 19.6 newtons
14. 40 cm 15. 4.3 sec; 43 m from foot of cliff
16. 3 sec; 15 m; 29.8 m/sec 42.0%
17. (a) 16 m/sec (b) 8.0 m/sec?
22. I, changes by a factor of
(a) 3 () + (c) 4

Jem /hr/sec west

sec, H sec

) 20 m/sec

L3 m

¢ down; 14.7 m/sec down;

23. 1.25 X 10* newtong toward the centre

24. 1.08 X 10% newtons

25. (a) 16.7 newtons (b) 6.9 newtons (¢) 26.5 newtons
26. (a) 2.7 X 1073 m/sec?

3 m up; zZero

m/sec; 10 m/sec Chapter 6—Section 6-10, page 75
- , 120 m
IGI 111{/}10 ‘ @) 1. Fg changes by a factor of
(a) 4 (b) 0.75 (c) &
2. 6.67 x 107" newtons
3. (a) 6.67 X 10~ newtons (b) 6.67 X 107! newtons
{ 4. 4.1 X 102 newtons 5. 2.4 X 10~* newtons
tons north-west 6. 4 X 107 newtons; 10~ 7. Approximately 3 X 105 m
tons; 3.3 ke 8. 6 X 10* kg 9. 4.9 m/sec?
. 10. 24 m/sec? 11. 1.8 his

s
& 12. 3.6 X 10* km

(¢) 0.15 m/sec?
rtons

Chapter 7—Section 7-9, page 84
1.8 kg-m/sec; 24 kg-m/sec

rton-sec 2. (b) 4.8 newton-scc (¢) 4.8 kg-m/sec (d) 3.0 m/sec
(¢) 2.5 m/sec 3. 12.5 em/sec 4. 100 em/sce
5. 4.4 cm/sec 6. 7.1 m/sec
; (¢) 20 newtons 7. 2.0 m/sec 8. 30 gm and 90 gm
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140 KINEMATICS AND DYNAMICS ANSWI;
9. 1.5 X 10" m/sec toward the east )
10. (a) 3:5 ) 5:3 1. (
(&) 36 (dy 11 12. 3
11. (a) () 100 kg-m/sec (1) 250 m/see, 37° south of west 13. (
(b) 60 kg-m/sec; 80 kg-m/sec; 100 kg-m/sec; 250 m/sec (
| 12. (a) 40 cm/sec (b) 1.6 x 10% newtons 14, (
{ 13. (a) 100 m/sec (L) 0.5 m/sec (
14, 0.6 u 15. 20 m/sec 15. (
16. (@) 10° newtons (b) 10 kg 17. A
18. ((
19. G
: 2. (¢
Chapter 8—Section 8-11, page 95 (c
1. (a) 392 joules (b) zero (c) zero 23. (¢
2. (a) 5 newtons (b) 0.5 m o (e
3. 23 joules 25. (f
4. (a) 60 joules (b) 170 joules (c) 60 joules ) (1
5. One division = 2 m ?("' 2
6. (a) 30 newtons (b) 300 joules (¢) 600 joules 27. (c
7. 12.5 joules; 12.5 joules 8. 2.5 X 10 joules
9. (a) 4.1 X 107 joules (h) 4.1 X 107'% joules
10. 2.0 X 10* m/sec 11. Brof A = 0.8 Lx of B
12. 0.04 newtons Chaprel
13. (a) 24 joules (b) 9.8 m/sec 1. (c
14. (@) 12 joules (b) 6.0 joules 9 1
(¢) 3.0 m/sec 5. (c
15. (a) 10 joules; 3.1 m/sec (b) 16 joules; 4.0 m/sec
(¢) 18 joules; 4.2 m/sec (d) 16 joules; 4.0 m/sec
" 17. (a) 6.25 X 10° joules (1) 3.1 x 10! joules
18. 1.8 joules; 3.6 joules 19. —0.2 m/sec; 0.2 m/sec
20. —3.3 X 10* m/sec; 6.7 X 10* m/sec
21. (a) 6 m/sec (b) 64%
24. (a) 40 newtons (b) none

Chapter 9—Section 9-10, page 108

4. (a) 306 joules (b) 36 joules
5. (a) 49 m/sec (b) 72 joules
(¢) 1.2 X 10*m (d) 72 joules
6. 66% 7. 1.47 % 10% joules

. (@) 392 joules (b) () 314 joules (72) 83 joules
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/see, 37° south of west
250 m/sec

102 newtons

/sec

sec

(¢) zero

(¢) 60 joules

(¢) 600 joules
10°% joules
1071 joules
A = 0.8 Egof B

L50, TR S

/sec
ules

tles; 4.0 m/see
les; 4.0 m/sec

¢ 10% joules
m/sec; 0.2 m/sec

ules

ules

ules

= 10% joules
14 joules

(47) 83 joules

ANSWERS

9. 2.4 m/sec

11. (a) 0.5 m/sec

12. 31 m/sec

13. (a) () 0.25 joules
(b) () 0.25 joules

14. (a) 0.25 joules

() 3.4 joules

15. (a) 16: 1

17. Approximately 12 m/sec

18. (@) 0.71 m

19. 60 joules

22. (@) 900 km approximately
() 1.1 X 10* m/sec

23. (a) 1.8 X 10" joules
() 3.7 X 10" joules

25. (@) —6.0 x 10" joules

(77) —4.5 X 10? joules
26. 2.5 X 101 joules
27. (@) no

Chapter 10—Section 10-6, page 117

1. (a) 0.5 newtons
2. 1.5 X 108
5. (a) 240 m/sec

(b) 7.5 joules
3. 4.9 x 108
(b) 92 joules

141

10. 3.8 X 10%* m/sec
(b) 1.3 em

(#7) 1.0 joules
(#7) 1.0 joules
(b) 4.4 joules

(b) 4:1
() (7) 14.1 m/sec

21. 26 m
(b) 5.6 x 10" joules

(z2) 10.2 m

(b) 1.8 x 10 joules

(d) 1.9 X 101 joules

(b) (¥) —3.0 x 107 joules
(127) —6.0 X 109 joules

(b) 10°joules

(¢) 1.8 calories
4. 196 calories
() 22 calories
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