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The theory of a new method to measure oscillator strengths is presented. The method exploits the
ac Stark interaction of a laser pulse detuned from a transition between an initially populated state a
and a second state b of an atom. We assume the density matrix p of state a initially has only diago-
nal elements given by {(m |p|m)=C +Dm? where C and D=40 are constants and m is the Zeeman
sublevel quantum number. The laser pulse is linearly polarized along an axis different from the
quantization axis and therefore rearranges the atoms among the various Zeeman sublevels. Changes
of the relative Zeeman sublevel populations induced by the laser pulse can be readily detected by
monitoring changes in the angular distribution or polarization of fluorescent light emitted when the
atoms radiatively decay to some final state f. This paper considers the general problem where states
a, b, and f have arbitrary angular momentum. We derive the functional dependence of the polar-
ized fluorescent light fluence on the laser pulse fluence (pulse energy per unit area). For spatially uni-
form laser pulses, these signals are periodic functions of the laser fluence. When the laser is com-
pletely speckled, we show that the signal is well approximated by a Lorentzian curve. This latter
case is of considerable experimental interest since most pulsed dye lasers have poor transverse mode
structure which can readily be converted into a statistically well-defined speckle pattern. The oscilla-
tor strength of the transition between states a and b is found using (1) the fluence half-width of the
“depolarization curve,” the Lorentzian-like dependence of the fluorescence polarization on the laser
pulse fluence, (2) the detuning of the laser from the transition frequency w,,, and (3) some known
constant factors which depend on the angular momenta of states a, b, and f. The physics of the sit-
uation is very similar to that of the conventional hook method with this difference: the roles of the
atoms and the photons have been interchanged. We therefore call this new method the inverse hook
method. The inverse hook method is relatively insensitive to the details of the atomic absorption line
shape and also to the temporal and spatial profile of the laser pulse. It yields absolute oscillator
strengths and it is especially suitable for measurements of transitions between excited atomic states,
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including autoionizing states.

I. INTRODUCTION

Oscillator strengths or absolute atomic transition proba-
bilities are needed for such different problems as the
determination of the constituent concentrations of stellar
matter! and the optimization of isotope separation by
selective laser ionization.?~* There are several different
definitions of oscillator strength in the literature.’~% We
shall use Corney’s definition of an oscillator strength f,;,
for a transition from an initial level a to a final level b,
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where m, is the electron mass, e is the electron charge,
wpg =(Ep —E;)/#, where E, and E, are the energies of
levels a and b, [J]=2J+1 is the statistical weight of a
level with electronic angular momentum J, m is the az-
imuthal quantum number, and the electric dipole moment
operator is D=e¥ ,r,, where 1, is the position vector of
the nth atomic electron.

A number of methods have been developed to measure
oscillator strengths.®~!* Unfortunately, as is discussed in
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the excellent review article by Huber and Sanderman,’ it
remains especially difficult to determine oscillator
strengths for transitions between excited states. This pa-
per discusses a new method called the inverse hook
method which was specifically designed to determine os-
cillator strengths for such transitions. It has been used to
measure oscillator strengths in rubidium for the
nD;,,—5P3,,,5P, , n=6,7 transitions.'?

We shall begin by giving a brief description of the in-
verse hook method. A schematic sketch of the experi-
mental apparatus is shown in Fig. 1. Two laser pulses of
different frequencies are used. The first or “exciting”
pulse, EXC of Fig. 1, propagates along the y axis and is
linearly polarized along the z axis of a coordinate system.
In the experiment described in Ref. 15, this laser excited
the rubidium atoms from the ground state to the 6D/, or
7D/, level via a two-photon excitation. This initial excit-
ed state is called the populated level and denoted by a. It
is essential that the exciting pulse produce an anisotropic
distribution of atoms among the sublevels of a as illustrat-
ed in Fig. 2(a).

Shortly after the atoms are excited and before there has
been appreciable spontaneous decay, a second pulse of
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FIG. 1. Basic experimental arrangement. The laser pulses are
shown just after they have passed through the atomic vapor.
The atoms are first excited by laser pulse EXC. Later a light
shift (LS) laser pulse from a second dye laser perturbs the atoms
as discussed in the text and illustrated in Fig. 2. An energy me-
ter EM measures the energy of the LS pulse and sends this read-
ing to a computer. Unpolarized and linear polarized fluores-
cence are detected by detectors D, and D,. The fluorescent sig-
nals are input to gated integrators GI, and GI, whose outputs
S, and S, are also transmitted to the computer. Finally, the
computer analyzes the data and plots it as shown in the figure.

laser light propagates through the atoms along the nega-
tive y axis. The frequency o of the second or “light shift”
laser is tuned close to but not equal to the resonant fre-
quency |wg | of the transition from level a to level b for
which the oscillator strength is to be measured. The light
shift pulse is linearly polarized along a direction § which
is tilted by an angle 3 from the z axis and which lies in
the xz plane as shown in Fig. 1. The effect of the light
shift pulse on the atoms is illustrated in Fig. 2(b). The
light causes virtual transitions from sublevels of a to sub-
levels of b and back to different sublevels of a. After the
light shift pulse, the distribution of population in the sub-
levels of a will have been modified as indicated in Fig.
2(c).

The changes in sublevel populations caused by the light
shift laser are measured by observing changes in the
fluorescence polarization emitted when the excited atoms
radiatively decay to a final state f. The fluorescence po-
larization signal is measured for many different light shift
pulse fluences (pulse -energy per unit area) and is plotted
as shown in Fig. 1. In this paper we shall show how the
oscillator strength for the transition between states a and
b can be found using

(1) the fluence half-width of the “‘depolarization curve,”
the Lorentzian-like dependence of the fluorescence polar-
ization on the laser pulse fluence,

(2) the detuning of the laser from the transition frequen-
cy Wy, and

(3) some known constant factors which depend on the
angular momenta of states a, b, and f.

This problem has not been solved previously, except for
the special case of transitions between a Dj,; populated
state and a P3,, or Py, state.!” In this paper a detailed
account of the theory of the inverse hook method is
presented for the general case where states a, b, and f
have arbitrary angular momentum. The basic result of
the paper is Eq. (78). The depolarization curve has a
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FIG. 2. Zeeman sublevel populations during the experiment.
Initially, a state a is excited in such a way that all the sublevels
of a are not equally populated. This is illustrated in (a), where
only the m; :i% sublevels of a are populated by a two-photon
excitation from the ground state. Next, as shown in (b), the
atoms are subject to the ac Stark shift of a laser pulse detuned
from a transition between states a and b. The atoms are redis-
tributed among the sublevels of a since the light shift laser is
linearly polarized along a direction different from the quantiza-
tion axis.

width F,,, which is inversely proportional to the oscilla-
tor strengths, with constants of proportionality which are
given in Table I and Eq. (19).

II. THEORY

We begin by considering the response of an excited
atom to the electric field of the light shift laser, which we
write as

Ii:: é?e ——iml_*.é;*elhﬁ . (2)

The field amplitude & is a function of time which varies
slowly with respect to the laser frequency w. For exam-
ple, & will typically be a pulse envelope which rises and
falls in a few nanoseconds. The interaction of the electric
dipole moment D of the atom and the electric field of the
light is

V=—DE. (3)
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TABLE 1. Half-width parameter 6;,, and residual polarization parameter €.

Ja € 61,2 Ja € 61,2
1 0.3333 1.000 3 0 1.000
2 0.1429 1.031 % 0 1.260
3 0.0952 1.190 % 0 1.377
4 0.0722 1.297 % 0 1.444
5 0.0582 1.369 % 0 1.492
6 0.0490 1.423 % 0 1.526
7 0.0422 1.463 '2—5 0 1.551
8 0.0372 1.493 % 0 1.573
9 0.0332 1.519 % 0 1.591

10 0.0300 1.539 % 0 1.603

o0 0 1.753 © 0 1.753

We shall consider excited atoms in an initially populated
level a like that of Fig. 2. We suppose that the level has
electronic angular momentum J, and that the hyperfine
structure can be ignored. As we mentioned in connection
with our earlier discussion of Fig. 2(b), the frequency of
the light shift laser is sufficiently detuned from resonance
so that it can only transfer atoms between the sublevels
| m) of level a. We assume that these sublevels are quan-
tized along the z axis of Fig. 1. The azimuthal quantum
number m is thus defined by

L, m)=m|m), (4)

where J, is the projection of the electronic angular
momentum operator along the z direction. We denote the
probability amplitudes of the sublevels |m) by c(m).
The coupling of these amplitudes by the light shift laser
[i.e., by the virtual transitions sketched in Fig. 2(b)] is de-
scribed by the interaction-picture differential equation

ific(m)=3(am |H |am')c(m') . 5)

We assume that the light shift pulse is of such short dura-
tion that coupling terms due to hyperfine structure, mag-
netic fields, etc., can be neglected. The matrix elements
(m | H|m’) of (5) are given by second-order perturbation
theory applied to the interaction (3), i.e.,

(am | &-D |bu){bu|&*-D|am’)

(mlHIm’>=—g: Heop +)
-s (am | &*-D |bu){bu| & -D|am’) _
pwt Hwpg — )
(6)
The denominators contain the Bohr frequencies
E,—E,
Wpg =" (7)

for transitions between level b with energy E, and level a
with energy E,.

The interaction (3) has odd parity and therefore cannot
couple |m) and |m’) in first order or in any odd order
of perturbation theory. The perturbation expansion pa-
rameter is (wg /Aw)?> where wg =&D,, is the Rabi fre-
quency, and Aw=w— |w,, | is the detuning frequency.
We assume that no higher-order coupling terms in addi-
tion to the second-order terms of (6) are needed.

The first term on the right of (6) describes a virtual
transition from sublevel |am’) to sublevel |bu) with
the creation by &* of a photon of energy #iw, followed
by a transition from |bu) to |am ) with reabsorption
of the photon. The second term on the right of (6) de-
scribes a similar process in which a photon is first ab-
sorbed and then recreated. Since we assume that
w= | wy, |, one of the energy denominators of (6) will be
very small compared to the other, and the term associat-
ed with the small energy denominator will make almost
all of the contribution to {m | H |m'). This dominant
term corresponds to creation and destruction of photons
in an order which nearly conserves energy for the virtual
transitions.

We shall consider the special case of laser light which is
linearly polarized along the § axis of the “tilted” coordi-
nate system {n§ of Fig. 1. The electric field amplitudes of
(2) can be written as

E=6C, (8)

where 2 is a unit vector along the £ axis. The Hamiltoni-
an matrix {m |H |m’') of (6) can be diagonalized if we
choose basis states | m | for level a which are quantized
along the direction &, i.e.,

Jelmi=m|m}, ©)

where Jg:E-J. We shall use curly kets |m] to distin-
guish sublevels quantized along ¢ from sublevels |m)
quantized along Z.

The Hamiltonian (6) can now be written as

H=—-6>3 alm)|am}{am | . (10)

The polarizability a(m) of the state | m} can be calculat-
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ed from (6) by means of the Wigner-Eckart theorem and
the definition (1) of the oscillator strength to be

3e 2fab

a(m)=3 7 C*Jy,1,J45m,0) . (1

2
b me(wab —w

The relevant Clebsch-Gordan coefficients are

(J,+1)?—m?
C? L,L,J;;m,0)=—r——— ,
o+ m 0= 2, )
2
2J,,1,J,:m,0)= —2— | (12)
CWar Ldasm, 00 == =7,
CHIs— 11T 0= i
a— L L,Jg;m, _Ja(ZJa—l) .

The evolution of the sublevel amplitudes ¢ (m) due to the
light shift laser, i.e., the solution of (5) is

=3 {m|U|m')c;(m'), (13)

where the sublevel amplitudes before and after the light
shift pulse have been denoted by the subscripts i and f.
The time evolution operator is

— =i v
U=exp p f’f Hdt

=3 e " miim| . (14)

The phases follow from (10) and are

2ra(m)
= — ——F .
d(m) o7 (15)
The fluence F is related to the laser intensity 7
c&?
I=— 1
. (16)
by
t
oy
F=| Trdr . (17)

For future reference we note that the phases can be writ-
ten as

mF

Sm) = AF

+do (18)

where ¢ is independent of m. The parameter AF is given
by

2 K fa
1 _ 6me abSab _ (19)
AF  mech % 0k —w?
The coefficients «,;, follow from (12) and are
2o —1 if Jy =J, +1
o+ 12T, +3) " p=daT
Haml e (20)
Kap = _Ja(Ja+1) L Jp=Jg
1 .
7 ifJ,=J,—1.
There is an interesting physical meaning to (14) which

will help to clarify the significance of the inverse hook

method. According to the correspondence principle of
quantum mechanics, atoms in a superposition of the adja-
cent azimuthal quantum states |m} and |m —1} will ro-
tate about the { axis at a rate

-1 I
— —1D]= . 21
[¢m) o(m—1)]= J-l AF 2n
The total rotation angle of the atoms is
2m —1
mdt=—"—""60, 22
fo 21 (22)
where the characteristic twist angle is
F
N 23
6 NG (23)

From (22) and (23) we see that | AF| is the laser pulse
fluence needed to rotate atoms with their spins “pointing
north” (i.e., atoms with m =J,) by 1 rad. The sign of the
rotation angle is the same as the sign of AF. Atoms with
their spins pointing south (i.e., atoms with m=—J, +1)
will rotate by 1 rad in the opposite direction. The linearly
polarized light shift laser twists the atomic spin distribu-
tion uniformly about the polarization of the light. We
may therefore call the unitary operator U of (14) a torison
operator. We shall consider the properties of this operator
in more detail later.

Since we shall be dealing with ensembles of atoms, it
will be more convenient to describe the atoms with a den-
sity matrix {m |p|m’) instead of the state amplitudes
c(m) of (4). These quantities are related by

(mip|m)y={cim)c*(m'))., (24)

where the subscript av denotes an averaging of the ampli-
tude products over all atoms of the ensemble. We denote
the initial density matrix which describes the atoms in lev-
el a before the light shift pulse by p;. After the light shift
pulse has caused the changes indicated in Fig. 2, the
atoms in state a will be described by the final density ma-
trix py.

pfop,-Ul‘r , (25)

where U was given by (14).

To proceed further we must specify the form of the ini-
tial density matrix. We shall assume that before the light
shift pulse the atoms have pure alignment polarization,
i.e., the populations of the sublevels | m ) are given by

{(m|p; |m)=C+Dm?, (26)

where C and D are constants.'® We also assume that pPi
has no off-diagonal matrix elements between the basis
states |m ). Purely aligned atoms are produced when
linearly polarized light is used to excite atoms from an
unpolarized ground state. Different initial polarizations
can be produced if the atoms are excited with circularly
polarized light (both orientation and alignment can be
generated), if the atoms are excited from a polarized
ground state or if multipole quantum transitions are used
to excite the atoms with linearly polarized light into a lev-
el with electronic angular momentum J, >2. However,
the case of pure alignment is so common that we shall
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focus on it for the remainder of the paper. The situation
for other initial polarizations can be analyzed in a way
similar to that outlined below.

Further calculations will be simplified if we describe the
initially aligned state with irreducible tensor basis opera-
tors, i.e., we rewrite (26) as

pi=Ao+ ATy , 27)

where the constants 49 and A, are linear combinations of
the constants C and D. The tensor is defined by

Tiy=3|Im){Jm—M|(—1)" M~/
xC(J,J,Lym,M —m) , (28)

where the bra and ket vectors are understood to be quan-
tized along the z axis of Fig. 1. We shall make frequent
use of the orthonormality of the unit tensors.

Tr(Tom Tosa ) =81 8mn - (29)
Substituting (27) into (25) we find
pf=A()%—Az[sz()[JJr . (30)

Since U is most conveniently expressed in terms of the
tilted basis states | m}, c.f. (14), we shall express T in
the same basis. From Fig. 1 we see that

|m}=R |m) (31a)
or

lm)=R"|m}, (31b)
where the rotation operator is

R=e Pr—e (32)

We denote irreducible basis tensors in the tilted coordi-
nate system, in analogy to (28), by

Tim=3 |Im}{Jm —-M|(—1)m—M-J
XC(J,J,L;m,M—m) . (33)

Comparing (28), i.e., (31), and (33), we see that!’
Tiu=R T R
=3 Timdlim(—B), (34)
<
where dfja(—pB) is the Wigner function for the special

case of a rotation by an angle —f3 about the y or 7 axis.
Substituting (34) into (30) we find

pr=Ao+ A2 S UTom U'dio(—PB) . (35)
M

From (14) and (33), we find that the quantity U7,y ut
which appears in (34) can be written as

UTmU'=S Trmvil? , (36)
L

where the torison matrix is

1191

UA%LVZEC(JarJavL;m»M_m )C(Ja)Ja,L,;maM_m)
m

Xei[(ﬁ(mAM)faS(m)] . (37)

In deriving (36) we made use of the inverse of (33)
|Jm}{Jm —M | (—1)"—M—J
=3 TimCU,J,Lim,M—m) . (38)
L

The torsion matrix (37) has an important significance in
the analysis of inverse hook experiments. According to
(36), the light shift laser transforms a tensor ‘Tz/g\ quan-
tized along the direction of linear polarization of § into a
superposition of tensors of the same azimuthal quantum
number M but different multipole indexes L. Physically,
the mixing of multipole moments occurs because the light
shift laser carriers out a torsional operation on the polar-
ization of the excited state, as we mentioned in connection
with our discussion of (21) and (22).

For future reference we now discuss some of the more
important properties of the torsion matrix (37). We re-
place the summation index m of (37) by the mean index

M
g=m-——-, (39)
and we note from (18) and (23) that the phase difference
of (37) is

2gM 6

—M)—d(m)=— . 4
d(m —M)—d(m) 2. 1 (40)
Then (37) becomes
v1{71L'(9)=2C Ja,Ja,L;%—J,-q,%—q
q
% C ot L3 g, M g
2 2
X exp LMIG (41)
Jo—1

One can show that v~ () are either pure imaginary or
real functions. According to (39), g can be an integer or a
half-integer summation index, depending on M and on
whether m (i.e., J,) is an integer or a half-integer. Note
that the torsional coefficients are periodic in the fluence

angle 6.
We substitute (36) into (35) and use the inverse of (34)
Tim=2, Timdln(B) (42)
v
to write
pr=Ao+ A4, S TimVizh , (43)
LM

where the torsion matrix in the xyz coordinate system is

Vit (6,8)=" dimm (BWif (0)d iz (—B) . (44)
=

The torsion matrices Vi (6,8) have the same
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significance in the xyz coordinate system as the matrices
vi"'(0) in the £y system. The analog of (36) is

UTowU'=3 TrmVid . (45)
LM

The torsion matrices ¥ have a number of symmetry prop-
erties which for the sake of brevity we shall not discuss.
So far we have ignored the possibility that the excited
atoms may have hyperfine structure or that an external
magnetic field Hy,; may be present. We now generalize
our discussion slightly by assuming that a magnetic field
is directed along the z axis. The field is small enough that
it causes negligible precession during the short time inter-
val of the light shift pulse, but it is big enough to decouple
any small hyperfine structure like that of the higher excit-
ed D states of the alkali-metal atoms. A more quantita-
tive discussion of the effects of the magnetic field during
the light shift pulse is given at the end of this section.
The decoupling of the electronic polarization from the nu-
clear polarization is advantageous in an experiment since
it increases the polarization of the fluorescent light by
preventing electronic polarization from being transformed
to nuclear polarization. Decoupling also simplifies the
theoretical analysis since it allows one to ignore the nu-
cleus. The previous calculations then remain valid except
that they must be augmented by considering the preces-
sion of the electronic polarization at the frequency
Q= gippH+ Aymy ’ 46)
#
where m; is the projection of the nuclear spin on the z
axis, A, is the magnetic dipole hyperfine constant, g, is
the electronic g factor of level a, and up is the Bohr mag-
neton. We have assumed that the electric quadrupole
hyperfine interaction is negligible. Because the initially
excited atoms have a polarization which is axially sym-
metric about the magnetic field [cf. (27)], the magnetic
field will have no effect on the atomic polarization until
after the light shift laser has suddenly created various
components of transverse polarization T, (Ms40) in ac-
cordance with (43). The newly generated transverse po-
larization components will rotate at the Larmor frequency
of the excited atoms so the density matrix (43) becomes

pr=Ao+A; 3 e MUT VI (47)
LM

where the time ¢ is measured from the end of the light
shift pulse.

The population changes caused by the light shift laser
(see Fig. 2) can be detected by observing resulting changes
in the polarization or angular distribution of fluorescent
light, as indicated in Fig. 1. The power P of fluorescent
light reaching the detector is given by!®

t

P=Ne "“Tr(Lp,), (48)

where 7, is the natural lifetime of the fluorescing atoms in
level a, and N is an overall constant which accounts for
the number of excited atoms, the solid angle subtended by
the detector, and the transmission efficiency of the filters
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and polarizers, etc. The fluorescent light operator .£ de-
scribes how much fluorescent light will reach the detector
through the polarization analyzing devices placed between
the fluorescing atoms and the detector. For the case of
polarization analyzer which passes light linearly polarized
along the unit vector Ui, we can write

L=Bo+B,3 You (@) T3y . (49)
M

As was shown in Ref. 18, the coefficients By and B, de-
pend on the electronic angular momentum J, of the excit-
ed atom and the angular momentum J, of the level in
which the atom is left after emission of a fluorescent pho-
ton. The tensor T,y was defined in (28) and Y, (1) is
the value of the spherical harmonic at the location U on
the unit sphere.

Substituting (47) and (49) into (48), we find that the
fluorescent power is given by the following:

—t/ —iMqt

P(ﬁ)zNe Ta AOBQ[Jg]+ AngEe YZMVI%IZO
M

(50)

We note that the fluorescent power damps at the natural
decay rate 7, ! of the level a and it exhibits the light beats
of Dodd and Series!® at the Larmor frequency Q and its
second harmonic 2£}.

For inverse hook measurements, we integrate the
fluorescent power for several natural lifetimes as indicated
in Fig. 1 to obtain a fluorescent signal

1/2
w AB | 4m You (0)Vio
U)=G Pl)dt=1+—" |— —_—
S@=G [7 P@MI=1+57 % 1 +iMQr,
(51)

where G is a gain coefficient chosen for convenience to
make the polarization-independent part of the signal uni-
ty. The initial alignment coefficient A4 is
PP (52)
AO[Ja] ’
and the branching sensitivity coefficient is
172
B,
By

B=2
4

(53)

We shall discuss the coefficients 4 and B in more detail
later.

Let us consider the signals (51) for fluorescence linearly
polarized along the three coordinate axes x, y, and z. We
know that
172

Yom(Z)=38mo S (54)
47
Substituting (54) into (51) we find
S(i):SW:1+%V&% . (55)

As indicated in (55), S(Z) is the same as the 7 signal of
Fig. 1.
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We now consider (51) when i=X%. We know that

172 172

o)
YzM(’i)=—-TO (8aar +6_2ar) -

15
327

3
4
(56)

Substituting (56) into (51), and using the fact that
V_zo‘—- Vzo, we find

172

~ AB _ , 3 2 1
SX)=1——V§+ AB | — Vig———— . (57)
4 % 8 1 ran)?
In like manner we find
AB 3 i 1
SHP)=1—"=VH—4B |~ | VB ——— . (58
y 4 0 3 20 1+ 207, )?

We note that S(X), S(§), and S(Z) all contain fluence-
dependent terms proportional to ¥'33. For S(X) and S(§)
there are additional terms containing a product of a
fluence-dependent factor ¥'33 and a magnetic depolariza-
tion factor (Hanle-effect factor) [1+4(2Q7,)?]”!. The
terms involving the Hanle effect will be negligibly small if
the magnetic field is large enough to make (2Q7,)%>>1.
However, these factors are also eliminated by symmetry
if, as in the experiment of Fig. 1, the unpolarized fluores-
ence intensity propagating along the z axis is detected.
We then obtain the o signal of Fig. 1, i.e.,

4B

v . 5
5 [0 (59)

S, =S&)+S(§)=2

We see that both the o and 7 signals depend on the
fluence through the coefficient V33 defined in (44).

Signals like those of (55) and (59) could be generated if
a light shift laser with spatially uniform fluence were used
in an experiment. Since the signals are superpositions of
the torsion coefficients vi~ [cf. (41)], they would be
periodic functions of the laser fluence. While it is possible
in principle to observe such oscillatory signals, it is
difficult in practice because pulsed dye lasers usually have
poor transverse mode structure. A much more practical
experimental procedure is to use a light shift laser for
which the spatial distribution of fluence is as inhomogene-
ous as possible, i.e., a laser with a fully developed speckle
distribution.

If the mean fluence of a laser, averaged over many
speckles, is F, then the probability of finding a local
fluence between F’' and F’ +dF’ is?*~%2

e—F/F

P(F')dF'= dF’ . (60)

There will be a distribution of twists experienced by the
excited atoms, with atoms in a bright speckle experiencing
large twists and atoms in dim speckles experiencing small
twits. We may account for the speckled laser beam by re-
placing the torsion coefficients of (41) by mean torsion
coefficients averaged over the distribution (60). These are

1193
—LL’ M M
UIML=2C JayJarL;_+q"_—'q
p 2 2
M M 1
C\|J )J )LI;— P .
XEarda b5+ 75— iqM6
1+ ;
Jo—1

(61)

The mean torsion coefficient for the inverse hook signals
[c.f. (55) and (59)] follows from (44) and is

V& 6,8=3 53 0[dinB)] . (62)
M

For future reference, we summarize a few useful prop-
erties of ¥ 8(6,8). The initial value for zero fluence is

v §0,8)=1. (63)
The baseline value at infinite fluence is

2 2
BeosB—1)" | 9€ i (64)

722 _
Voloo,B)= 4 2

where the parameter € is zero for half-integer J, and
e=1C*J,,J4,2;1,1) (65)

for integer J,. To maximize the fluence-dependent signal
one should choose the tilt angle B=p,, to minimize
V 3(0,B). From (64) we see that
. 2 2
sin“Bopt = 4o (66)
For half-integer J, where €=0, it follows from (66) that
Bopt=754.74°, the so-called magic angle. For integer
values of J,;, Bope is somewhat less than 54.74° because € is
a small positive number. For example, if J, =1, we find
e=1 and By, =45 :
We can readily obtain limiting values of the torsion ma-
trices for J,— oo. From algebraic tables of the Clebsch-
Gordan coefficients we find as J, —

J,,Cz(J,J,J(,,Z;l+q,1—q)~>,Lf;(l—xz)2 ) (67)
where
q9
. 68
X 7, (68)

From (67), (68), and (61), it follows that the mean torsion
coefficient for J, — « is

— 1 1
73A0)=1 f_1(1—x2>2mdx. (69)

This can be readily evaluated by numerical integration as
a function of the relative fluence 6. Similarly, as J, —

JoC Iy J o, 2544 g, 1 —g)—Ex2(1—x2) , (70)
so from (68), (70), and (61), we find
2 2
Y 1 x(1—x7)
(6)=1 ——"dx . (71)
ot ¢ f L1402

We also see from (67) that as J, — oo for integral J,,
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5
— ,
16J,

€ (72)

so the value of B,y approaches the magic angle for larger
integer values of J,, in accordance with (65) and (66).

Substituting the well-known algebraic expressions for
the Wigner functions into (62) we find that

2 2
7 3(0,8)= ‘3—""54{”;” + 3sin2(2B)5 2(0)
+1sin‘BT34(0) . (73)

Using (61) to evaluate 7%7(0) for finite values of J, and
(69) and (71) for the limit J, — oo, we have plotted ¥ 33 in
Figs. 3 and 4 for representative values of J, and for tilt
angle 3=>54.74°. The curves fall from an initial value of 1
to a baseline of O for half-integer J, or to the value of €
given by (65) for integral J,. The theoretical half-widths
6, ,, of the curves are given by

_ 14V 3(0,B)
V%%(el/z,ﬁ):%ifi . (74)

Equation (74) can be solved numerically to find 6, ,,(S3).
Since ¥ 33 is an even function of 9, Eq. (74) has two solu-
tions +6;,,(B) where we arbitrarily set 6;,,(8)>0. The
width parameters 0,,, for f=754.74° are listed in Table I
for J, <10. According to (23) the experimental half-
width parameter Fy,, is related to 6;,, by

Fip=01|AF| . (75)

This equation is extremely important since it provides a
relation between an experimentally measurable quantity
Fi,, and a theoretically significant parameter AF from
which oscillator strengths can be easily inferred with the
aid of (19). F,,, will always be a positive quantity since it
is the fluence which causes the inverse hook signal to drop
from its initial value halfway to its final value as illustrat-
ed in Fig. 1. The parameter | AF | in (75) is the fluence
needed to cause 1 rad of torsion in the positive or negative

v 22 o
V58, 54.74°)

8 (radians)

FIG. 3. The coefficient ¥ 3 is the mean multipole polariza-
tion T2 remaining after the initial multipole polarization 7T has
been twisted by an exponential distribution of angles about a tor-
sion axis tilted at an angle f=54.7° from the azimuthal axis.
The depolarization curves are proportional to the coefficient ¥ 3.
Some coefficients ¥ 33 for levels with half-integer J are shown.

v 22 °
v 55(6, 54.74°)

8 (radians)

FIG. 4. Some coefficients ¥ 8 for levels with integer J. The
baseline value is given by the parameter € which is defined by
(65).

sense, in accordance with the sign of AF, as discussed in
connection with (22) and (23). Although the sign of AF
cannot be determined from the particular arrangement of
the inverse hook method shown in Fig. 1, it can be in-
ferred without ambiguity from the theoretical formula (19)
which implies that AF changes sign every time the fre-
quency o of the light shift laser passes through an atomic
resonance frequency wg,,. The sign of AF can be mea-
sured if desired by detecting o ; and o _ light propagating
along the *z axis instead of 7 and o light as illustrated in
Fig. 1.

The coefficients ¥ 33 of Figs. 3 and 4 are weighted sums
of Lorentzian curves of different half-widths, in accor-
dance with (73). For data with the usual experimental er-
ror, it is reasonable to approximate these curves with a
single Lorentzian curve, i.e., we set

1—e
1+(6/91/2)2

The true multiple-Lorentzian coefficient ¥ 3} given by (73)
is compared with the simple single-Lorentzian approxima-
tion (76) in Fig. 5 for J, =1. Similar curves are found for
other values of J,.

We should point out here that pulsed lasers are not
very reproducible in energy from pulse to pulse, so it is
important to eliminate the effects of pulse-to-pulse fluctua-
tions in the excitation efficiency. One simple way to do
this is indicated in Fig. 1 where the signal ratio

S,—S,
S, +S,

7 233(0,54.74°) = +e. (76)

(77)

is calculated. When taking this signal ratio, one must be
sure that the electronic gains are adjusted to ensure that if
fluorescence from unpolarized excited atoms is observed,
i.e., that S, =2S_. Since truly unpolarized excited atoms
are difficult to produce, a practical way to calibrate the
gains is now discussed. The atoms are excited with
linearly polarized light whose polarization axis is tilted
from the z axis by the “magic angle” 54.74°. Ordinary
one-photon excitation or n-photon excitation can be used.
The linear polarization ensures that only even multipole
moments of atomic polarization excited up to a maximum
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Lorentzian Approximation To
v22(6,54.74°) For J=7/2

Dotted Line = Actual Curve For J=7/2

o4 ///
02 <
Lorentzian
Approx. .
0.0 1
o 1 2 3 4 5 6 7 8 9 10

8 (radians)

FIG. 5. A comparison of V' for a level with J=7 and a

simple Lorentzian curve of the same width. Similar curves are
found for other values of J. The Lorentzian curve is a good ap-
proximation to ¥ 3, which is actually a superposition of
Lorentzians.

multipolarity index of L=2n if J, >n where n is the
number of photons absorbed in the transition. The magic
tilt angle ensures that there is no longitudinal alignment
(L =2, M =0), the only type of atomic polarization
which can influence the signals S, and S, in Fig. 1. The
electronic gains are then adjusted so that S,=2S_.. No
light shift laser should be used in the calibration step since
the light shift pulse can upset the symmetry conditions
needed for the calibration, but a magnetic field directed
along the z axis is permissible. The predicted form of S
follows from the formula (55) for the 7 signal and (59) for
the o signal:

1195

AB(1—¢)

S=L(1—ABV }¥})=~1— ABe— ——"——="_
; % 14+(F /F, ,

) (78)

where the single-Lorentzian approximation on the right of
(78) follows from (76).

We shall now show how to calculate the parameters A4
and B which determine the signal strength. To evaluate B
we note from Ref. 18 that for fluorescent light of linear
polarization i we may write .£ as

1/2
8w

L 15

1-3[J, IW(1,2,d7,d,51,d,)

’ (79)

X 3 You (@)Ty
M

where W is a Racah coefficient.
and (53), we find that

B, Jp)=—2V6[J,IW(1,2,0/,0a;1,0,) .

Values of B are listed in Table II for J, < 10.

The amplitude A4 of the initial alignment depends on
how anisotropic the initial populations {m |p; |m ) of the
sublevels of a are. We assume that p; has no off-diagonal
matrix elements because of the symmetry of the excitation
process, and for convenience we assume that p; is normal-
ized to unity, i.e.,

S{m|pi|m)=1.

Comparing (79), (49),

(80)

(81)

Then from (27) and (52), we find

TABLE II. Branching factor B(J,,J/).

Ja Jr=J,—1 Jr=J, Jr=J,+1
1 —4.899 2.450 —0.490
3 —4.000 3.200 —0.800
2 —3.742 3.742 —1.069
3 —3.666 4.190 —1.309
3 —3.666 4.583 —1.528
z —3.703 4.983 —1.728
4 —3.761 5.265 —1.915
2 —3.830 5.571 —2.089
5 —3.906 5.858 —2.253
u —3.985 6.131 —2.409
6 —4.068 6.392 —2.557
2 —4.151 6.642 —2.698
7 —4.235 6.882 —2.834
L —4.319 7.113 —2.964
8 —4.402 7.337 —3.089
U —4.485 7.554 —3.211
9 —4.568 7.765 —3.328
L —4.649 7.970 —3.442
10 —4.730 8.170 —3.552
— o —1.265VJ, 2,530V, —1.265VJ,
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A =Tr( Tz()p,‘ )

m—J

=3 (m|p; |m)CWU,,Jy,2sm,—m)(—1)" "¢ . (82

Using algebraic formulas for the Clebsch-Gordan
coefficients we can rewrite (82) as follows:
172
20(2J, —2)! 5
—_— i —J,(J,+1)].
27, 3 %(m[p |m)[3m?*—J,(J,+1)]

(83)

We turn now to a brief discussion of the influence of a
small magnetic field on the inverse hook signals. Because
of the axial symmetry of the excitation process, a magnet-
ic field along the z axis will have no effect until the light
shift pulse generates transverse polarization. We have al-
ready discussed how any influence of the magnetic field
after the light shift pulse can be eliminated by properly
choosing the symmetry of the detection system, i.e., by
observing 7 and o fluorescence. During the light shift
pulse, the rotation due to the magnetic field will occur
simultaneously with the twist due to the light shift laser,
and the Hamiltonian will be

1}

H=% AF(2J—1)

OJ; + ) (84)

where the Larmor frequency () was defined in (46), and
the light intensity I and characteristic fluence AF were
defined in (16) and (18). A term representing the scalar
light shift [the parameter ¢, of (18)] has been dropped
from (84) since it causes no change in the atomic polariza-
tion. The unitary operator U which describes the change
in atomic polarization satisfies the Schrédinger equation
iﬁﬂ =HU . (85)
dt
The solution to (85) was already given in (14) for the case
of no magnetic field. Our aim here is to understand the
small broadening of the inverse hook signals due to the
magnetic field well enough to be sure that it is negligible.
We shall consider an idealized light shift pulse which has
constant intensity for the duration tf—¢; of the pulse and
has zero intensity before and after. Then the Hamiltonian
H in (84) is time independent during the pulse and we
may solve (85) by simple exponentiation

6J%

U(y,0,B)=exp -1

] ) (86)

where the magnetic rotation angle is
Y=Q(tr—t;) (87)
and the light shift twist angle is
1

:E(tf“ti) . (88)
Then (45) becomes
UTy e U'= S T Wi, (89)
LM

where U is given by (86) and
Witir (4,6,8)=Tr(T{y UT 3 U") . (90)

Reviewing our previous analysis, we see that the expres-
sion (78) for the inverse hook signal remains valid if we
account for the magnetic rotation during the light shift
pulse by replacing the matrix element ¥ 33 by W %, the
speckle averaged value of W35 defined by (90).

There are several important symmetry properties of W
which will help us to understand the influence of a mag-
netic field on the inverse hook signals. Consider a rota-
tion by 180° of the magnetic field and the light shift beam
around the y axis of Fig. 1. Then Z— —% and {— —¢ so
the magnetic rotation caused by the rotated fields changes
sign but the twist caused by the light shift remains the
same. Formally, we have

RU,6,BR =U(—v,6,8) , 1)
where
R :e—i‘m]y (92)

Using (91) and (90), we find the rotated matrix element to
be given by

Wit (—¢,6,8)=Tr(T{y RUR T 2eRU'RT)
=(—DE+MALUSM T T] L UT, _, U,
(93)
or
Wik (—4,6,8)=(—DEFE MMy 0.8y . (94)
In (93) we have made use of the fact that
R'T yR=(—1DEMT, .| (95)

which can be verified using the definition of the spherical
tensor Ty, cf. (28) and the following property of the ro-
tation matrix:!’

dim(m=(—1DEF M8y _ap . (96)

A second symmetry follows from the fact that

U(—2,—6,8)=U"4,6,8) . 97)

Substituting (97) into (90), we find since TZM

=(—1MT _p,
Wik (—, —6,B)=(— DM+MWwLL, _ .(4,6,8) . (98)

The symmetries (94) and (98) remain valid for the matrix
elements W 5}, which have been averaged over a speck-
led distribution of twist angles [cf. (60)]. For the matrix
element W 3} which determines the shape of the inverse
hook signal according to (78), the symmetries (94) and
(98) imply that

i.e., W& is an even function of both the mean twist angle
0 and the magnetic rotation angle ¥. This implies that
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the perturbation of the inverse hook signal will scale as
the square of the magnetic field and will rapidly approach
zero for rotation angles ¢ less than unity. The twist angle
for half depolarization 6;,, is defined by an equation
analogous to (74)

1+ W(Z)(Z)(llj, ,3)
B E—

A plot of the half-width parameter 8;,, versus ¥ for the
case where J, = is shown in Fig. 6.

Although we have focused the discussion of this section
on the simple experimental arrangement of Fig. 1, the
theory we have presented is sufficiently general to describe
most experimental situations. For example, the generali-
zation of (51) is

W 3(¥,0,,,,8) = (101)

TLL o«
LV steplmr

S =
1+iMQr,

LM.L'M

(102)

where the components Ly =Tr(L Ty ) of the fluores-
cent light operator and p;a=Tr(pTr ) of the initial
density matrix can be found from formulas in Ref. 18.

We see that the signal as a function of fluence is always
given in terms of the torsion coefficients ¥ §#7(6,8) which
we discussed in some detail earlier. The values of the oth-
er factors in (102), L and p} -y, determine which linear
combinations of the torsion coefficients contribute to the
signal. The geometrical symmetry of the experiment
determines which of the coefficients p}. and Ly are
nonzero.

III. CONCLUSIONS

We have chosen to call this new method to measure os-
cillator strengths the “inverse hook method” because of
its close connection to the conventional hook method!®
which is also used to measure oscillator strengths. The
essence of the relationship is indicated in Fig. 7. In the
conventional hook method atoms of a known number
density N in some energy level and of a known column

20

8,,, (radians)

0.0 i 1 L 1
0.0 0.5 1.0 1.5 2.0

\,Uz (radians?)

FIG. 6. Dependence of 0,,;, the mean twist angle for half
depolarization, on ¥? the square of the magnetic rotation angle.
Small magnetic rotation angles cause a small broadening of the
depolarization curves.
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FIG. 7. Comparison of the conventional hook method and
the inverse hook method. Both the conventional hook method
and the inverse hook method are based on the interaction of off-
resonant light with atoms. The interaction causes phase shifts
between the two light beams of a conventional hook experiment,
and these phase shifts are detected by an optical interferometer.
In the inverse hook method the interaction causes phase shifts in
the amplitudes of the 2J+1 sublevels [m} of the atom, and
these phase shifts cause the atomic polarization to twist around
the direction of linear polarization of the light shift laser. The
twist angle per unit fluence 1/AF can be determined from the
depolarization of the fluorescent light.

length [ are traversed by one of two coherent optical
beams which have been formed with a beamsplitter. The
other optical beam passes through a reference path which
introduces a large phase retardation. The optical phase
retardation A¢ produced by the atoms is given by

A(b:Zv%&Nl : (103)
where o is the optical frequency and & is the mean atomic
polarizability, i.e., a=(1/[J,])3,,a(m). Here we have
assumed the atoms are well approximated by an optically
dilute gas. After passage through the atomic vapor or the
reference cell, the two beams are recombined to form in-
terference fringes. These are dispersed in optical wave-
length A with a spectrometer to form a pattern similar to
that shown in Fig. 7. The large fringe displacement near
atomic resonance lines due to the greatly increased polari-
zability together with the sloping background due to the
large phase retardation of the reference path, produces
“hooks” in the fringes as shown in Fig. 7. It is possible
to infer the phase shift A¢ from the hook spacing A,
which equals A, —A_ where A, and A_ are the wave-
lengths on either side of the resonance wavelength where
the interfernce fringes have horizontal slope. If the atom-
ic column density N/ is known, one can use (103) to deter-
mine the oscillator strength. By appropriately choosing
the amount of retardation introduced in the reference
path, the hook spacing can be much larger than charac-
teristic linewidths associated with collision or Doppler
broadening. Therefore, both the hook method and inverse
hook method, which uses a light shift laser detuned from
the transition of interest, are relatively insensitive to the
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transition line shape. The need to have fairly large and
accurately known values of NI, or more precisely
(N, /[J, 1) —(Ny /[J, D), is one of the most serious limi-
tations of the conventional hook method when it is used
to obtain oscillator strengths for transitions between excit-
ed energy levels of atoms.

For the inverse hook method one basically interchanges
the roles of the atoms and photons, as indicated in Fig. 7.
Instead of preparing two coherent beams of light by
means of an optical beamsplitter, one prepares 2J, + 1
coherent “beams” of excited atoms by exciting with light
linearly polarized along a direction Z which is tilted by an
angle 3 from the linear polarization axis of the light shift
laser. Each atomic beam is in one of the eigenstates |m }
of J: [cf. (9)]. These atomic beams pass through a
column density F /#iw of photons from the light shift laser
and each beam experiences a phase shift

104
7o | (104)

(b(m)=2rr%a(m)

where a(m) is the polarizability of atoms in the sublevel
|m}. Equations (103) and (104) are completely analo-
gous except that in (103) a column density of atoms N/
determines a photon phase shift and in (104) a column
density of photons F/#w determines an atomic phase
shift. Unlike the atomic column density, the laser photon
column density or the pulse fluence required in inverse
hook experiments is easily measured using a pyroelectric
or bolometric detector to an accuracy of a few percent.
The differential atomic phase shifts cause a change in the
polarization and angular distribution of fluorescent light
from the excited atom. For a linearly polarized light shift
laser, this is equivalent to the results of a torsion opera-
tion on the spin polarization of the excited atoms.

The depolarization curve of the inverse hook method,
c.f. Fig. 5, is very reminiscent of the magnetic depolariza-
tion curve of the Hanle effect.” The similarity is more
than superficial since both phenomena involve depolariza-
tion of excited atoms. In the Hanle effect, the atomic po-
larization is subject to a uniform rotation rate proportion-
al to the magnetic field, and for a given magnetic field H,
the rotation angles have an exponential distribution be-
cause of the exponential distribution of atomic lifetimes.
In the inverse hook method, the atomic polarization is
subject to a torsion proportional to the local fluence, and
for a given mean fluence F, the torsion angles have an ex-
ponential distribution because a speckled laser beam has
an exponential distribution of local fluences. The
Lorentzian curves of both the Hanle effect and the inverse
hook method are due to the exponential distribution of ro-
tation angles and torsion angles, respectively. In both
cases, oscillatory signals can be observed by eliminating
the exponential distribution. As Dodd and Series!® first
showed, this can be done for the Hanle effect by observ-
ing, as a function of magnetic field, atoms which have ro-
tated by a well defined angle Q¢ at a time ¢ after excitation
of the atoms. For the inverse hook method this can be
done by observing, as a function of a spatially uniform
fluence F, atoms which have been twisted through a well-
defined angle F/AF. When using the Hanle effect, ) is

ordinarily known, so the measurement yields a mean life-
time 7 corresponding to an observable rotation angle Q7
which half depolarizes the atoms. In the inverse hook
method the fluence halfwidth F,,, corresponding to a
known torsion angle 6, ,,=F,,,/AF is found, so the mea-
surement yields 1/AF which according to (19) is a mea-
sure of the oscillator strengths.

In conclusion, we shall give a summary of some of the
advantages of the inverse hook method over existing
methods for measuring oscillator strengths. A primary
advantage is that atomic number densities need not be
known. Hence, the inverse hook method is particularly
well suited for measuring oscillator strengths for transi-
tions between excited states. Even the study of transi-
tions from a bound populated state to an autoionizing
state?> should be feasible since one does not need to ob-
serve fluorescence from the autoionizing state.

A second advantage of the new method is its use of
pulsed dye lasers. The high fluence of these pulses allows
the determination of small oscillator strengths, which oth-
erwise are difficult to measure. Also since dye lasers
operate throughout the visible, near-uv, and near-ir re-
gions of the spectrum, a very large number of transitions
can be studied.

An important advantage of the inverse hook method
when compared to the Autler-Townes effect!>!* which
also exploits the ac Stark interaction, is it does not require
a spatially uniform beam or very precise knowledge of the
temporal profile of the laser pulses. In fact, a completely
chaotic distribution of coherent light sources giving rise to
a laser speckle pattern is an excellent practical choice.
Unlike the Autler-Townes method, the laser is detuned
from the transition of interest. Since the detuning can be
chosen to be much larger than the Doppler width and the
laser linewidth, the inverse hook method is relatively in-
sensitive to both the transition line shape and the laser
spectral profile.

Finally, we would like to emphasize the new method’s
experimental simplicity. The three measurements it re-
quires, namely the detuning, the laser pulse fluence, and
the integrated fluorescence decay signals, are all easily ob-
tained. The method is less complex than the measure-
ment of atomic lifetimes or quantum beats, since very
short time resolution is not required. Hence, relatively
inexpensive gated integrators rather than costly transient
digitizers may be used. Its application is especially easy
for anyone who uses a dye laser to excite an atomic state
and then measures the state’s radiative lifetime. Just by
splitting the pump laser beam and pumping two dye
lasers, absolute transition probabilities for each possible
branch, rather than a total decay rate, can be determined.
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