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AN OPTICAL P U M P I N G  PRIMER 

W. HAPPER and W.A. VAN W I J N G A A R D E N  

Princeton University, Princeton, N.J. 08544, U.S.A. 

This pedagogical paper introduces the basic ideas of optical pumping. Some of the various 
optical pumping mechanisms are discussed, and illustrated by diagrams showing the experi- 
mental apparatus. The density matrix formalism is introduced and used to quantitatively 
examine the effects of optical pumping. Next some of the various spin relaxation mechanisms 
such as collisions and spin exchange between electrons and nuclei, are discussed. A good 
knowledge of elementary quantum mechanics is needed to follow the article. 

1. Introduction 

The basic idea of optical pumping [1] for which A. Kastler [2] received the 
Nobel Price in 1966, is that the photons of a beam of light can transfer order to 
atoms or molecules by resonant scattering. Experiments in optical pumping are 
often very simple and inexpensive, but they can yield amazingly precise spectro- 
scopic information and also very important information about interatomic forces. 
In these pedagogical notes we shall try to introduce some of the most important  
ideas of optical pumping. A good knowledge of elementary quantum mechanics 
is needed to follow the subsequent discussion. We have intentionally left as 
exercises the completion of a number  of steps in the arguments. 

The basic parts of an optical pumping experiment are a lamp or a laser to 
provide pumping light, a dilute gas of atoms which absorbs and scatters the 
photons and which becomes spin polarized as a result, and a means to detect the 
degree of atomic polarization. This can be as simple as an optical detector to 
monitor changes in the amount  of transmitted or scattered light. The pumped  
atoms may be mixed with more abundant  molecules or atoms of a buffer gas. An 
inert buffer gas like helium or neon is often used to hinder the diffusion of spin 
polarized atoms to the walls of the container. Molecular buffer gases like N 2 or 
H 2 are often used to quench optically excited atoms, i.e. to eliminate reradiated 
resonance light, which can be multiply scattered and which can cause spin 
depolarization. Other paramagnetic atoms in the same cell can become spin 
polarized by spin exchange collisions with the optically pumped  atoms. 
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2. Anisotropic excitation 

The simplest type of optical pumping and perhaps the most important  in 
terms of spectroscopic results is anisotropic optical excitation. An example is 
shown in fig. 1. The quantization axis z is chosen to point  along the polarization 
direction of the linearly polarized resonance light. In practice, it is of ten conveni- 
ent to apply a small magnetic field along the z direction to prevent stray 
magnetic fields pointing perpendicular to the quantization axis from depolarizing 
the atoms. The resonant light excites the atoms from the nondegenerate  ground 
state with angular momen tum quantum number  J = 0 to the m = 0 Zeeman  
sublevel of  an excited state with angular momen tum J = 1. The excited a tom is 
spin polarized since the magnetic sublevels are not equally populated. A simple 
way to detect the spin polarization is to observe the characteristic dipole 
radiation pattern of the fluorescent light. No  photons are emitted parallel or 
antiparallel to the direction of the magnetic field, but  r polarized photons are 
emitted in all directions perpendicular to the magnetic field. 

Anisotropic excitation creates highly polarized atoms. It is the first step in 
many important spectroscopic methods like optical double resonance [3] or level 
crossing [4] spectroscopy. The atomic spin polarization is nearly independent  of 
the intensity of the exciting light, but  not many  atoms can be accumulated 
because the excited atoms decay so quickly by fluorescing or by quenching 
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Fig. 1. Anisotropic optical excitation. Linearly polarized light from a lamp or laser excites only the 
m = 0 sublevel of the excited state. The quantization axis z is specified by the polarization direction 
of the pump light. In practice, a small magnetic field H 0 is applied along the z axis to reduce the 

depolarization of the atom by stray magnetic fields pointing perpendicular to H o. 
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collisions with molecular gases like N 2 or H 2 which carry off the excitation energy 
in vibrational and rotational degrees of freedom. 

3. Depopulation pumping 

A second optical pumping method, depopulation pumping, can be used to 
generate much large numbers of spin polarized atoms in their ground states or 
metastable states. Depopulation refers to the selective excitation of one or more 
particular sublevels and hence a reduction of their population. Two examples are 
shown in fig. 2. In case a, circularly polarized light is used to pump atoms from 
the magnetic sublevel with m = 1 / 2  to the m =  1 /2  state of the upper level which 

o) m=-l12 I /2 
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m = -I  0 I Ground-Stote Atoms 
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Fig. 2. Depopulation pumping. Polarized light is used to deplete the population of a ground state 
sublevel. In part (a), circularly polarized light excites the ground state m = - 1 / 2  sublevel to the 
excited state m = 1/2 sublevel. The excited atoms will spontaneously decay to either ground state 
sublevels with the indicated branching ratios (repopulation pumping). After sufficient time, all the 
atoms will be polarized in the m = 1/2 ground state sublevel. In part (b), linearly polarized light is 
used to depopulate the m = 0 ground state sublevel leaving the atoms polarized in the m = +1 

sublevels of the ground state. 
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then spontaneously decays, repopulating either of the spin sublevels of the 
ground state with the branching ratios indicated in the figure. After a few 
photons have been scattered by the atom, all of the atoms will have been pumped  
to the 1 /2  sublevel and no further scattering will occur. In case b, linearly 
polarized light excites atoms from the magnetic sublevel with m = 0 into an 
excited state of angular momentum J = 0. The excited atom decays with equal 
probability to any of the three ground-state sublevels. After a few photons have 
been scattered by the atom, half of the atoms will be in the sublevel with m = 1 
and half will be in the sublevel with m = - 1  and none in the sublevel with 
m = 0. Note that in both of these examples the spin sublevels with the largest 
absorption cross sections are most strongly depopulated by the optical pumping. 
In depopulation pumping it does not matter much whether the excited state 
decays by spontaneous emission of radiation or whether the atom is deexcited by 
some non-radiative quenching collision with a molecule of the buffer gas. 
Depopulation pumping can work well at buffer gas pressures of atmospheres or 
more, provided the buffer gas does not cause transitions between the spin 
sublevels of the ground state. 

4. Repopulation pumping 

Repopulation pumping, refers to the transfer of polarization of an excited state 
to a lower state. For example in fig. 2a, .spin polarized excited atoms populate a 
lower state by spontaneous radiative decay. The selection rules are such that 
some of the spin polarization of the excited state is transferred to the ground 
state. In the case shown in fig. 2a, the polarization transferred to the ground state 
is - 1 / 3  times as large as the spin polarization of the excited atom. 

EXERCISE 1 
Verify that the polarization transfer factor is - 1 / 3  for the example shown in 

fig. 1. 

Repopulation pumping will not work if the excited atom loses its polarization 
by collisions with buffer gas atoms before it has a chance to spontaneously decay. 
Therefore, depopulation pumping works best at very low buffer gas pressures 
where collisions are too infrequent to depolarize the excited atoms. 

We note that some spontaneous process is needed to carry away the entropy of 
atoms as they become spin polarized by optical pumping. This is similar to the 
situation in nuclear magnetic resonance where lattice phonons are used to carry 
off nuclear spin entropy as the nuclei become spin polarized by microwave 
pumping in the ENDOR technique [5]. In optical pumping,  fluorescent photons 
or quenching collisions are used to carry off the entropy. 
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5. Optical pumping rate equations 

The main features of optical pumping can be understood with the aid of rate 
equations, which describe optically induced transfers of population between spin 
sublevels of an atom. Consider, for example, the case of an atom with a sp in- l /2  
ground state and a spin- l /2  excited state, pumped by circularly polarized light. 
The situation is sketched in fig. 2a. The o+ light can only excite atoms in the 
sublevel with azimuthal quantum number m = - 1 / 2 .  The rates of change of the 
number densities p ( i / 2 )  and p ( - 1 / 2 )  of atoms in the sublevels with m = 1 /2  
and m = - 1 / 2  respectively are therefore given by 

~ t  p( - 1/2)  = - 2Rp( - 1/2)  + ( ] ) 2 R p ( -  1/2)  (1) 

d 
~-~ p (1/2)  = 0 + ( � 8 9  1/2) .  (2) 

In each equation the first term describes depopulation pumping and the second 
term describes repopulation pumping. The factors 2 /3  and 1/3 are the branching 
ratios for spontaneous decay of an atom in the upper state sublevel with 
azimuthal quantum number 1 /2  to the ground-state sublevels with m = 1/2  and 
rn = - 1 / 2  respectively. Note that we obtain a simpler pair of equations for the 
sum and difference of the ground-state sublevel populations, which we write as 

Ng = p(1/2)  + p ( -  1/2)  (3) 

1 
(S~)=  ~-~g [ O (1/2)  - O ( -  1/211. (4) 

Equations (1) and (2) imply that 

d-----~ = 0 ,  (5) 

Thus we conclude that Ng is a constant, which is consistent with our tacit 
assumption that the optical pumping rates are so slow that the atoms spend most 
of their time in the ground state. Henceforth, we shall assume that 

N g = l .  

We may now regard p(1/2) and p ( - 1 / 2 )  as the occupation probabilities of the 
sublevels with azimuthal quantum numbers m = 1/2  and m = - 1 / 2  respec- 
tively. The corresponding equation for (S~) is 

d(S~) _ -~Rp(-1/2) 
dt 

= � 8 9  ). (7) 
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We can readily solve (6), with the initial condition (Sz) = 0 at t -- O, to find 

(S,)  = � 89  e-Zn'/3).  (8) 

That is, the spin polarization builds up from 0 to within 1 / e  of its maximum 
possible value in a time 3/(2R).  

EXERCISE 2 
Derive (8) from (7). 

We can also calculate the number of photons needed to polarize the atom with 
this simple model. According to (1) the rate of scattering of photons is 

dn 
dt = 2 R p ( - 1 / 2 )  

= R[1 - 2(S,)]  

---- R e -2Rt/3. (9) 

The total number of scattered photons is then 

n = [ dt = 3/2 .  (10) 
"0 

EXERCISE 3 
Derive (10 from (9). 

We see that one and a half photons, on the average, are required to fully 
polarize the initially unpolarized atom. Real optical pumping situations are 
somewhat more complicated than the simple model discussed above, but it is 
always true that in the absence of spin relaxation mechanisms, an atom will reach 
its equilibrium polarization after scattering a small number of photons. The 
model discussed above is a particularly favorable situation since in equilibrium 
all atoms are in the + 1 /2  sublevel. Hence no further scattering of photons can 
occur. In other situations the equilibrium polarization can be less than 100%, and 
scattering of photons still occurs. 

It is often convenient to optically pump an atom in the presence of a buffer 
gas at such high pressures that the excited atoms are completely depolarized 
before they decay. Then there will be no repopulation pumping and the spin 
polarization will build up solely because of depopulation pumping. Let us see 
what happens in the situation discussed above if there is no repopulation 
pumping. The optical pumping rate equations (1) and (2) become 

d 
~-Tp ( - 1/2)  = - 2 R p ( -  1/2) + ( � 8 9  1/2)  (11) 

d 
~ - p  (1/2) = 0 + ( � 8 9  1/2)  (12) 



IV. Happer, W.A. van Wijngaarden / A n  optical pumping primer 441 

and the evolution of the spin polarization Would be described by 

d 
d--~ (S~) = = �89 - 2(Sz}) .  (13) 

The solution of (13) is 

(Sz) = �89 - e - m ) .  (14) 

Following through the calculation of the average number of photons needed to 
fully polarize an initially unpolarized atom, we find in analogy to (10) 

r / = l .  

That is, only one photon instead of 1.5 photons is needed to polarize each 
initially unpolarized atom. For the simple case discussed above, collisional 
depolarization of the excited state or "mixing" in the excited state improves the 
efficiency of optical pumping. The depopulation pumping tends to polarize the 
ground state in the same direction as the photon spin, while the repopulation 
pumping tends to polarize the ground state in the opposite direction from the 
photon spin. However, the depopulation pumping dominates and the equilibrium 
atomic polarization is always in the same direction as the photon spin, whether or 
not mixing occurs in the excited state. 

The relative importance of depopulation and repopulation pumping depends 
on the particular state being pumped. For example, if circularly polarized D z 
light is used to optically pump an alkali atom, as sketched in fig. 3, the m = 1 /2  
ground state sublevel is 3 times more likely to be excited than the rn = - 1 / 2  
sublevel. Hence depopulation pumping tends to polarize the ground state of the 
atom in the direction opposite to that of the photon spin. Next, the excited state 
radiatively decays, repopulating the ground state. Repopulation pumping tends 
to polarize the ground state in the same direction as the photon spin since the 
m = 1/2 excited state sublevel can decay to either of the rn = + 1 /2  ground state 

_OZ3L ~ S i /2  

Fig. 3. Effects of depopulation and repopulation pumping. Depopulation pumping using circularly 
polarized D 2 light polarizes the ground state in the direction opposite to the photon spin. Repopula- 
tion pumping tends to polarize the atomic ground state parallel to the pump photon spin. Here we 

have neglected possible depolarization of the excited state due to collisions. 
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Fig. 4. Effect of buffer gas pressure on ground state polarization. When pumping an alkali atom with 
circularly polarized D 2 light, depopulation pumping polarizes the ground state in the direction 
opposite to the photon spin, while repopulation pumping, in the absence of collisional depolarization 
of the excited state, tends to polarize the ground state parallel to the pump photon spin (see fig. 3). At 
low buffer gas pressure, repopulation pumping predominates while at high pressures it becomes 

negligible and the ground state polarization is negative. 

sublevels while the rn = 3 /2  excited state sublevel only decays to the rn = 1 / 2  
sublevel. In the absence of collisional depolarization of the excited state, the 
ground state will be polarized parallel to the photon spin due to repopulation 
pumping. At high buffer gas pressures, collisions depolarize the excited state and 
repopulation pumping is greatly reduced. The atoms are then polarized in a 
direction antiparallel to the photon spin due to depopulation pumping. Thus, the 
equilibrium ground-state spin polarization depends on the buffer gas pressure 
and equals zero at a pressure of a few Torr where the effects of depopulation and 
repopulation pumping are equal and opposite, as indicated in fig. 4. Franz [6] has 
estimated collisional mixing cross sections for the 2P3/2 states of alkali atoms by 
using the zero polarization pressures for the phenomenon sketched in fig. 4. 

6. The density matrix 

In the simple examples of a sp in - l / 2  atom discussed above we have been 
making use of the occupation probabilities p( + 1/2)  of the ground state sublevels 
with azimuthal quantum numbers rn = + 1/2 .  These occupation probabilities are 
in fact the diagonal elements of the atomic density operator p. Suppose that we 
have a collection of N atoms, each with its own wavefunction I~i)  i = 1, 2, 
3 . . .  N. Then the mean value of some atomic observable, say the electron spin, is 

1 N 

i=1 

= Tr[$p] ,  
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where the density operator is 

1 
P = ~ }-'~ I q';)(q', I. (17) 

For a spin- l /2  atom the density operator has four components 

0 = 11 /2 ) (1 /21011/2) (1 /21  + 11/2) (1 /210  I - 1 / 2 ) (  - 1/21 

+ 1 - 1 / 2 ) ( -  1 / 2 1 0 1 1 / 2 ) ( 1 / 2 1 + 1 - 1 / 2 ) ( -  1 / 2 1 0 1 - 1 / 2 ) ( -  1/21. 
(18) 

The occupation probabilities p( + 1/2) of the preceding discussion are obviously 
abbreviations of ( + 1/21P 1 + 1/2) .  To increase the physical significance of the 
density matrix we introduce a complete set of operators 

St = �89 11 /2 )<1 /21 -  I -  1 / 2 ) (  - 1/21] (19) 

S+ = S~ + iS, = 11/2)( - 1/21 (20) 

S_ = Sx - iS, = I - 1 / 2 ) ( 1 / 2 1  (21) 

1 = 1 1 / 2 > ( 1 / 2 ] + 1 - 1 / 2 > ( -  1 /2  [. (22) 

Eliminating the operators 11 /2) (1 /2  I, 11/2>( - 1/21 etc. from (18) with the aid 
of (19) - (22) we find that we may write p in the convenient form 

p = � 8 9  

where (S,)  wa~ given by (4) and 

{S+) = T r ( S + 0 )  = ( -  1 /21011 /2 )  

{S_)  = T r ( S _ o )  = < 1 / 2 1 0 1 - 1 / 2 ) .  

(23) 

(24) 

(25) 
Expansions of the density operator which are similar to (23) can be written for 
higher-spin atoms and for atoms with several interacting spins, e.g. electronic and 
nuclear spins. 

EXERCISE 4 
For a spin-1 atom show that a diagonal density operator can always be written 

a s  

p = �89 + �89 + ~(3S 2 -  2)(3S, z -  2). 

7. Optical monitoring of spin polarization 

Under many experimental conditions the rate of photon scattering (9) is used 
as the "signal" which gives information about the degree of spin polarization of 
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Fig. 5. Detection of spin polarization. The atomic spin polarization can be monitored by measuring 
either the attenuation of pump light after it has passed through the cell or the amount of fluorescence 

light scattered by the atoms. 

the atoms. In the simple case discussed above, the signal is a superposi t ion of a 
constant  term R, the mean pho ton  scattering rate, and a polar iza t ion-dependent  
term, - 2 R ( S z ) .  There are two ways to measure the pho ton  scattering rate, which 
are illustrated in fig. 5. One can observe the a t tenuat ion  of the p u m p i n g  light 
after it has passed through the cell, a me thod  called transmission monitoring, or 
one can measure the amount  of fluorescence light scattered by the optically 
p u m p e d  atoms, a me thod  known as fluorescence monitoring. Both methods  
usually involve some kind of averaging over the variations of light intensity and 
spin polarization within the cell. The  interpretat ion of the data  is easiest when  the 
cells are optically thin and scatter only a small fraction of the light, but  the signal 
to noise ratio is best when the cell at tenuates about  half  of the p u m p i n g  light. 

The  fluorescence moni tor ing  detector  should be as sensitive as possible, 
preferably a photomul t ip l ier  tube since the fluorescence signals may  be weakened 
by quenching gases and are distr ibuted over 4~r steradians of solid angle. The  
transmission moni tor ing signal is ordinarily much  too intense to require or 
permit  the use of a photomul t ip l ier  tube, and a simple vacuum photocel l  or a 
solid state photoconduct ive  detector is usually adequate.  If a quenching  gas like 
nitrogen is used, which is sometimes essential to eliminate radiat ion t rapping for 
high-density atomic vapors, there will be negligible fluorescence, and transmis- 
sion moni tor ing is the only choice for optical detect ion of spin polarization. 

F rom a formal point  of view, both  fluorescence moni tor ing  and transmission 
moni tor ing can be described by not ing that  the pho ton  scattering cross section 
can be regarded as the expectation value of a sp in-dependent  cross section 
operator,  i.e. 

( p )  = T r ( p o ) .  (26) 
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In the simple case illustrated in fig. la  of a sp in - l / 2  ground state atom, the cross 
section operator can be written as 

 =o0[1-2s.s], (27) 
where s is the mean spin of the photons and % is the cross section for the 
scattering of light by unpolarized atoms. The cross section % is a function of 
frequency which is strongly peaked at the resonance frequency of the transition. 
We see from (23) that the mean pumping rate R of (1) must be related to the 
spectral intensity 100  (erg cm -2 sec -1 Hz -a) and the cross section a0(v ) by 

hv dr. (28) 

8. Slow spin relaxation in binary collisions 

We tum now to consider the effect of spin relaxation. Optically pumped atoms 
are often subject to various collisional processes. For example, the atoms can 
collide with the container walls or with other gaseous atoms or molecules in the 
cell. It is a remarkable fact that under the proper conditions an atom which has 
been spin polarized by optical pumping can undergo a huge number of momen- 
tum-changing collisions with no loss of spin polarization. [1] For example, a 
sodium atom can undergo s o m e  1 0  9 collisions with helium buffer gas atoms 
before its electron spin is flipped. A 3He atom can undergo at least 108 collisions 
with the glass walls of a cell before losing its nuclear spin polarization. 

When a spin polarized atom approaches another atom, for example, a noble 
gas atom like He or Ar, the pair can be thought of as a temporary diatomic 
molecule. For example, we have sketched in fig. 6 the adiabatic energy levels E a 
of an alkali atom as a function of the internuclear distance between the alkali 
atom and the noble gas atom. Noble gases or diamagnetic molecular gases like N 2 
or H 2 are often used as buffer gases for optically pumped atoms. 

As we shall explain below, one can expect to find very slow spin relaxation 
whenever the potential curve which represents the interaction between the buffer 
gas atom and the spin-polarized atom, does not split into several curves corre- 
sponding to different spin orientations when the perturber comes close. Thus, the 
ground-state alkali atom illustrated in fig. 6 can be expected to relax very slowly, 
since the lowest molecular potential curve does not split. However, an alkali atom 
in the 2P3/2 excited state should depolarize very readily. Both phenomena are 
observed experimentally. 

The electronic Hamiltonian of a pair of atoms like those of fig. 6 can be 
written as 

H =  Ho( R ) + A H , (29) 
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Fig. 6. Perturbation of the energy levels of an alkali atom by a nearby noble gas atom. R is the 
internuclear distance separating the alkali and noble gas atom. I2 is the absolute value of the 

azimuthal quantum number of the electronic wavefunction about the internuclear axis. 

where H 0 is the electronic Hamil tonian for the atoms at rest at the equilibrium 
internuclear separation R. We can write 

/-/0 = K +  Fco,,  + Fso, (30) 

where T~ is the kinetic energy operator of the electrons, VCoul is the Coulomb 
energy of attraction of the electrons to the atomic nuclei and the energy of 
repulsion between the electrons. Finally, Vso is the first-order part  of the 
spin-orbit interaction between the moving electron spins and the electric fields 
within the molecule. The term A H of (29) denotes the higher-order effects of 
spin-orbit interactions, which are associated with the excitation of electronic 
states or the motion of the nuclei. Also included in A H are the spin-spin 
interactions and other small terms which are described in more detail in most 
textbooks on molecular spectroscopy. 

As indicated in fig. 6, the valence electron of the alkali a tom will have its 
wavefunctions and energies strongly perturbed as soon as the unper turbed 
wavefunction overlaps the noble gas atom. The main cause of the perturbat ion is 
the electrostatic potential experienced by the alkali valence electron in the core of 
the noble gas atom. There is a substantially smaller contribution from the 
spin-orbit interaction. Since both the electrostatic and the spin-orbit potentials 
are invariant with respect to rotations about the internuclear axis, we can label 
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the eigenstates of the alkali-noble-gas pair with an azimuthal quantum number 
m, i.e. 

Jr [ m)  = m [ m),  (31) 

where J~ is the projection of the total electronic angular momentum operator on 
the internuclear axis ~'. The electrostatic and spin-orbit interactions are invariant 
to the time-reversal operator T, that is, H 0T = TH o, and since T i m )  cx I - m )  
we can conclude from elementary quantum mechanics that the quantum states 
I m) and I - m )  are degenerate in energy. In other words, setting 

12 = Iml (32) 

we have 

E a = E _ a .  (33) 

Of course, this is the well known theorem of Kramers. If the total electronic 
angular momentum of the spin polarized atom is J, the perturber will split the 
atomic ground state into J + �89 Kramer doublets if J is a half integer or into J 
doublets, and a single sublevel with m = 0, if J is even. 

Let the atom be described before the collision by the initial wavefunction 
J 

I ~ i )  = E I m ) ( m  I ~ i )  - (34)  
ra= - J  

After the collision the final wavefunction will be 
J 

Iq'r) = Y'. I m)(ml t / , i )  e -i~(m), (35) 
m= --J 

where the phase shift is 

qb(m) = f_~ E ( m ,  t) dt. (36) 
oo h 

Here E(m,  t) is the adiabatic electronic energy as a function of time t, and m is 
the azimuthal quantum number of (31). If the interaction energies are identical 
for all components of the wavefunction, i.e. 

E ( m ) = E  o w h e r e - J < m < J  (37) 

then we can factor out a common phase factor and write 

I tpe) = e- i~0 I ~ i ) .  (38) 

But a common phase factor has no influence on the expectation value of spin 
observables, for example, if (38) is true then 

(h/'t I s I~Pr) = ~ i  I s I 1/Ji) �9 (39) 



448 W. Happer, W.A. oan Wijngaarden / An optical pumping primer 

Hence, we conclude that atoms which can be described as linear superpositions 
of states which remain degenerate during the course of a collision should 
experience no spin relaxation at all. This is the case, at least to lowest order, for 
atoms with total angular momentum J = 1 /2 ,  like alkali atoms in their 2S1/2 
ground states or in their 2P1/2 excited states of thallium atoms in their 2P1/2 
ground states. S-state atoms (i.e. atoms for which the orbital angular momen tum 
is zero.) with total electronic spin S = J > �89 also relax very slowly in buffer gases 
because the splitting of the Kramer doublets is very small and is due to the weak 
spin-spin and spin-orbit interactions instead of the much larger electrostatic 
interactions which split the Kramers doublets for non-S-state atoms. Thus, 
nitrogen and phosphorus atoms which have 4S3/2 ground states corresponding to 
half-filled P shells, relax very slowly in buffer gases [7]. 

If the atom has no electronic angular momentum at all, i.e. J = 0 in the 
ground state, the atom may still carry nuclear spin polarization. Important  
examples are 199Hg, 2~ 3He, 129Xe, 131Xe etc. The collisional relaxation of 
these diamagnetic atoms is exceptionally slow, and the relaxation times can be 
minutes, hours or even days in the case of 3He. 

9. Spin rotation interaction 

The preceding discussion shows wily alkali atoms with their 2S1/2 ground 
states should exhibit very slow spin relaxation due to collisions with buffer gas 
atoms. It is indeed true that polarized alkali atoms relax very slowly, but some 
relaxation is observed. This slow residual spin relaxation was the subject of much 
confusion in the early optical pumping literature. Bemheim [8] first pointed out 
that the spin-rotation interaction 

Vsr = 7S" N (40) 

between the electron spin S of the alkali atom and the rotational angular 
momentum N of the alkali-noble-gas pair would lead to spin relaxation. Bernheim 
made some rough theoretical estimates of the magnitude of the spin-rotation 
coupling constant 7 which were in qualitative agreement with experiment. Soon 
thereafter, R. Herman [9] made more elaborate theoretical estimates of ~/ which 
seemed to be in fair agreement with the experimental data available at that time. 
A very simple theory of ~, which is in better agreement with the most recent 
experimental findings has been reported by Wu et al. [10]. We shall not dwell on 
the microscopic theory of y here, but will show how the spin-rotation interaction 
causes spin relaxation of alkali atoms. 

Consider a binary collision between an alkali atom and a noble gas atom. The 
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alkali atom wavefunction fit after the collision is related to the initial wavefunc- 
tion ~ki before the collision by the solution to Schroedinger's equation 

= (exp - i  - ~ f K r  dt) iki)  
\ 

= (exp - i~.  S ) I ~bi), (41) 

where the electron spin rotation angle is 

= -~- 7' dt (42) 
GO 

and we have approximated the rotational angular momentum with the constant 
classical vector N. As to order of magnitude, experiments show that "t/h <_ 106 
Hz. The duration of a binary collision is ~----10 -12 sec (Bohr radius/speed of 
sound), and N --- 100 so the rotation angle ~ is on the order of only 10 -4 radians. 
We can rewrite (41) in terms of the density matrix as 

pf = (e-i<"spi e- i4"s) ,  (43) 

where the angle brackets denote an average over all possible coUisional rotation 
angles ~. Since the angle ~ is so small, we can expand (43) in ascending powers 
of q~ to find 

p e = P i - i ( [ ~  "S, P i ] ) - � 8 9  + p i ( ~ ' S )  2 - 2 ~ ' S p i ~ ' S ] )  + . . . .  (44) 

Let us assume that the rotation angle ~ is equally likely to point in any direction, 
so that if we average over all directions we find 

(4~) = 0  (45) 

and for products of the Cartesian components of ~, we find 

where (~2) is the mean square rotation angle. Then (44) becomes 

Pf=P i - -  (q52---~[S( s + 1)Pi-S'Pi S] 
3 

EXERCISE 5 
Derive (47) from (44). 

If collisions occur at a 
according to 

dp 1 
dt  - ~ ( P t -  Pi) 

rate  1/T, 

(dP2) [S(S + 1)Pi-S'Pi s] 
3T 

(46) 

(47) 

(48) 

then the density matrix evolves in time 



450 W. Happer, W.A. van Wijngaarden / A n  optical pumping primer 

Consider first the simple model discussed earlier of an alkali atom with no 
nuclear spin. Assume that the atomic spin polarization is purely longitudinal, i.e. 
it can be described by the probabilities 0(+_1/2) to find the electron spin 
pointing up or down, such that 

P = 0 (1 /2 )11 /2 ) (1 /21  + p ( -  1/2)  I - 1 / 2 ) (  - 1 /2  I. (49) 

Equation (48) then becomes 

do (42) 3 ( ~ T ) ( S + p S - S - p S +  ) 
d---t - 3T 4 p + T + ~ + SzpSz " (50) 

Taking diagonal matrix elements of (50) we find 

d (4 2 ) 4(_ T ) (4 2 ) p(1/2)  + p ( - 1 / 2 )  + 1 - - ~ p ( 1 / 2 )  d t  o (1/2) = 4T 

- (42) [ 0 ( 1 / 2 ) - 0 ( - 1 / 2 ) ]  (51) 
6T 

__ ( / ) d  = (42) [ 0 ( - 1 / 2 ) - p ( 1 / 2 ) ]  (52) 
d t  0 " - 1 - 2 "  6T 

Using (51) and (52) we find the rate of change of the longitudinal spin 
polarization (4) to be 

~--t (S,)  = ~ - ~ p ( - 1 / 2 ! ]  

- (42) [0(1 /2)  - p ( -  1/2)] 
6T 

- (42) (S~) (53) 
3T 

Thus, we see from (53) that in the absence of any optical pumping, the 
longitudinal electron spin polarization will relax with a single exponential having 
a time constant ~, 

(Sz) = (Sz) 0 e -v'. (54) 

where the electron spin randomization rate is related to the mean squared 
rotation angle (42) and the collision rate 1 /T  by 

(42) (55) 
Y= 3 T "  

We can also correct the optical pumping equation (7) for the effects of spin 
relaxation and write the more realistic equation 

R _(_~R_ 3,)(sz). (56) ( Sz ) = + 
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If we solve (56) with the initial condition (Sz) = 0 at t = 0, we find 

(Sz) = 1----!----(1 - e-tr+2R/3~'). (57) 
2 +  3---Zv 

R 

The maximum attainable polarization 

1 
2(Sz) = 33' (58) 

1 + - -  
2R 

is now less than unity because of the effect of the spin relaxation. The polariza- 
tion will be nearly total if 7 << R, a situation which is easily realized in practice 
with an intense source of laser light and appropriately chosen buffer gases. 

Some version of the simple model discussed above was often used to analyze 
the data of early optical pumping experiments, but it led to rather serious errors 
of interpretation. As experimental data began to accumulate, large discrepancies 
between the experimentally determined spin-relaxation cross sections of different 
laboratories were reported, and various attempts were made to account for the 
discrepancies. The major parts of this p,771e were solved by M.A. Bouchiat [11], 
who pointed out two important  facts. First, the observed spin relaxation tran- 
sients were not described by a single exponential decay curve, but in many cases 
the observed transient was the superposition of two or more exponential curves 
with time constants which could differ by more than an order of magnitude, as 
will be discussed in the following section. Some early experimenters had been 
measuring the longest time constants and some others had been measuring the 
shortest time constant. A second problem pointed out by Bouchiat was that the 
relaxation was often dominated by the formation of loosely bound Van der 
Waals molecules, consisting of an alkali atom attached to one of the heavier 
noble gas atoms, Ar, Kr, or Xe. The peculiar pressure dependence of the 
relaxation due to the Van der Waals molecules contributed to the misinterpreta- 
tion of the experimental data. 

10. Multiple time constants for the spin relaxation of alkali atoms 

The existence of several different exponential time constants in the decay 
transients of alkali atoms is an effect of the nuclear spin. All stable alkali atoms 
have non-zero nuclear spins. Typical values of the nuclear spin quantum numbers 
are I = 7 / 2  for 133Cs and 1 =  3 / 2  for 23Na. We shall consider the relaxation of 
an alkali atom with the smallest possible non-zero nuclear spin, 1 =  1/2.  Al- 
though no non-radioactive alkali atoms have such a small nuclear spin, the basic 



452 IV. Happer, W.A. van Wijngaarden / An optical pumping primer 

m = - I  

\ 
0 I 

I i 1 7 F=I  

I I I 

X~F=O m=O 
Fig. 7. Hyperfine energy levels of an atom with nuclear spin I ffi 1 /2  and the relative eollisional 
relaxation rates between hyperfine energy levels in units of ~,/4. The rate equations (71)-(74) can be 

written by inspection of this diagram. 

physical causes of different relaxation time constants can be readily understood 
in this simple case, and the generalization of the results to higher nuclear spin 
quantum numbers is straightforward. The hyperfine structure of an alkali atom 
with I =  1 /2  is sketched in fig. 7, along with the collisional transfer rates 
between the sublevels. We shall discuss the transfer rates in more detail later. 

The magnetic interaction between the valence electrons and the nuclear 
magnetic moment causes the energy levels to split into a triplet with total angular 
momentum F = 1 and a singlet with F = 0. The triplet will be further split into 
three azimuthal sublevels if a small magnetic field is present. As to order of 
magnitude, the hyperfine splitting of the ground state corresponds to a frequency 
in the GHz range, and the Zeeman splitting due to the magnetic field is 1.4 
MHz/Gauss.  One can think of the atom in fig. 7 as a hydrogen atom, although it 
is not easy to optically pump a hydrogen atom because the resonance lines are in 
the vacuum ultraviolet region of the spectrum, and the fine structure splitting of 
the 22 P state is very small. 

We assume that the atomic polarization is well described by the sublevel 
populations, i.e. we can ignore any transverse spin polarization or off-diagonal 
elements of the density matrix. Then we can write 

p =  ~.,[FmFml(Fm[p(F, m). (59) 

The basic relaxation equation (48) remains valid for the atom with hyperfine 
structure, since we know that the duration of a binary collision is so short that we 
can ignore any modifications in the evolution of the atomic spins due to the 
hyperfine interaction during the short interval of a binary collision. However, the 
hyperfine coupling of the nucleus to the electron has an important effect in the 
relatively long intervals between collisions. Physically, we can imagine that the 
electron spin is rotated by a small angle during the binary collision, but that the 
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corresponding rotation of the nuclear spin is negligible. Substituting (59) into 
(48) and taking diagonal matrix dements, we find that the rate equation for 
population transfer becomes 

d 
d-s0(F, m ) =  - ~3,o(F, m) + "t(FMIS" pSlFm) 

= - ~_, IV(F, m; r ' ,  m ' ) p ( e ' ,  m' ) .  (60) 
F ~ m  t 

To evaluate the coupling coefficients W we note that 

]11) =a(S)a(1) (61) 

10) = ~ 2 [ a (  S)13(I) + /3(S)a (  I)]  (62) 

[1-1)=fl(S)f l(I)  (63) 

1 
100) = ---~ [ a(  S ) f l ( 1 )  - fl( S ) a (  I ) ]  , (64) 

where a and fl denote spin-up and spin-down states of 1 = 1/2 and S = 1/2. 
Then, for example, one of the terms on the fight of (60) becomes 

S. 111)(111S= S+ Ill)(111S_ S_ II1>(111S+ 
2 + 2 + S~ I l l ) ( l l l S z  

= �88 Il l )(111 + I10)(101 + 100>(00 1 -  110)(00 [ - 100)(10 I]. 
(65) 

We ignore off-diagonal terms like I10)(001 since they oscillate rapidly at the 
hyperfine frequency and do not couple to the slowly changing diagonal terms. 
Thus we can conclude from (60) and (65) that 

W(1, 1; 1, 1 )=  -~, /2 

W(1, 0; 1, 1)--~//4 

W(0, 0; 1, 1 ) = 7 / 4  

W(1, - 1 ;  1, 1 )=0 .  

(66) 

(67) 

(68) 

(69) 

The other columns of the rate matrix IV' can be evaluated in like manner. The 
elements in any column sum to zero, i.e. 

Z W(F, m; F', m') =0 .  (70) 
F , m  

Formally, this condition guarantees that the relaxation process does not change 
the number of atoms in the sample. 
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EXERCISE 6 
Show that (60) implies (70). 

In view of (70) we can conveniently represent W in fig. 7 by labelling only the 
relative values of the non-zero, off-diagonal dements. We see that the collisional 
relaxation causes transitions at the same rate between all pairs of levels except 
(1, 1) and (1, -1 ) .  By inspection of fig. 7 we see that we can write out (60) as 

d 
d tP(1 ,  1 ) =  ~3'[p(1, 0) + p(0, 0)] -�89 1) (71) 

d 
d---~p(1, O)= ~3'[p(1, 1) + p(O, O) + p(1, -1 ) ]  - I ) ' 0 ( 1 ,  O) (72) 

d 
d tP(1 ,  - 1 )  = ~3'[p(1, 0) + p(0, 0)] - �89 - 1 )  (73) 

d 
d---~p(0, 0 ) =  �88 1) + p(1, 0) + p(1, - 1 ) ]  -~3'p(0,  0). (74) 

We can simplify the rate equations above by taking certain linear combinations 
of populations which we write as follows: 

p(1, 1) + 0(1, 0) + p(1, - 1 )  - ~ p ( 0 ,  0) 
( I . S )  = 4 

<F,>=p(1 ,1 ) -p (1 ,  - 1 )  

(3F, 2 - F . F )  = p(1, 1) - 20(1, 0) + p(1, - 1 ) .  

Then we note that 

--a ( x . s )  = -3 ' ( t .  s )  
dt 

d 
h - - / ( F z )  = - �89 

d (3Fz 2 _ F" F )  = - 3'(3Fz 2 - F" F ) .  
dt 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

Thus, the three observables (70)-(80) undergo simple exponential decay, but with 
two different rates. The hyperfine population imbalance (75) and the quadrupole 
polarization (77) both relax at the electron spin randomization rate 3'. The 
longitudinal angular momentum (76) relaxes at half of the spin randomization 
rate, 3'/2. 

The analysis above shows that certain linear combinations of sublevel popula- 
tions are especially convenient for the analysis of optical pumping and spin 
relaxation. The relaxation of these linear combinations is described by single 
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exponential decay curves. We call these special linear combinations the eigenob- 
seroables of the system. One can always expand the density matrix as a superposi- 
tion of eigenobservables P;, i.e. 

1 
P =  ~ + EL.P,, (81) 

i 

where G, the statistical weight of the spin multiplet, is the number of spin 
sublevels, and the operators Pi are traceless and orthonormal, i.e. 

Tr P/tPj = 8ij. (82) 

The numbers f~ are the weights of each eigenobservable and are given by 

f,. = Tr P/t0. (83) 

When the atoms are unpolarized all of the weights are zero and the atoms are 
equally likely to be found in any one of the spin sublevels. 

EXERCISE 7 
Derive (83). 

In the example discussed above we found three eigenpolarizations for atoms 
which are undergoing electron spin randomizing collisions in a buffer gas. The 
normalized eigenobservables corresponding to (75)-(77) are: 

1 (84) 
, 

where the elements of the column vector are the amplitudes of the basis operators 
111) (11 I, 110) (10 l, 11 - 1) (1 - 1 [ and I O0) COO [ respectively. Similarly, we write 
a second eigenobservable 

Fz 1 (85) 
_ 

and a third 

1 
~ (  1 - 2  (86) e 2 =  3 F ) - e . r )  = ~ -  1 

0 

Note that P0, P1 and P2 are traceless, i.e., the sums of the 4 numbers in the 
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o) 

b) 

- P ~  

F=I 

m-- - I  0 I 

rn : 0 F:O ~o 

F=I 

c) 

I 

m= - I  , , .  / ] ~ ' / / o  I 

J / F-'O 
m= 0 

F=I 

P, 

\ \  //Pz 

171 o 
m:  - I  " \  / 

F=O 
m= 0 

Fig. 8. Similarity between the dependence of (mlPtlm) and the Legendre polynomial Pt(m/J) on 
the azimuthal quantum number m. 

columns are zero. We can completely describe the popula t ion  imbalances of the 
H atom with these eigenpolarizations. The dependence  of <m I Pt I m) on the 
azimuthal quan tum number  m is very similar to the dependence  of the Legendre  
polynomials  Pt(m/J) as indicated in fig. 8. The  similarity is not  accidental  and  it 
is due to our assumpt ion that the collisional relaxation mechan i sm responsible 
for the spin relaxation is isotropic. 

Collisional transfer diagrams similar to fig. 7 can be sketched for I > 1 /2 .  One 
finds that the collisional selection rules are Am = 0, + 1, but  the magni tudes  of 
the rates are not  all the same as is the case for the simple example of fig. 7. 
Bouchiat [11] has shown that  I .  S is always an eigenobservable which relaxes at 
the electron spin randomizat ion rate. However  there are two angular  m o m e n t u m  
eigenobservables [11], Qe and _T~ which, in the case of I =  3 /2 ,  have the 
popula t ion ampli tudes sketched in fig. 9. i~ is defined to be 

i ,  = Y'. I F m ) ( F m  [I, I F m ) ( F m l .  
Fm 

(87) 



W. Happer, W.A. van Wijngaarden /An optical pumping primer 457 

m = _ 

F=2 

F=I 
m = 

< Iz  > <Oe > 

y (<iz>)= 2 7 y(<Oe>)=7 

(2 I+1 )  a 

Fig. 9. The two angular momentum eigenobservables ~ and Qe for an alkali atom with nuclear spin 
I = 3/2. The amplitudes can be calculated from (87) and (88) with the aid of the projection theorem 
for coupled angular momenta. The selection rules for the transitions caused by electron randomizing 
collisions are AF=0, +1 and Am=0, +1, i.e. transitions occur only between nearest neighbor 
sublevels. Thus Qe relaxes faster than ]z, since the nearest neighbor sublevels with A F= 1 of the 

eigenobservable Qe have larger population differences than do those of i z. 

That  is, i z is the diagonal part of the longitudinal nuclear spin operator 1~. The 
other observable is 

Q~ = ~ 2 •, (88) 
2 I +  1 

where ,~z is defined in analogy to (87). 
In many optical pumping experiments which use circularly polarized light, the 

signal is proportional to (Sz), which is given by 

2 
( ~ )  = (Q~) + 2 I  +-----~ ( L ) -  (89) 

It can be shown [11] that the relaxation transients will decay with two different 
exponential time constants, a fast decay at the electron spin randomization rate 
y, the decay rate of (Q~), and a slow decay of (I~)  at the rate 2 y ( 2 I  + 1) -2 or 
3,/8 as is illustrated in fig. 9. For quantitative measurements of relaxation 
phenomena it is important  to be aware of the possibility that the relaxation 
transients may be superpositions of exponentials with quite different time con- 

stants. 

11. Van der Waals molecules 

An important relaxation mechanism which was not understood in early optical 
pumping experiments and which led to considerable confusion until it was 
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E n e r g y  

D e ~-- kT 
- 2 0 0 c m  -I 

R 

R o ' - ' 5 A  

Fig. 10. Interaction potential between an alkali and a noble gas atom for a Van der Waals molecule. 
At a representative internuclear separation of 5 A, the well depth might be 200 cm- 1. 

recognized by Bouchiat and her coworkers [11] is the formation of loosely bound 
Van der Waals molecules. There is a weak attractive well in the interaction 
potential between an alkali a tom and a noble gas a tom as sketched in fig. 10. The 
well depth is only on the order of kT at room temperature,  so the molecules can 
be broken up by almost any collision. However, the molecule is perfectly stable in 
the intervals between collisions. The intervals between collisions can be hundreds  
of nanoseconds at buffer gas pressures of a few Torr, and as short as one 
nanosecond at buffer gas pressures on-the order of one atmosphere. These time 
intervals are much longer than the picosecond durat ion of a binary collision, so 
the spin flip probabilities of an alkali a tom in a Van der Waals molecule can 
approach unity since the flipping probability scales as the square of the interac- 
tion time. In fact, the  existence of long-lived Van der Waals molecules would 
cause such rapid relaxation that it would be impossible to produce high spin 
polarization if it were not for the fact that an improbable three-body collision is 
required for a Van der Waals molecule to form. A typical formation event is 
illustrated in fig. 11. The nitrogen molecule or another Xe or Rb atom is needed 
as a third body to carry away the binding energy of the molecule. 

For the simple model of an alkali atom with no nuclear spin, the relaxation 
caused by Van der Waals molecules can be described by the rate equation 

do  1 
= 

where the three-body formation rate per alkali a tom is 

1 
TF = [Xel[N2]Z" 

(90) 

(91) 
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~Xe; 

~N2'~ 

Fig. 11. Formation of a Van der Waals molecule. Van der Waals molecules such as RbXe, are formed 
in a 3 body collision. The third body eg. N 2, is required to simultaneously satisfy conservation of 

energy and momentum. 

H e r e  Z is a charac te r i s t i c  ra te  cons t an t  which  is typica l ly  on  the o rde r  of  10 -34 

c m  6 sec -1. T h e  f inal  dens i ty  o p e r a t o r  is desc r ibed  b y  (43) which  we can  no  longer  

a p p r o x i m a t e  wi th  the p o w e r  series e x p a n s i o n  (44) b e c a u s e  the ro t a t i on  angle  q, 

c an  be  m a n y  rad ians  in a long- l ived V a n  der  Waa l s  molecule .  Le t  us cons ide r  

I 

y 

Fig. 12. Coordinate system used to represent ~. 
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again the simple model of an alkali atom with no nuclear spin which is described 
by the density operator (23). Then the final density operator after the collision is 

pf= ( e - i * s [ � 8 9  + 2(,S~)Sz] e i*s ) ,  

= �89 + 2(Sz)(e-ir e ir } , .  (92) 

The notation ( }§ denotes an average over the direction and magnitude of q,. 
The coordinate system used to represent ~ is shown in fig. 12. If we average over 
the azimuthal angle a we find 

(e-i*'Ss~ e i * s  } ,  = S, [cos2+ + sin2+ cos , ] .  (93) 

Next, (93) is averaged over an isotropic distribution of + such that (cos2~k) = 1 /2  
and (sin2~k) = 2 /3  yielding 

{e-ir e ir } r  �89 + 2 cos ~b]. (94) 

EXERCISE 8 
Verify (94). 

Finally, if we assume an exponential probability distribution of rotation 
angles, corresponding to an exponential distribution of molecular lifetimes 

P ( r  dq, = e x p ( -  q~/7) dq~= , (96) 
q, 

we find the average value of (96) to be 

{e - i*ss .  e i §  -- -~- 1 + 1 +  7 -----.-7 (97) 

and hence from (97) and (90) 

1 2 [  2 
Or = ~ + -~ 1 + - - 1  + 7  2 (Sz)Sz"  (98) 

Then the evolution equation becomes 

d 2 7 2 
d--t(S') = 3TF 1 + 7 2 ( s z )  = --'Y(Sz)" (99) 

Note that (r of (46) is the same as 272 . The rotation angle is inversely 
proportional to the third body pressure so we can write 

~ =  P--2~ (100) 
P 
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Fig. 13. Dependence of the spin depolarization rate y on the third body pressure p. Here we assume 
that the spin polarized atom sticks to a heavy noble gas atom whose partial pressure is negligible 
compared to that of a " third body gas" like N 2 or He which does not form Van der Waals molecules 

or cause noticeable spin relaxation. 

where P0 is some characteristic pressure, typically about 100 Torr, at which the 
mean rotation angle is 1 radian. Also, the three body formation rate is propor- 
tional to the product of the noble gas pressure and the third body pressure p. We 
assume that the cell contains a small fixed amount of a heavy noble gas like Xe 
which can form Van der Waals molecules with the alkali atom and a much larger 
pressure p of some gas like Ni 2 which does not readily form Van der Waals 
molecules and which causes negligible spin relaxation but which can act as a 
third body in the formation of the molecule. Then the formation rate will be 

1 
TF =ap,  (101) 

where a is some constant. The spin depolarization rate should then scale as 

2 2 __P (102) Y = ~apo p2 + p~ �9 

The expected pressure dependence of 3' is shown in fig. 13. The peculiar pressure 
dependence sketched above is characteristic of a situation where the spin-polarized 
alkali atoms are relaxing in a small fixed amount of a heavy noble gas (for 
example 1 Torr of Xe) in the presence of a much larger amount of a third-body 
gas of pressure p. 

If the alkali vapor is relaxing in pure Xe or Kr gas, then the Xe or Kr atom 
must also serve as the third body and the molecular formation rate is propor- 
tional to the square of the gas pressure, i.e. 

1 
-~F = bP 2, (103) 
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Fig. 14. Dependence of the spin depolarization rate 7 on the noble  gas pressure p. Here we assume 
that the heavy noble gas also serves as a third body. 

where b is some constant. Substituting (103) into (99) we find that the relaxation 
rate is 

p2 
2 2 (104) 3" = ~bpo p~ +p2" 

The expected pressure dependence of 3' as a function of the pure noble gas 
pressure is shown in fig. 14. 

12.  R e l a x a t i o n  d u e  t o  s p a t i a l  d i f f u s i o n  

Spin polarized atoms can diffuse through the buffer gas of a sample cell to the 
cell walls. It is often true that the cell walls are an effective mechanism for spin 
depolarization. If we ignore the effects of spin depolarization due to collisions 
with the buffer gas, the atomic density operator will obey the diffusion equation 

dp 
d--7 = D ~r2p, 

where 

D = Xv/3 

(105) 

(106) 

is the diffusion constant of the atoms in the gas, )~ is the mean free path of 
diffusing atoms in the gas and v is the mean thermal velocity. To solve the 
diffusion equation we need to know the boundary  conditions at the cell walls. 
When an atom strikes the cell wall it may stick for some dwell time. While the 
atom is on the wall various spin relaxation processes will be at work. For  
example, there may be paramagnetic sites on the cell wall like dangling chemical 
bonds which interact with the electron spin of the atom or with the nuclear 
magnetic dipole moment.  There will also be large electric field gradients which 
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can interact with the nuclear quadrupole moments  of diamagnetic atoms like 
131Xe. Let us suppose that the wall destroys a fraction a i of the eigenobservable 
amplitude f~, but that the wall causes no mixing of the eigenobservable ampli- 
tudes with each other. Then the gas kinetic current Ji+ of the eigenobservable 
amplitude f,. into the wall is 

4 2 ~n f ' '  (107) 

where N is the total number density of spin polarized atoms and 

a 

~n 

is the spatial gradient along a unit vector n, normal to the wall and pointing out 
of the cell. All of the adsorbed atoms eventually desorb from the wall and they 
carry with them a fraction (1 - ai) of the polarization amplitude f~. Thus, we can 
write for the desorbing current 

j;_ = (1 - a i ) j,+. (108) 

Let us assume that the total current into the wall obeys the usual formula for 
diffusional transport 

j,+ - j , _  = UD~t.  (109) 

Substituting (105) and (109) into (107) we find that the boundary condition at the 
wall must be 

0L 
~)n = _/,if,., (110) 

where the normal gradient parameter  is 

3ai (111) 
~ti= 2 ( 2 -  a i ) ~ "  

Strictly speaking, one should think of ~i as a function of position on the cell 
surface. It can be a complex number if there are coherent wall interactions, and it 
can be an operator if the wall interactions are coherent and mix different 
eigenobservables. For simplicity we shall regard ~ as a real constant. If we 
consider the evolution of spin-polarized atoms under the simultaneous influence 
of diffusion and spin relaxation in the bulk, we find that in the gas the amplitude 
of an eigenobservable satisfies the equation 

dfi =DV2L-~,,f~. (112) 
dt  
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2 

Fig. 15. Graphical solution of equation (117). Two possible solutions for the spatial frequency k and 
the corresponding spatial diffusion modes are sketched for the case where polarized atoms are 

confined between two infinite plane parallel walls separated by a distance h. 

Let us seek an exponentially decaying solution to (112) of the form 

f /=f~( r )  e - r ' .  (113) 

Then (112) becomes the purely spatial equation 

[~2 + k2]f~ = 0, (114) 

where the spatial frequency k is related to the other parameters by 

F = V, + Ok2. (115) 

The solution to (114) subject to the boundary condition (110) can be quite 
involved for complicated cell shapes, but one can get a good physical insight into 
the issues involved by considering atoms which are confined between two infinite 
plane parallel walls located at z = + h / 2 .  Then a symmetric solution to (114) is 

f~ = A cos kz 

which satisfies the boundary condition (110) if 

k tan (kh /2 )  = i~. 

(116) 

(117) 

This transcendental equation can be solved graphically as indicated in fig. 15. 
The solutions are indicated by circles, and their spatial dependences are sketched 
below. 
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For  the most  slowly relaxing mode  we can consider two limiting cases. We 
first consider a "good" ,  weakly relaxing wall for which 

i~h/2 << 1. (118) 

We assume that (117) implies also that  

kh2 << 1 (119) 

so we can set tan kh/2 ~ kh/2 in (117) and write 

k2= 21~/h. (120) 

There must  also be a very small spin destruct ion probabili ty at the wall to ensure 
the validity of (118) so we can approximate  (111) by 

iz~ 3a/4X. (121) 

Then  the spin relaxation ra te /~  becomes 

vai (122) 
F = 7 ; +  2--h-" 

That  is, for a good wall, the wail contr ibut ion to the relaxation rate (122) is 
independent  of the gas pressure. Increasing the gas pressure for a cell with good 
walls causes the spins to relax faster, since it will increase the bulk relaxation rate 
Yi while having no effect on the wall rate. This is the si tuation which can be 
realized for alkali a toms in glass cells with paraff in-coated walls at low buffer gas 
pressures or for mercury or noble gas atoms with nuclear spin polarization in 
uncoated glass or quartz cells. 

A second impor tant  limiting case is that  of a very strongly depolarizing cell 
wall for which ot i - - ~  1 and 

ixh/2 >> 1. (123) 

Then  we see from fig. 15 that for the slowest diffusion mode  

kh/2 ~ ~r/2, (124) 

so the relaxation rate (115) becomes 

I ' = y ,  + D(~r/h) 2. (125) 

Under  these condit ions the contr ibut ion of the wall to the relaxation rate is 
proport ional  to the diffusion constant  D and it is therefore inversely propor-  
tional to the buffer gas pressure. This is the sort of si tuation which is realized for 
spin polarized alkali a toms in uncoated glass cells where the walls are very 
strongly depolarizing. Every a tom which diffuses to the cell walls will lose its spin 
before desorbing from the wall. For such cells high pressures of weakly relaxing 
buffer gases are favorable since they slow down the diffusion of the polarized 
atoms to the walls. 
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13. Relaxation due to spin exchange 

As a final topic we shall discuss the important phenomenon of spin exchange 
which makes it possible to transfer spin polarization from atoms which can be 
easily optically pumped, especially the alkali atoms, to atoms which are difficult 
to spin polarize by direct optical pumping. Some examples of atoms which are 
very conveniently polarized by spin exchange are hydrogen atoms, nitrogen 
atoms and the nuclear spins of noble gas atoms. None of these atoms can be 
easily optically pumped directly because their resonance absorption lines lie in 
the vacuum ultraviolet region of the spectrum where there are no good sources of 
pumping radiation and where optical components like lenses and mirrors are 
expensive or unobtainable. Here we shall consider spin exchange between elec- 
tron spins, but entirely analogous considerations hold for spin exchange between 
polarized electrons and nuclei. We may write the spin exchange process between 
an alkali atom A and a hydrogen atom H symbolically as 

A(I") + H ( $ )  - ,  A ( $ )  + H ( $ ) .  (126) 

The origin of the spin exchange interaction is the splitting of the singlet and 
triplet potential curves of the HA molecule which is sketched in fig. 16 as a 
function of the internuclear separation R. Just before the spin exchange collision, 
we can write the wave function of the HA pair as 

I = q A> I (127) 

This wavefunction will contain electronic-spin singlet and triplet components,  

Energy 

Fig. 16. Splitting of the singlet and triplet potential curves of the HA molecule. The classical 
trajectory of a particle scattering from the 1y potential is also shown. 
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which we can project out of the wavefunction by means of the projection 
operators 

Ps= ~--  SA" SB 

Pt = ~ + SA" SB. (128) 

EXERCISE 9 
Derive Ps and Pt- 

The final wavefunction after the collision will be 

[+r) = U[ •i>, (129) 

where the unitary operator U is 

U = e-i*'Ps + e- i* 'P  t (130) 

and the phase evolution angles can be writen in the semiclassical approximation 
in terms of the integral of the potential curves along the classical trajectories 

(131  

oo V. 
q~,= f'_oo-~dh. (132) 

If we work with density operators, (130) implies that 

(P H A) r  = U(PHA)iU ~f, (133) 

where for uncorrelated ensembles of atoms A and H the density operator of a 
colliding pair is simply 

(PHA)i = PAPH- (134) 

Substituting (130) into (133) we find 

( P H A ) f  = PsPHPAPs + PtPHPAPt + ( PsPHPAPt e ia~' + h.c.), (135) 

where h.c. denotes the Hermitian conjugate of the previous expression, and the 
phase difference is 

Aq~ = q~t- qSs- (136) 

Substituting (128) and (134) into (135) and carrying out the algebra we find 

(PHA)f---- PAOli -{- s i n 2 ~  [ -  ~PAPH d- S A �9 SnPAP H "Jr- pAPHSA �9 S H 

+4SA" SHPAPHSa" S t t ] +  i sin Aq~[S A �9 S n, PAOli]. (137) 
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EXERCISE 10 
Verify (137). Hint: for a spin- l /2  particle note that the spin operators satisfy 

the identities SiS j + SiS i = 8ij/2 where i, j = x, y, z. 

We assume that the density operators of the A atoms and the H atoms remain 
uncorrelated after the spin exchange collisions because of the random nature of 
collisions in a gas cell. Then we can write 

d 
dt (Pn)ex = 1 [TrA(PnA)r- OH], (138) 

where 1 / T  is the collision rate. Substituting (137) into (138) we find 

~ (p,.,)o. 1 = ~.  [-?~p. + s . .  p . s .  + ( & ) .  s . p .  + p . S . .  (&) 

--2i(SA) �9 (Srt X PHSn)] - i[86o" Srl, Ps] ,  (139) 

where the spin exchange rate is 

1 1 /  . 2 A r  
(140) 

and the rotation rate is 

6 ~ =  (sin A~) <SA) (141) 
T 

EXERCISE 11 
Verify (139). 

We note that if the atoms A are unpolarized so that (SA)=  0, the spin 
exchange equation (139) becomes identical to the equation for electron spin 
randomization (50) where we must identify (~2) /3T  with 1/T~x. It is not 
difficult to show that (139) implies that 

d(SH) = Tr( ~ d o l l  

1 
- T,x [(SA) -- (Sri)].  (142) 

EXERCISE 12 
Verify (142). 

That is, in equilibrium we must have 

(SH) = (SA). (143) 



W. Happer, W.A. oan Wijngaarden / A n  optical pumping primer 469 

Thus, if there is no nuclear spin the equilibrium density operator of the H atoms 
is 

p .  = �89 + 2 ( s~ ) .  s . .  (144) 

If the atom H has a non-zero nuclear spin I, a solution to (139) for which 
dpH/d t  = 0 is 

p . =  (�89 + 2 ( s~ ) .  s . ) p , ,  (145) 

where P l is any normalized density operator which operates only on the nuclear 
spin variables. 

However, in general (145) is not a steady state solution for the spin polarized 
atoms because the true evolution equation for the spin polarized atoms is not 
(139) but 

dp H d ~h 
= ~-'~(PH)ex + [AI .  S, PHI (146) 

dt 

That is, we must account for the hyperfine coupling of the electron spin S and 
the nuclear spin I by the magnetic dipole hyperfine interaction A I .  $. There is 
only one possible equilibrium solution to (146), as was first pointed out by 
Anderson et al. [12]. The solution is 

PH = N e O r ,  (147) 

where N is a constant which can be determined from the requirement that 
Tr[p] = 1. The total angular momentum of the H atom is 

F =  S + I (148) 

and the constant vector fl, the spin temperature parameter, is defined by 

(sA) 
/3=[2 tanh-121(SA) I] I(SA) I " (149) 

EXERCISE 13 
Verify (149). Hint: [u I .  S] = 0 

The spin temperature distribution p = e B r z  is sketched in Fig. 17. Note that 
the spin temperature distribution is a complicated superposition of the eigen- 
polarizations we discussed in connection with electron spin randomization in 
Section 10. For sufficiently dense alkali vapors the very important spin tempera- 
ture distribution (147) is a good description of the spin polarization. 
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m= - 2  - I  0 I 2 F = 2  

m= -I 0 I F=I 

Fig. 17. Spin temperature distribution. It is possible to define an effective temperature k T =  ~-1, 
which can be used to determine the sublevel occupation probability for alkali atoms which are having 

rapid spin exchange collisions with each other. 
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