PHYSICS
OFTHEEARTH
ANDPLANETARY
INTERIORS

ELSEVIER Physics of the Earth and Planetary Interiors 103 (1997) 365-374

Elliptical instability of the Earth’s fluid core
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Abstract

The elliptical instability of a rotating fluid contained in a thick spherical shell has been excited in our laboratory by a
tide-like perturbation of the flexible inner boundary. For an inviscid fluid, the growth rate of the instability is approximately
proportional to the perturbation amplitude and the rotation rate. Development of the instability appears to be limited by the
spherical outer surface and the relatively small perturbation applied over the inner surface. If the corresponding instability
were excited in the Earth’s fluid core by tidal forces, in the absence of dissipation the e-folding time for growth would be on
the order of several thousand years. Although this time scale is similar to current estimates for the time needed for the
geomagnetic field to undergo a reversal, the instability would grow at a rate equal to the difference between the ideal growth
rate and the overall decay rate. The rates of viscous and electromagnetic damping are determined by material properties of
the core fluid that are not well known. If elliptical instability plays a central role in geomagnetic reversals, upper limits on
the viscosity and conductivity of the fluid core might be inferred. © 1997 Elsevier Science B.V.
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1. Introduction Tarasov, 1985; Malkus, 1989). A slight vibration of
a rotating fluid about a state with circular streamlines
is called an inertial mode, whereas a greater devia-
tion from a state with elliptical streamlines is called
an elliptical instability. The deformation from circu-
lar to elliptical streamlines is accompanied by a
transition from real to complex frequencies, so an
inviscid inertial mode only has a frequency but an
elliptical instability also has a growth rate. In essence,
an elliptical instability consists of inertial modes that
have promoted themselves far beyond the classical
regime where advection of the fluid particles through
the velocity field is negligible in the rotating frame
of reference. The signature of an elliptical instability

" Corresponding author. within a fluid contained by a cylindrical boundary is

It is well known that deformation of the circular
streamlines of a contained rotating fluid can produce
an unstable response whereby an otherwise laminar
flow becomes turbulent. For an effectively inviscid
fluid, the perturbation may be small enough that only
terms up to first order need be considered in the
equations of motion to adequately model the re-
sponse. Indeed, the elliptical type of such instability
has been produced in laboratory experiments on
fluids contained by cylindrical boundaries with per-
turbation amplitudes as low as 1% (Vladimirov and
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a locus of stagnation points as though the rotation
axis were bent into a sinusoid. Clearly the velocity
scale for the disturbance in the rotating frame of
reference is then comparable with that for the rota-
tion in the laboratory frame. Although its frequency
and growth rate are predicted by linear theory, a
mature elliptical instability is a highly non-linear
flow.

Viadimirov and Tarasov (1985) depicts the onset
of hydrodynamic instability within a rotating cylin-
der of elliptical cross-section. The cylinder and fluid
were set into solid-body rotation, then the cylinder
was stopped so that the fluid moved past the ellipti-
cal perturbation, which produced a transient instabil-
ity seen by means of dye along the axis. Malkus
(1989) describes a similar instability that was repeat-
edly produced within a rotating cylinder whose flexi-
ble walls were deformed by a pair of rollers fixed at
opposite sides in the laboratory frame of reference.
In this experiment the elliptical instability of the
fluid was observed to grow, break down, and decay
in succession, as long as the tide-like perturbation
was applied.

It is now recognized that a so-called ‘resonant
collapse’, as studied in experiments by Thompson
(1970) and McEwan (1970), is probably from the
same family as the elliptical instability, but of shear
type, as described by Kerswell (1993). McEwan
(1970) shows the onset of resonant collapse in a
rotating cylinder of fluid perturbed by precessing the
lid, and Manasseh (1992) reports a similar result in a
rotating cylinder of fluid perturbed by precessing the
whole. More recently, Manasseh (1994) has inter-
preted the response of a fluid rotating within a
precessing cylinder as the shear instability. A combi-
nation of the shear and elliptical instabilities has
been observed by Vanyo et al. (1995), who pre-
cessed a rotating spheroid and found unstable re-
gions in the contained fluid.

Our interest in the elliptical instability of a rotat-
ing fluid dates back to Lumb et al. (1993), where the
possibility of its excitation within a spherical shell
was suggested. There were two reasons to pursue
such an idea: one mathematical and the other geo-
physical. Mathematically, an elliptical instability
owes its existence to a resonance of inertial modes
that are represented by solutions of the ill-posed
Poincaré problem. The absence of certain inertial

modes from the spectrum of a spherical shell would
mean the lack of a mechanism for the associated
elliptical instability in that geometry. Geophysically,
an elliptical instability might be repeatedly excited in
the fluid outer core of the Earth by the slight tidal
deformation of the core—mantle boundary. If so, the
growth of inertial modes into non-linear flows would
become central to dynamo theories of the geomag-
netic field.

A laboratory experiment would determine whether
such an instability could be excited in a thick spheri-
cal shell and under what conditions. Fundamental to
elliptical instability is the existence of inertial modes
with azimuthal wavenumbers of zero, one, and two.
Of course, those with the value zero are axially
symmetric oscillations, whereas those with the larger
values are azimuthally travelling waves. The relevant
geometry had been adopted before to excite inertial
modes of wavenumber zero (Aldridge, 1975) and
wavenumber one (Stergiopoulos and Aldridge, 1984;
Lumb and Aldridge, 1988). Thus a real fluid, with a
small but finite viscosity, was known to support a
number of inertial modes in a rotating spherical
shell, and this fact encouraged a search for elliptical
instability.

In general, to describe an inertial mode of a thick
spherical shell is a challenging problem, but one that
must be solved in order to model an elliptical insta-
bility with the same geometry. A variety of approxi-
mate solutions for inertial modes of a spherical shell
have been found by Rieutord (1995), Rieutord and
Valdettaro (1997) and Henderson (1996). The latter
employed a finite-element method to obtain what are
known as ‘weak solutions’ of the Poincaré problem.
In the present work a method is introduced that
begins with the numerical solutions of Henderson
and proceeds to find the growth rates for certain
elliptical instabilities of a thick spherical shell of
rotating fluid.

An elliptical instability occurs when a rotating
fluid is perturbed so that two inertial modes not only
become excited together, but also interact to amplify
each other. The amount of growth is limited only by
the dissipation, which is due to viscosity and later
turbulence. A pair of inertial modes can be denoted
by A(ny, my, k) and A, (n,, m,, k), where k is
the azimuthal wavenumber, n and m are the merid-
ional ‘wavenumbers’, and A is the dimensionless
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Fig. 1. Bottom view of maximally deformed (fractured) inner boundary.

eigenfrequency. As will be explained further below,
an instability of a rotating fluid is possible if n, = n,,
k,—ky,=2, and (A, — A,)/2 = w/12, where w/{2
is the angular frequency of the elliptical perturbation
divided by that of the basic rotation. It has been
shown that the gravest instabilities, which are called
subharmonic resonances, each involve the interaction
of an inertial wave and its adjoint (Kerswell, 1994).
However, the criteria for elliptical instability can also
be satisfied by other combinations of inertial modes.

2. Theoretical formulation

Some growth rates for elliptical instabilities in a
spheroidal cavity have been calculated by Gledzer
and Ponomarev (1992), using a Galerkin method,
and by Kerswell (1994). Those growth rates are
determined precisely, insofar as the inertial modes of
a full spheroid are known analytically. In the case of
a thick spherical shell, however, the inertial modes
are represented by solutions of the Poincaré problem
that, with certain exceptions, are only known numer-
ically. Henderson (1996) has devised a finite-element
method to calculate a discrete approximation for the
reduced pressure field of any such inertial mode with
low enough wavenumbers. We in turn have adopted
certain sets of his pressure data to calculate the
growth rates of elliptical instabilities in a thick spher-
ical shell of rotating fluid. Further discussion along

these lines by Seyed-Mahmoud et al. (1997) is forth-
coming. Only those computational results that have
been a basis for comparison with our experimental
results are presented below.

In order to verify our approach, the elliptical
instability associated with the spin-over mode was
singled out, then growth rates calculated from the
approximate and exact solutions for the velocity field
were compared. The frequency of the instability,
which we call the spin-over instability, is equal and
opposite to the frequency of the rotation, so the
velocity field of the disturbance is stationary with
respect to a laboratory frame of reference. Hence, we
observe a non-rotating but amplifying instability
whose dimensionless growth rate is given by:

'92V1,—1V—1.1
6=+ — > (n
NyNZy =& Vi_\V_,

where:
2 . * 33
N =fu,u;dr

V= [Tu, - u.d’r

and:
cos2¢ —sin2¢ O
T=| —sin2¢ —cos2¢ O
0 0 0
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in a cylindrical coordinate system (r,¢, z). Note that
£ is defined as the ellipticity of the boundary in an
equatorial plane, not a meridional plane. The u, are
obtained directly from the analytical expressions:

u, = (—itf+z¢+irf)e’?
u_, = (izf’+ 2P — irﬁ)eigb
or indirectly from the numerical pressure field by
finite difference methods. The independent calcula-
tions of the growth rate were in agreement to three
significant digits for ellipticity in the range ¢ < 0.25
approximately. At small ellipticity the relationship
8= g/2 is satisfied by the growth rate.

The dimensional growth rate (26 is the property
of the instability that becomes relevant in discussion

of the experiments and their geophysical applica-
tions. Moreover, the growth rate of an elliptical

instability must actually be weighed against the de-
cay rate, since a real fluid always involves some
dissipation. If the viscous decay rate and inviscid
growth rate are equal, the net growth rate is zero and
no instability exists. In our experiments, viscous
dissipation occurs primarily through boundary layer
processes, so the scale for the decay rate is the
square root of the Ekman number:

E=uv/0R?

where v is the kinematic viscosity of the fluid, {2 is
the angular frequency of the rotation, and R the
length scale of the cavity. Accordingly, the net di-
mensional growth rate of the spin-over instability is
approximately:

(e/2—aVE ) (2)

Fig. 2. Linotronic print from VHS video depicting the spin-over instability in the spheroidal shell of fluid.
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where a = 1.8 is the coefficient of the decay rate
(Hollerbach and Kerswell, 1995). In our experiments
E=45%10"7, so the net growth rate of the spin-
over instability should be approximately (g/2 —
0.012) 2. Similarly, in geophysical applications E is
the Ekman number of the Earth’s fluid outer core
and ¢ is the ellipticity of the core—mantle boundary
due to tidal forces.

3. Experimental method

The apparatus used to excite the elliptical instabil-
ity in a spherical shell of rotating fluid was as
follows: a rigid outer boundary, with radius R =
10.0cm, was rotated about a fixed vertical axis by a
servo-controlled motor that maintained a constant
angular frequency to within a 0.15% tolerance. A
flexible inner boundary., with mean radius 3.5 cm,
was deformed continuously by another servo-con-
trolled motor that drove a rotor arm. The inner
boundary was composed of an elasto-plastimer but
was lined at the equator with a copper belt in contact
with roller bearings at opposite ends of the rotor arm.
Because the second motor was mounted on the outer
boundary. control of the perturbation was through
electrical slip-rings that were coaxial with the rota-

Meridional Pressure Contours
Inertial Mode (6,2,2)

rotation axis

Fig. 3. Calculated pressure contours for the (6,2,2) mode for a
spherical shell of rotating fluid. A = w /{2 = 0.896. Dashed line is
approximate position of laser sheet and corresponds to the plane
of the plots given in Figs.6 and 7.

tion. While the rate of rotation was set with respect
to the laboratory frame of reference, the rate of
perturbation was set with respect to the rotating
frame. If the second motor turned the rotor arm in a
retrograde sense at the same rate as the first motor
rotated the entire shell, the elliptical deformation of
the inner boundary would remain stationary with
respect to the laboratory frame of reference as the
rotating fluid moved past. Fig. 1 shows how the
amplitude of the perturbation was adjustable. in the
range 0-0.5 cm, by means of a digital thumbwheel
(not shown). Although only the inner boundary was
deformed, and not precisely into the shape desired,
an elliptical instability was nevertheless excited in
the rotating fluid.

For our experiments the working fluid consisted
of distilled water seeded with aluminum flakes, and
prior to each run a fresh volume of this suspension
was transferred by syphon into the spherical shell.
Once the amplitude of the perturbation was set, the
motors were started in sequence to drive the rotation
and perturbation with periods on the order of 1 s.
Initially, the angular velocities of the rotation and
perturbation were set equal but opposite, since the
fundamental subharmonic resonance was expected to
be stationary in the laboratory frame. The response
of the rotating fluid to such excitation was observed
by two methods.

All quantitative detection of the inertial modes or
elliptical instability was by means of Digital Particle
Imaging Velocimetry (DPIV, Dantec). With this
method the displacements of certain fluid particles
are computed by cross-correlating pairs of images
taken a few milliseconds apart. In most of our exper-
iments, the digital camera was mounted in the rotat-
ing frame of the rigid outer boundary so as to
observe the fluid particles that lay in the lateral plane
at right angles to the rotation axis and roughly
tangent to the lowest point of the inner boundary.
This slice of seeded fluid was illuminated by a sheet
of light, which was produced by passing a 2 W laser
beam (Argon, Coherent Laser) through a cylindrical
lens. The displacements measured with the DPIV
system were calibrated simply by placing a metric
ruler in the plane of observation before the experi-
ment. Pairs of digital images, 512 X 480 pixels, were
taken by a camera (Multicam CCD, Texas Instru-
ments) at intervals of 33 ms and stored in a frame-
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grabber board. Subsequently, these images were
cross-correlated by the software to obtain the dis-
placement field, and next the velocity field, over a 5
cm X 5 cm square in the illuminated plane.

The growth of an elliptical instability was also
observed in a real-time manner by means of an
analogue video camera (VHS) that recorded the
movement of aluminum flakes under illumination in
a meridional plane. When the video was reviewed
frame by frame, the elliptical instability was discov-
ered and the image was converted to hard copy by a
Linotronic printer.

4. Results

Direct observation of what we have identified as
the elliptical instability is shown in the collection of
four plates of Fig. 2. These images are Linotronic

prints from a VHS video of the laser illuminated
meridional plane. The black rectangle in each plate
covers an incorrect date which added nothing to the
image and obscured the view of the fluid. For this set
of images the ellipticity of the inner boundary, &=
0.041, rotation speed {2 =5.24 rad/s, and the per-
turbation speed, w = 4.90 rad/s. This condition for
instability corresponds to a slow drift of the instabil-
ity in the direction of rotation as seen from the
laboratory reference frame and was found by search-
ing in rotation near the condition {2 = w, since the
theoretical location of the spin-over instability for a
spheroid would occur for rotation speed equal and
opposite to the perturbation speed. The ellipticity &
was sufficiently larger than 2 X 0.012, the scale of
the dissipation rate, so that we would excite the
instability, but small enough so as not to fracture the
elasto-plastimer.

The sequence of events leading to the onset of the

Lateral Velocity Vectors
Inertial Mode (4,1,2)
A= 1.247
z = 0.385

St S

/
/

Fig. 4. Calculated velocity vectors for the mode (4.1,2) in a plane perpendicular to the rotation axis approximately tangent to the inner

sphere. A = w/{2=1.247.
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instability is as follows. The laser sheet illuminated
the sphere and the rotation of the container was
started while the video was recording. After solid
body rotation was established for the spheroidal shell
of fluid, the perturbation was switched on. About 30
s later, violent motion was observed near the axis of
rotation, as can be seen in (a) for the fluid columns
directly underneath the inner sphere. Subsequently
what appear to be characteristic lines can be ob-
served radiating up to the right at about 35° to the
vertical in (b) and (¢) while large amplitude of the
columns underneath and to the right of the inner
sphere can be seen beginning to develop in (d).

The experiment was repeated several times to
estimate the growth rate of the instability by measur-
ing the time interval between the start-up of the
perturbation and the onset of the instability as ob-
served in Fig. 2. The growth rate observed was 0.031
s”' which is comparable to the predicted rate
(0.041/2 —0.012) X 524 =0.045 s~

.....

R N S O AN

.....

The setting of the rotation speed was reduced by
about 3% to 2= 5.08 rad /s and the experiment was
repeated. No evidence of instability was observed.

If they exist, wavenumber 2 inertial modes will be
excited in our spheroidal shell of rotating fluid by
the flexible inner boundary if two conditions are met.
First, the mode must have a velocity field which is
sufficiently well coupled to the velocity of the flexi-
ble surface which is perturbing the fluid. Second, the
frequency ratio /{2 must be sufficiently close to
the actual eigenfrequency A of the mode to be ex-
cited. It is important to note, however, that even if
these two conditions are met and a mode is excited,
observation of the mode may be obscured by the
development of an elliptical instability.

To satisfy the first condition, only low order
modes, symmetrical about the equator with az-
imuthal wavenumber 2, need be considered. Two
modes which satisfy this condition are the (4,1,2)
and the (6,2,2) modes. The properties of these modes

Lateral Velocity Vectors
Inertial Mode (6,2,2)
A = 0.896
z = 0.400

CSNNN NN L s e ey

Fig. 5. Calculated velocity vectors for the mode (6,2,2) in a plane perpendicular to the rotation axis approximately tangent to the inner

sphere. A = w/ (2= 0.896.
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were found using the finite-element method devel-
oped by Henderson (1996) and are displayed below
in two different planes. First, a mode identified as
(6.2,2) with computed eigenvalue w/£2=0.896 is
depicted in Fig. 3 which is a plot of pressure con-
tours in the meridional plane. This mode is notewor-
thy not only because it satisfies the conditions for
excitation as stated above, but also because it clearly
displays the significant role of the characteristic sur-
faces which form a *V’ pattern emanating from the
equator just to the right of the inner sphere. It is also
noteworthy that distortion of the characteristic sur-
faces referred to above in (b), (c) and (d) of the
Linotronic prints of Fig. 2 were important markers in
observing the onset of the instability. Indeed the
slopes of these characteristics are similar for the two
different modes in Fig. 2 and Fig. 3 because it is the
ratio /{2 which fixes these slopes.

In the second view, plots of the velocity field of
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the (4,1,2) and (6,2,2) modes in a plane perpendicu-
lar to the axis of rotation and approximately tangent
to the inner sphere are shown in Figs. 4 and 5
respectively. It is this plane which is illuminated by
the sheet of laser light used to obtain the DPIV
results. The area of observation is a square approxi-
mately 5 cm X 5 cm while the images of the ex-
pected velocity fields for a pure mode are about 9.3
cm in radius, because they correspond to a cut at
about 3.5 cm below the centre of the 10 cm radius
sphere. Accordingly the DPIV square of observation
corresponds to a little more than one-half of the
radius of the circle in Figs. 4 and 5.

Velocity vectors from the DPIV images corre-
sponding to the experimental case w/{2= 1.260 are
shown in Fig. 6 and can be compared to a 5 cm X 5
cm window of Fig. 4 near the equator and roughly
central between the circumference and the circular
boundary. In the case shown the phase of the ob-
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Fig. 6. Velocity vectors obtained from experimental observations in
sphere. Settings are @ =4.155s~', 2=3.261 57", w/=1.260.
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the plane perpendicular to the rotation axis and tangent to the inner
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Fig. 7. Velocity vectors obtained from experimental observations in the plane perpendicular to the rotation axis and tangent to the inner

sphere. Settings are w=24825s7' 02=2796s"" w/0=10.887.

served flow is very close to the phase of the calcu-
lated flow in Fig. 4. It should be remembered, of
course, that the observed flow is not exactly at
resonance so that there will be other components due
to neighbouring modes in the DPIV result.

Shown in Fig. 7 are the velocity vectors for what
has been tentatively identified as the (6,2,2) mode
depicted in Fig. 5. In this DPIV result there is more
interference from other modes than in the case of
Fig. 6. It is noteworthy that significantly decreased
response of the fluid to the elliptical perturbation
takes place when the ratio w/{2 is changed from the
values reported here.

Detailed plots of velocity fields from DPIV will
make it possible to measure the onset of the elliptical
instability in future experiments. It will be possible
to follow the development of the instability as it
grows, since a sequence of image pairs can be
obtained over time. Since the control of the rotation
is done through servo-controllers, experiments can

be repeated precisely to build an arbitrarily long set
of detailed velocity images.

5. Discussion

The experimental results presented here confirm
the existence of the elliptical instability in a rotating
spheroidal shell of fluid. We have tentatively identi-
fied the instability observed with the spin-over insta-
bility, as confirmed by growth rates and frequency,
which are close to those expected from the theory
developed here. While the calculated growth rates
presented here for the spin-over instability corre-
spond to a perturbation which is fixed in inertial
space, ongoing theoretical work for a non-stationary
perturbation indicates that growth rates achieve a
maximum value when there is a small departure
from stationarity (Seyed-Mahmoud et al., 1997). This
theoretical development has used the approximate
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pressure field from a finite-element method to solve
the instability problem for a rotating spheroidal shell
of fluid. Other modes of instability can now be found
using this method and compared to experimental
results.

The existence of wavenumber 2 inertial modes
has been confirmed experimentally for a thick rotat-
ing spheroidal shell of fluid. Thus instabilities due to
interaction between modes with wavenumber 0 and 2
can exist in the shell as well as the +1 pair of
spin-over modes observed in the present experiment.

We consider here the possibility that tidal excita-
tion of the core—mantle boundary near semi-diurnal
periods could excite an elliptical instability in the
Earth’s fluid outer core. Although many instabilities
are possible, we consider the growth of the spin-over
instability that we have observed in our experiments.
If we consider only viscous dissipation, the actual
growth rate of this instability of the core would be
approximately that given by Eq. (2) above. If we
first ignore dissipation and set &= 5 X 10~%, corre-
sponding to a semi-diurnal tidal distortion of the
core—mantle boundary, the growth period is about
7000 years. If, however, VE is sufficiently close to
&/2, the actual growth period becomes greatly ex-
tended. For example at E=0.3 X 10", the time
taken for elliptical instability to develop becomes
10° years, a geomagnetic time scale. As pointed out
by Kerswell (1994), the electromagnetic dissipation
is comparable to the mechanical dissipation, so the
role of the elliptical instability in the dynamics of the
core and hence dynamo theory is likely important. If
a reversal of the geomagnetic field could be identi-
fied with a particular instability, the lifetime of the
field in a particular polarity could then be used to
estimate the dissipation rate for the core and hence
provide a limit on viscosity and conductivity as
determined by the model used for dissipation.
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