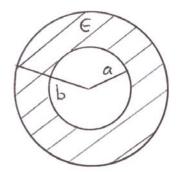
Assignment 9


- 1a) Write down Maxwell's equations for vacuum.
- b) Explain in words what each equation means.
- 2. Show the following equations result from Maxwell's equations written in 1a.

$$\vec{E} = -\nabla\Phi - \frac{1}{c}\frac{\partial\vec{A}}{\partial t}$$

$$\vec{B} = \nabla \times \vec{A}$$

Note that the six quantities E_x , E_y , E_z , B_x , B_y , and B_z are derivable from four potentials Φ , A_x , A_y and A_z .

3. Consider a conducting sphere with charge Q surrounded by dielectric material ϵ .

- a) Find the energy density stored everywhere.
- b) What is the total potential energy?
- 4. The magnetostatic energy is given by

$$W = \frac{1}{8\pi} \int_{allspace} \vec{H} \cdot \vec{B} d^3 x$$

Show that this is equivalent to the following.

$$W = \frac{1}{2c} \int_{allsnace} \vec{A} \cdot \vec{J} d^3 x$$