Assignment 8

1. Find the magnetic dipole moment of the loop shown below.

- 2a) Find the magnetic field of a magnetic dipole from its vector potential.
- b) Sketch the magnetic field for a dipole aligned along the \hat{z} direction.
- 3a) A particle having charge e, mass m moves around a circle of radius r with speed v. Show that the magnetic dipole moment $\mu = \frac{e}{2mc}L$ where L is the angular momentum. In general $\vec{\mu} = \gamma \vec{L}$ where γ is called the gyromagnetic ratio.
- b) A magnetic dipole $\vec{\mu}$ points in the \hat{x} direction at t=0. A uniform magnetic field in the \hat{z} direction exerts a torque

$$\vec{N} = \vec{\mu} \times \vec{B}$$

Using $\vec{\mu} = \gamma \vec{L}$ solve for $\vec{\mu}(t)$ and sketch its motion. The dipole is said to precess about the field.

4. A coaxial cable consists of two very long cylindrical tubes separated by linear insulating material having magnetic susceptibility χ_m . A current I flows down the inner conductor and returns along the outer one.

- a) Find \vec{H} , \vec{B} and \vec{M} everywhere.
- b) Find the bound currents.
- 5. Explain how a permanent magnet is made.