Assignment 5

1. A simple model of the atom is a point nucleus of charge +q surrounded by a uniformly charged spherical cloud -q of radius a. In the presence of an external field \vec{E} the nucleus is displaced slightly relative to the electron cloud as shown below. Assuming d << a, the electron cloud nearly retains its spherical shape.

a) Show the electric field generated by the displaced spherical electron cloud at the nucleus is given by the following.

$$E_e = \frac{qd}{a^3}$$

- b) For equilibrium $\vec{E}_e + \vec{E} = 0$. Show that the polarizability $\alpha = a^3$. Evaluate α for hydrogen.
- c) Consider a hydrogen atom between two metal plates 1 mm apart which are connected to opposite terminals of a 500 volt battery. What fraction of the Bohr radius is d?

2. Consider the two dipoles $\vec{p_1}$ and $\vec{p_2}$ shown below.

a) Show that the interaction energy of the two dipoles is:

$$U = \frac{\vec{p}_1 \cdot \vec{p}_2}{r_{21}^3} - 3 \frac{(\vec{p}_1 \cdot \vec{r}_{21})(\vec{p}_2 \cdot \vec{r}_{21})}{r_{21}^5}$$

b) Suppose that $\vec{p_1}$ is parallel to $\vec{p_2}$ and θ is the angle between the two dipoles. Find θ such that U is i) a maximum and ii) a minimum.

3. Consider the two dipoles shown below.

- a) Evaluate the electric field generated by $\vec{p_2}$ at an arbitrary position \vec{r} .
- b) Evaluate the force on $\vec{p_1}$ due to $\vec{p_2}$.