Assignment 3

1. Electrical Conductors An ideal conductor is a material having an unlimited supply of free charges. Consider a conductor placed in an external electric field \vec{E}_o .

Inside the conductor, \vec{E}_o drives positive charge to the right surface and negative charge to the left surface. These so called induced charges produce a field \vec{E}_1 opposing \vec{E}_o . Charges continue to move until \vec{E}_1 exactly cancels \vec{E}_o . The time for this movement of charge to occur is extremely short. Hence, we conclude that inside a conductor the electric field is zero.

- a) Show the charge density $\rho = 0$ inside a conductor.
- b) Show the potential Φ is constant inside a conductor.
- c) Show that just outside a conductor \vec{E} is perpendicular to the surface and equals $4\pi\sigma$ where σ is the surface charge density.
- 2. A charge q sits in a spherical hollow inside a spherical conductor.

- a) Find \vec{E} everywhere.
- b) What are the charge densities on the conducting surfaces?
- c) Find the potential everywhere taking $\Phi = 0$ at infinity.

- 3. Consider a sphere of radius a of uniform charge density ρ_o .
- a) Find \vec{E} everywhere.
- b) Find the potential everywhere taking $\Phi = 0$ at the origin.
- c) a = 2 cm, $\rho_o = \frac{3}{2\pi}$ esu/cm³.
 - i) What is the total charge on the sphere?
 - ii) What is the electric field 10 cm from the sphere's center?
 - iii) What is the potential 10 cm from the sphere's center in statvolts?
- d) A charge of 5 esu is moved from infinity to within 10 cm from the center of the sphere described in part c.
 - i) What is the work done in ergs in moving the charge?
- ii) What is the force in dynes between the charge and the sphere when the charge is at its final position?
- 4. For a time independent or static situation, we showed the following.

$$-\int_{a}^{b} \vec{E} \cdot d\vec{l} = \Phi(b) - \Phi(a)$$

- a) Show that for any closed path $\oint \vec{E} \cdot d\vec{l} = 0$.
- b) Using Stoke's Theorem show $\oint \vec{E} \cdot d\vec{l} = 0$ implies $\nabla \times \vec{E} = 0$.
- c) $-\int_a^b \vec{E} \cdot d\vec{l} = \Phi(b) \Phi(a)$ was derived by integrating $\vec{E} = -\nabla \Phi$. Using Cartesian coordinates show this implies $\nabla \times \vec{E} = 0$.
- d) Sketch a vector field \vec{A} for which $\oint \vec{A} \cdot d\vec{l} \neq 0$.