Assignment 9 Rigid Body Motion

- 1. Calculate the moments of inertia I_1 , I_2 and I_3 for a homogeneous sphere of radius R and mass M. Choose the origin at the center of the sphere.
- 2. Two spheres are of the same diameter and same mass but one is solid and the other is a hollow shell. Describe in detail a nondestructive experiment to determine which is solid and which is hollow.
- 3. A three particle system consists of masses m_i and coordinates (x_1, x_2, x_3) as follows:

$$m_1 = 3m$$
 (b,0,b)
 $m_2 = 4m$ (b,b,-b)
 $m_3 = 2m$ (-b,b,0)

Find the inertia tensor, principal axes and principal moments of inertia.

- 4. A uniform rod of length b stands vertically upright on a rough floor and then tips over. What is the rod's angular velocity when it hits the floor?
- Investigate the motion of the symmetric top discussed in Chapter 11 for the case in which the axis of rotation is vertical (i.e. the x_c ' and x_c axes coincide). Show that the motion is either stable or unstable depending on whether the quantity $4I_1$ M h g / I_3^2 ω_3^2 is less than or greater than unity. If the top is set spinning in the stable configuration, what is the effect as friction gradually reduces the value of ω_3 ?