Assignment 4

- 1. Find the following for the wave
- 4 = 5 car (2x+3+)

- a) wave vector
- b) wavelength
- c) frequency
- d) period
- e) phase velocity
- f) amplitude
- 2. Consider a series of square wave pulses shown below.

Fourier analysis says that this pulse can expanded as:

- a) Show that $A_n=4/n$ π where n is odd, $A_n=0$ for n is even $B_n=0$ and $A_o=0$
- b) Plot the first term, first 2 terms and first 3 terms in the sum.
- c) Hence, a pulse of light which can convey information, is composed of many frequencies. Estimate the range of frequencies Δv required to make a one femtosecond laser pulse using the Heisenberg Uncertainty Principle $\Delta v \Delta t > 2\pi$.
- 3. Superposition Principle
 - a) Show that if Ψ_1 and Ψ_2 are solutions of the 3 dimensional wave equation that their sum also is a solution.
 - b) This may seem trivial but show that the superposition principle does not hold for the following differential equation.

$$\frac{d^2 \psi}{dx^2} = \psi^2$$

4. Damped harmonic oscillator

$$m\frac{d^2x}{dt^2} = -kx - 3\frac{dx}{dt}$$

- a) Consider a solution $x = A e^{\lambda x}$. Solve for λ . (Result will be complex) This approach is much simpler than using $x = A \cos \omega t + B \sin \omega t$.
- b) Write down the general solution for the case of weak damping km $>> \gamma^2$.
- c) What is the solution for the case the mass is initially at rest at distance x_0 ? Plot this solution.
- 5. Show that the group velocity v_g is related to the phase velocity v by the following equation. Note that for the case of normal dispersion $v_g < c$.

$$v_g = \frac{c}{n + w \frac{dn}{dw}}$$