Physics 2020 Assignment 3

The sphere of radius a was filled with positive charge at uniform density ρ.
 Then a smaller sphere of radius a/2 was carved out, as shown in the figure and left empty. What are the direction and magnitude of the electric fields at A?
 At B?

- 2. A point charge q is located at the center of a cube of edge of length d.
 - a) What is the value of the flux of electric field over one face of the cube?
 - b) The charge q is moved to one corner of the cube. What is now the value of the flux of E through each of the faces of the cube?
- 3. Consider two concentric spheres as shown below.

$$r < a$$
 insulator $\rho = \frac{\rho r}{a}$

a < r < b vacuum

b < r < c conductor

r > c vacuum

- a) i. Find the electric field everywhere
 ii. Find surface charge densities on conducting surfaces.
- b) Repeat question 3a but with the conductor grounded. (Note that grounded conductors shield regions from electric fields.)
- 4. An infinite plane has a uniform surface charge distribution σ on its surface. Adjacent to it is an infinite parallel layer of charge of thickness d and uniform volume charge density ρ . All charges are fixed. Find the electric field everywhere.

- In this problem you will derive the expression for divergence in cylindrical coordinates.
 - a) Write expressions relating cylindrical coordinates (ρ, ϕ, z) and Cartesian coordinates (x, y, z).
 - b) Write expressions for the unit vectors $\hat{\rho}$, $\hat{\phi} + \hat{z}$ in terms of \hat{x} , $\hat{y} \neq \hat{z}$ and vice versa.
 - c) Show that: $E_x = E_p \cos \phi E_{\phi} \sin \phi$ $E_y = E_p \sin \phi + E_{\phi} \cos \phi$
 - d) Ex = Ex (p, 4, 2)

Chain rule for partial derivatives is: $\frac{\partial E_{x}}{\partial x} = \frac{\partial E_{x}}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial E_{x}}{\partial \phi} \frac{\partial \phi}{\partial x} + \frac{\partial E_{x}}{\partial z} \frac{\partial z}{\partial x}$

Write analogous expression for $\frac{\partial E_y}{\partial y}$ and $\frac{\partial E_z}{\partial z}$.

Evaluate of do etc.

f) Show $\nabla \cdot \vec{E} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho E_{\rho} \right) + \frac{1}{\rho} \frac{\partial E_{\phi}}{\partial \phi} + \frac{\partial E_{z}}{\partial z}$