Assignment 4

- Find the following for the wave $\psi = 5 \cos(2 \times + 3 +)$ 1.
 - a) wave vector
 - b) wavelength
 - c) frequency
 - d) period
 - e) phase velocity
 - f) amplitude

blave vector k=2 meters

Wavelength $\lambda = \frac{2\pi}{L} = \pi$ meters

Erequency $2 = \frac{3}{2\pi}$ sec

Reriod $T = \frac{1}{v} = \frac{2\pi}{3}$ sec.

Phase Velocity $v_p = \frac{w}{k} = \frac{3}{2}$ meter/sec

amplitude A = 5 meters

2. Consider a series of square wave pulses shown below.

Fourier analysis says that this pulse can expanded as:

a) Show that $A_n = 4/n \pi$ where n is odd, $A_n = 0$ for n is even $B_n = 0$ and $A_0 = 0$

$$f(t)$$
 is odd $\Rightarrow A_0 + A_n = 0$.

$$\int_{0}^{T} f(t) \sin m\omega t dt = \sum_{n=1}^{\infty} B_{n} \int_{0}^{T} \sin n\omega t \sin m\omega t dt (1)$$

$$= I$$

Integral I

Case 1:
$$n = m$$

$$I = \int \sin^{2} n \omega t \, dt$$

$$= \int \frac{1 - \cos 2n \omega t}{2} \, dt$$

$$= \left[\frac{t}{2} - \frac{\sin 2n \omega t}{4n \omega}\right]_{0}^{T}$$

$$= \frac{T}{2}$$

$$I = \int \frac{\cos(n-m)wt - \cos(n+m)wt}{2} dt$$

$$= \left[\frac{\sin(n-m)\omega t}{2(n-m)\omega} - \frac{\sin(n+m)\omega t}{2(n+m)\omega} \right]_{0}^{T}$$

$$\frac{T}{-1} \int \sin n \omega t \sin m \omega t dt = \frac{T}{2} \int_{nm}^{\infty}$$

$$\int_{0}^{T} f(t) \sin n \omega t dt = \int_{0}^{T/2} \sin n \omega t dt - \int_{0}^{T/2} \sin n \omega t dt$$

$$= \left[\frac{-\cos n\omega t}{n\omega} \right]_{0}^{T/2} + \left[\frac{\cos n\omega t}{n\omega} \right]_{7/2}^{7/2}$$

$$=\frac{1}{n\omega}\left(1-\cos\frac{n\omega T}{z}\right)+\frac{1}{n\omega}\left(\cos n\omega T-\cos n\omega T\right)$$

$$\frac{1}{n + 1} = B_n \frac{T}{2} \implies B_n = \begin{cases} 0 & \text{for n even} \\ \frac{4}{n + 1} & \text{for n odd} \end{cases}$$

b) Plot the first term, first 2 terms and first 3 terms in the sum.

c) Hence, a pulse of light which can convey information, is composed of many frequencies. Estimate the range of frequencies Δv required to make a one femtosecond laser pulse using the Heisenberg Uncertainty Principle $\Delta v \Delta t > 2\pi$.

- 3. Superposition Principle
 - a) Show that if Ψ_i and Ψ_z are solutions of the 3 dimensional wave equation that their sum also is a solution.

$$\nabla^{2}(\Psi_{1} + \Psi_{2}) = \nabla^{2}\Psi_{1} + \nabla^{2}\Psi_{2}$$

$$= \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{1}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}}$$

$$= \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{1}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}}$$

$$= \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{1}}{\partial +^{2}} (\Psi_{1} + \Psi_{2})$$

$$= \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{1}}{\partial +^{2}} (\Psi_{1} + \Psi_{2})$$

$$= \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{1}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}}$$

$$= \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{1}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}} + \frac{1}{V^{2}} \frac{\partial^{2}\Psi_{2}}{\partial +^{2}} \frac$$

b) This may seem trivial but show that the superposition principle does not hold for the following differential equation.

$$\frac{d^2 \Psi}{d x^2} = \Psi^2$$
Let $\Psi_1 \neq \Psi_2$ be solve. i.e. $\frac{d^2 \Psi_1}{d x^2} = \Psi_1^2$

$$\frac{d^2 \Psi_2}{d x^2} = \Psi_2^2$$

But
$$\frac{d^2}{dx^2} (\Psi_1 + \Psi_2) = \frac{d^2 \Psi_1}{dx^2} + \frac{d^2 \Psi_2}{dx^2}$$

$$= \Psi_1^2 + \Psi_2^2$$

$$\neq (\Psi_1 + \Psi_2)^2$$

$$\vdots \quad \Psi_1 + \Psi_2 \text{ is not a solution.}$$

4. Damped harmonic oscillator

$$m \frac{d^2x}{dt^2} = -kx - V \frac{dx}{dt}$$

- a) Consider a solution $x = A e^{\lambda x}$. Solve for λ . (Result will be complex) This approach is much simpler than using $x = A \cos \omega t + B \sin \omega t$.
- b) Write down the general solution for the case of weak damping km $\gg \gamma^2$.
- c) What is the solution for the case the mass is initially at rest at distance x_0 ? Plot this solution.

$$x = Ae^{\lambda x} \implies m\lambda^{2} = -k - \delta\lambda$$

$$m\lambda^{2} + \delta\lambda + k = 0.$$

$$\lambda = -\frac{y}{m} \pm \sqrt{\frac{\delta^{2} - 4k}{m^{2}}}$$

$$\lambda = -\frac{y}{2m} \pm i\sqrt{\frac{k}{m^{2}}} - \frac{y^{2}}{4m^{2}}$$

$$\frac{-y}{2m} \pm i\omega_{0} \qquad \omega_{0} = \sqrt{\frac{k}{m}}$$

$$\frac{-y}{2m} \pm i\omega_{0} \qquad \omega_{0} = \sqrt{\frac{k}{m}}$$

$$\frac{-y}{2m} \pm i\omega_{0} \qquad \omega_{0} = \sqrt{\frac{k}{m}}$$

$$\frac{-y}{2m} = -\frac{y}{2m} \pm i\omega_{0} \qquad \omega_{0} = \sqrt{\frac{k}{m}}$$

$$\frac{-y}{2m} = -\frac{y}{2m} \pm i\omega_{0} \qquad \omega_{0} = \sqrt{\frac{k}{m}}$$

$$\frac{-y}{2m} = -\frac{y}{2m} = -\frac{$$

envelope decays exponentially

Show that the group velocity vg is related to the phase velocity v by the 5. following equation. Note that for the case of normal dispersion $v_g < c$.

$$V_g = \frac{C}{n + \omega \, dn}$$

Droup Velocity vg = dw

$$v_g \equiv \frac{d\omega}{dk}$$

Phase Velocity $v_p = \frac{c}{n} = \frac{\omega}{k}$

$$v_p = \frac{c}{n} = \frac{\omega}{k}$$

or
$$w = \frac{ck}{n}$$

$$\frac{1}{\sqrt{dk}} = \frac{c}{n} - \frac{ck}{n^2} \frac{dn}{dk}$$

$$\frac{dw}{dk} \left(1 + \frac{ck}{n^2} \frac{dn}{dw} \right) = \frac{c}{n}$$

$$v_g = \frac{c/n}{1 + \frac{ck}{n^2} \frac{dn}{dw}}$$

$$\frac{1}{n} \cdot v_g = \frac{c}{n + w \frac{dn}{dw}}$$