Quiz 8

Name: Student Number:

CALCULATORS ALLOWED.

$5 \times 2 = 10 \text{ marks}$

1. Estimate the work done when 5 moles of N_2 expands at a constant temperature of 293 K from 1 cm³ to 1 liter.

2. Consider an organ pipe of length 2 meters, closed at one end. Find its lowest resonant frequency.

$$L = \frac{\lambda}{4}$$

$$\Rightarrow \lambda = 4L = 8m,$$

$$= \frac{\lambda}{330} = \frac{330}{8} = \frac{330}{8} = \frac{8m}{8} = \frac{1}{12} = \frac{1}{1$$

3. Consider a boat travelling in water. If the angle of its wake is 25° as measured from the line parallel to the boat's travel, estimate the boat's speed if the speed of water waves in this lake is 4 m/sec.

$$Ain 25° = \frac{V\omega}{V}$$

$$V = \frac{4mlsec}{pin 25°}$$

$$= 9.5 mlsec$$

- 4. A piano is loaded into a pickup truck.
 - a) How fast would the truck need to travel for note B(248 Hz) to sound like the next higher note C (262 Hz) for an observer at rest.
 - b) Would the truck need to travel toward or away from the observer?

$$\Delta V_{Dop} = \frac{V}{c} V_{o}$$

$$V = \frac{\Delta V_{Dop}}{V_{o}} \cdot c$$

$$= \frac{262 - 248}{255} \cdot 330 \text{ m/sec}$$

$$= 18.1 \text{ m/sec}.$$

$$= 15.7 \text{ km/hr}$$

Truck moves toward observer since frequency of B.

5. Consider a laser incident on a pair of slits separated by 2 mm. A screen 2 meters away shows an interference pattern with the distance between adjacent maxima of 1 mm. Find the laser wavelength.

