CALCULATORS ALLOWED.

1. (4 marks) An alpha particle travels around a circular loop at 10% of the speed of light. The circular motion is due to a uniform magnetic field of 1 kG. What is the loop radius?

$$\frac{mv^{2}}{\Gamma} = \frac{mv}{9B}$$

$$= \frac{4 \times 1.67 \times 10^{-27} \text{kg} \times 3 \times 10^{-7} \text{m/sec}}{2 \times 1.67 \times 10^{-19} \text{Coul} \times 10^{-7} \text{ Tesle}}$$

$$= 6.3 \text{ m}.$$

2. (3 marks) Derive and evaluate an expression for the radius of a single electron orbiting an alpha particle.

alpha particle.

Centripetal Earce = Caulant Force

$$\frac{m^2 v^2 \Gamma^2}{\Gamma} = \frac{k^2 q^2}{r^2}$$

But $m V \Gamma = nh$ $\Rightarrow \Gamma = \frac{n^2 h^2}{2m kq^2}$

Ear $n = 1$ $\Rightarrow \Gamma = \frac{(1.06 \times 10^{-34})^2}{2 \times 9.11 \times 10^{-3} \times 9 \times 10^9 \times 1.6 \times 10^{-19})^2}$
 $= 2.68 \times 10^{-11} m = \frac{1}{2} Bohr Radius$

3. (3 marks) Lens

- a) Draw the rays from the object through the lens that create the image.
- b) Find the image position.
- c) Find the image height.

$$\frac{1}{s_0} + \frac{1}{s_1} = \frac{1}{f}$$

$$\frac{1}{10} + \frac{1}{5} = \frac{1}{5}$$

$$\frac{1}{5} = \frac{1}{10}$$

Image Height $\frac{4}{10} = \frac{1}{50}$