Atomic Physics Assignment 4

$5 \times 2 = 10 \text{ marks}$

1. Consider two particles having masses m_1 and m_2 at positions \vec{r}_1 and \vec{r}_2 . Assume the particles only interact with a so called central potential that depends on the separation distance $\vec{r}_1 - \vec{r}_2$. For simplicity, choose the origin to the center of mass position.

a) Defining
$$\vec{r} = \vec{r}_1 - \vec{r}_2$$
, show $\vec{r}_1 = \frac{m_z}{m_1 + m_z} \vec{r}$ $\vec{r}_z = \frac{-m_1}{m_1 + m_z} \vec{r}$

Note: For $m_1 << m_2$, $\vec{r}_1 = \vec{r}$, and $\vec{r}_2 = 0$

b) Show Lagrangian
$$L = \frac{m_1}{z} \left[\frac{1}{r_1} \right]^2 + \frac{m_2}{z} \left[\frac{1}{r_2} \right]^2 - \mathcal{U}(1 - \frac{1}{r_2})$$
becomes $L = \frac{\mu}{z} \left[\frac{1}{r_1} \right]^2 - \mathcal{U}(r)$

where the reduced mass $\mu = \frac{m_1 M_2}{m_1 + m_2}$

- 2. Evaluate the Bohr radius and Rydberg energy for
 - a) Hydrogen
 - b) Deuterium
 - c) Positronium.
- 3. Lyman α
 - a) What wavelength corresponds to the Lyman α transition?
 - b) Does this correspond to a visible, UV or infrared photon?
- 4. The probability of finding an electron between distance r and r + dr from the nucleus is given by $P(r) = r^2 \left(\psi(r, \theta, \phi) \psi^{\dagger}(r, \theta, \phi) \right) dR$

Find the probability and sketch it for the 1s and 2s hydrogen wavefunctions.

5. What are the angular momenta of the following states: G, F, D, P, S?