Atomic Physics Assignment 2

$5 \times 2 = 10 \text{ marks}$

1. Heisenberg Uncertainty Principle

Using the definition of the momentum operator show the following.

- a) $[x, p_x] = i\hbar$
- b) $[y, p_y] = i\hbar$
- c) $[z, p_z] = i\hbar$
- 2. Orbital Angular Momentum
 - a) Write down operators defining the orbital angular momentum operators Lx, Ly and Lz.
 - b) Show $[L_x, L_y] = i\hbar Lz$
 - c) Show $[L_x, L^2] = 0$
 - d) Explain which of the operators L_x, L_y, L_z and L² may have simultaneous eigenvalues.
- 3. General Angular Momentum is defined by: $[J_x, J_y] = i\hbar J_z$

$$[J_y,\,J_z]=i\hbar\;J_x$$

$$[J_z,\,J_x]=i\hbar\;J_y.$$

- a) Show $[J_z, J_+] = \hbar J_+$ and $[J_z, J_-] = -\hbar J_-$
- b) Show $[J_+, J_-] = 2\hbar J_z$
- c) Show $[J^2, J_+]=0$
- d) Show $J^2 = \frac{1}{2}(J_+ J_- + J_- J_+) + J_z^2$
- 4. Prove the following:
 - a) $J_{-}|j, m = -j > = 0$
 - b) For m > -j, then $J_- | j | m > is$ an eigenstate of J^2 and J_z with eigenvalues $j(j+1) \hbar^2$ and $(m-1) \hbar$.
- 5. Derive the matrices for J = 1 as given in the notes for
 - a) J_x , J_y and J_z
 - b) J_+ , J_-
 - c) J².