Atomic Physics Assignment 1

$5 \times 2 = 10 \text{ marks}$

- 1. A muon which is simply an overweight electron (muon mass = 207 electron mass) can be captured by a proton to form a "muonic" atom.
 - a) Find the Bohr radius of this atom.
 - b) Find the Rydberg energy of this atom.
- 2. Find the recoil energy of a hydrogen atom after it emits a photon in going from the n=4 to the n=1 state.
- 3. Account for the presence of certain lines in the spectrum of He⁺ which are almost at identical wavelengths as certain lines of the H spectrum.
- 4. Interaction of Atom with Earth's Magnetic Field
 - a) Calculate the interaction in eV of a Bohr magneton with the Earth's magnetic field.
 - b) Repeat for a nuclear magneton.
- 5. Stern Gerlach Experiment

Consider a neutral beam of atoms whose magnetic dipole moment is given by the outer one electron. The beam passes through a 5 cm long region having a magnetic field gradient of 10⁴ Gauss/cm. The atoms are detected on a screen located one meter further on.

- a) Sketch the beam trajectory.
- b) Calculate the deflection observed on the screen.