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/INTRODUCTION

shn Milton, when he wrote of his
proaching blindness

‘When T consider how my light is spent
e hall my days, in this dark world
o and wide”’
pressed the tragedy that loss of sight
ild be for all of us. Sight is the most
ortant way we have of perceiving in-
tion about the world around us,
throughout man’s history “light”” has
1" congldered so important that the
itself has come to echo the deep-
thotional and spiritual values of our
wre.

fe use light in a multitude of ways,
most of us know surprisingly lLittle
it it. The transmission of light, as we
all see in later chapters, has presented

[ransmission of Light

physicists with a dilemma which they
have only recently begun to solve. In
order to appreciate their problem, we must
recall a few elementary facts about light,

1-2 RECTILINEAR PROPAGATION
OF LIGHT

Transparent media such ag glass and
air transmit light well; translucent media
such as frosted glass and waxed, paper
transmit light poorly; and opagque ma-
terials such as wood and plaster do not
trangmit light at all. The transmission of
light from the sun to the earth indicates
that light does not require & medium for
its transmission, that is, it will travel
through a vacuum. This fact will prove
troublesome when, in Chapters 3 and 4,
we attempt to devise two models to ex-
plain the transmission of light. In setting




up either of these models we take into
account a factindicated by the production
of shadows;in any homogeneous medium,
(or in a vacuum), where no obstacles are
encountered, light travelsin straightlines.

The straight lines along which light
travels are called rays. In Iigure 1.1 the
lines AF and AG represent rays coming
from a small source A. A bundle of rays,
such as that bounded by AF and AG, is
called a beam or pencil.

1-3 HOW WE SEE OBJECTS

In the absence of light we see nothing.
If we look directly at a source of light we
see the source—the sun, for example—by
means of light which travels directly from
the source to the eye. Figure 1.2 shows
that we see nothing unless the light enters
the eye. The light between the source and
the cardboard is not visible because it
does not reach the eye; some of the light
which reaches the cardboard is reflected
to the eye and the cardboard is visible as
a result. We see all non-luminous objeects
by means of reflected light.

1-4 REFLECTION OF LIGHT

The line AC in Tigure 1.3 represents a
ray of light striking a reflecting surface
at C. The line CF represents the path of

Fig. 1.2. We are aware of light only when it
reaches our eyes.
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Fig. 1.1. Rays of light from a source A.

the light after reflection, and C'D is per-
pendicular to the surface at C. £C is called
the incident ray, CF' is the reflected ray,
and C'D is the normal (perpendicular) to
the surface at C'. Angle £CD is called the
angle of incidence; angle DCF is called
the angle of reflection.

An optical dise (Fig. 1.4) may be used
to investigate reflection of light. A ray
incident along the disc strikes the mirror
at the centre of the disc. The reflected
ray is visible on the surface of the dise.
Since the normal to the mirror also lies
on the surface of the disc, we have illus-
trated here what is called the first law of
reflection of light: the incident ray, the
normal, and the reflected ray lie in the
same plane, The second law of reflection
is also illustrated in Ifigure 1.4: the angle
of reflection is equal to the angle of
incidence.

1-5 THE SPEED OF LIGHT IN
AIR AND IN SPACE

Everyday experience indicates to us
that the time required for light to travel
terrestrial distances is very small. Thus,
the speed of light, if not infinite, must
be very large. In 1676 Olaf Rémer made
the first measurement of the speed of

Al
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Fig. 1.1. Rays of light from a source A.

e light after reflection, and C'D is per-
ndicular to the surface at C'. EC is called
¢ incident ray, CF is the reflected ray,
d €D is the normal (perpendicular) to
e surface at €. Angle ECD is called the
gle of incidence; angle DCTF is called
¢ angle of reflection.
An optical dise (Fig. 1.4) may be used
investigate reflection of light. A ray
cident along the dise strikes the mirror
the centre of the disc. The reflected
y is visible on the surface of the dise.
nce the normal to the mirror also lies
| the surface of the dise, we have illus-
ated here what is called the first law of
flection of light: the incident ray, the
rmal, and the reflected ray lie in the
me plane. The second law of reflection
also illustrated in Iigure 1.4: the angle
reflection is equal to the angle of
cidence.

-5 THE SPEED OF LIGHT IN
AIR AND IN SPACE

Everyday experience indicates to us
at the time required for light to travel
rrestrial distances is very small. Thus,
e gpeed of light, if not infinite, must
 very large. In 1676 Olaf Rémer made
¢ first measurement of the speed of
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Fig. 1.3. Reflection at a plane surface.

light. His calculations were made as the
result of observations of the eclipses of
the moons of Jupiter. Rémer’s informa-
tion was not accurate enough to permit
him to calculate a reliable value for the
speed of light. However, he showed that
the speed was measurable, and later ex-
perimenters, notably Armand I'izeau
(1819-1896) and Albert A. Michelson
(1852-1931), made measurements of the
speed of light over relatively short dis-
tances on the surface of the earth. Let us
examine Michelson's method briefly.

Michelson and his associates, working
in California in the years 1926-1929,
meastired the time required for light to
travel from one mountain to another and
back, a total distance of only 44 miles.
In order to measure such a short time,
they had to develop an ingenious timing
device, the essential parts of which are
shown in Figure 1.5. A parallel beam of
light from a source S fell on an octagonal
mirror M, from which it was reflected to
a concave mirror (' on the other moun-
tain. FFrom the concave mirror the light
was reflected to a small plane mirror
m, back to the concave mirror, and
from there to the octagonal mirror M

again. If M remained stationary while
the light was travelling from mountain to
mountain and back, the returning light
was reflected to the telescope T and could
be observed through the telescope. The
mirror M was then caused to rotate. When
the speed of rotation of M was such that
section 2 rotated from the position shown
in Figure 1.5 to the position initially occu-
pied by section 3 in the time required for
the light to make the round trip, light
again entered the telescope.

The procedure, then, was to vary the
speed of rotation of M until light re-
appeared in the telescope. The distance
travelled by the light (approximately 44
miles) was known; the time required for
light to travel that distance was the time
required for M to rotate through 45°
This time could be determined quite ac-
curately, as could the distance.

Later Michelson and his co-workers
measured the speed of light in a vacuum.
They used essentially the same method
as that outlined above, in an evacuated
underground tunnel a mile long. The light
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Fig. 1.4. Reflection demonstrated with the opti-
cal disc.
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c

Fig. 1.5. Apparatus used by Michelson in determining the speed of light.

was reflected back and forth in this tunnel,
and travelled a total distance of ten miles.
They found that the speed in a vacuum
was slightly greater than in air. Their
accuracy was so great that they were able
to state the speed of light in a vacuum
to be 299,774 4+ 5 km/sec.

1-6 SCIENTIFIC NOTATION
The speed of light in space is usually
given the symbol “c” and has the value
¢ = 3.00 X 108 m/sec,
or ¢ = 1.86 X 10° mi/sec.
Here, 1.86 X 10° is the usual scientific
notation for a number whose first three
digits are 186, followed by three other
digits (probably unknown) between the
6 and the decimal point. In scientific
notation the significant digits (those
which are known with certainty as a re-
sult of experimental measurements) are
usually given by a number between 1 and
10, i.e., there is one digit before the deci-
mal point. The exponent of the base 10
is used to indicate the proper position of
the decimal point.

Positive exponents of base 10 are used,
as above, to simplify the writing of large
numbers, Negative exponents of base 10
may be used in a similar manner to sim-
plify the writing of small numbers. Thus
3.24 X 10~* represents the number
0.000324. The advantage of this notation
is obvious if, for example, we wish to cal-
culate the time required for light to travel
6.00 metres at a speed of 3.00 X 10%
m/sec. We divide 6.00 by 3.00 x 10
and obtain 2.00 x 10-%. It is simpler to
quote the answer as 2.00 X 108 sec than
as 0.0000000200 sec.

The order of magnitude of a number
is the power of ten closest to that number.
Thus the order of magnitude of the num-
ber 23615102, and of the number 0.000961
1s 1073, Frequently an estimate of the
order of magnitude of the result of a cal-
culation is the best first step in making
that calculation. Such an estimate may
be made by performing the necessary
arithmetic operations on the orders of
magnitude of the numbersinvolved. Thus
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Cc

in determining the speed of light.

Positive exponents of base 10 are used,
15 above, to simplify the writing of large
wmbers. Negative exponents of base 10
nay be used in a similar manner to sim-
lify the writing of small numbers. Thus
.24 X 10—* represents the number
).000324. The advantage of this notation
s obvious if, for example, we wish to cal-
ulate the time required for light to travel
).00 metres at a speed of 3.00 X 108
n/sec. We divide 6.00 by 3.00 x 108 |
ind obtain 2.00 x 1078 It is simpler to :
juote the answer as 2.00 X 102 sec than |
s 0.0000000200 sec. ’

The order of magnitude of a number |
s the power of ten closest to that number.
[hus the order of magnitude of the num-
ver 236 is 102, and of the number 0.000961
g 1072 Frequently an estimate of the
irder of magnitude of the result of a cal-
ulation is the best first step in making
hat calculation. Such an estimate may
e made by performing the necessary
rithmetic operations on the orders of
nagnitude of the numbers involved. Thus
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the order of magnitude of
12.6 > 0.082 . 10" x 107
— - 18 - -0

91.3 : 102 FI

Frequently, too, the number which we
wish to describe—the volume of the water
in Lake Ontario for example—is so in-
definite and variable that to describe it
other than by an order of magnitude

would not malke sense.

1-7 DIRECT PROPORTION

The distance travelled by light (or by
a car, or a plane) at constant speed de-
pends on the time of travel. Buppose we
consider an airplane travelling at 400
mi/hr. The time required for this aircraft
to travel 100 mi is 0.25 hr, for 200 mi
the time is 0.50 hr, for 600 mi the time
is 1.5 hr, and so on. We might tabulate
this data as follows:

DISTANCE s TIME ¢
(mi) (hr)
0 0
100 0.25
200 0.50
300 0.75
400 1.00
600 1.50

We might then plot the information
on a graph such as that shown in Figure
1.6; the circled points on the graph give
the same information as the table above.
Through these points we draw the
smoothest curve possible. In this case the
“smoothest curve” is a straight line.

The relationship between s and ¢ here
is typical of what is called direct pro-
portion. The following facts concerning
s and ¢ should be noted ; similar facts are
true for any case where one quantity is
directly proportional to another.

(@) Astincreases, s increases. s is said
to be a function of .

(b) If ¢ doubles, s doubles; if ¢ triples,
s triples; and so on.

(¢) The quotient obtained by dividing
any value of s by the corresponding value
of ¢ is the same as the quotient obtained
by dividing any other value of s by its
corresponding value of {. This fact may
be stated mathematically in two different
ways.

81 89

Qo=

s O ’
(1) ; k, where k is a constant.

ie, s = ki
Here, & = 400 mi/hr
and s = 4001
This equation is called the equation of
the graph shown in Figure 1.6.
(d) Theequation above may be arrived
at by considering increases in distances

700 E_=
600 B/_;Iw
! 500 D/ I
z 5
= | As
= 400 |
300 o '
O P4 |
Z 200 R W—
2 100 -
0 0.50 1.0 1.5
TIME  t (hr) ——e

Fig. 1.6. Distance-time graph for an aircraft
travelling at 400 mi/hr.
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and times, ratherthan by reonsidering total
distances and times. Consider the two
points marked A and B on the graph.
The increase in distance from A to B,
which we shall call As (delta s), is BC,
and is equal to 400 mi. AC, the corre-
sponding value of At, is equal to 1.0 hr,
The ratio

A 3
= s 400 mi/hr
Al

or As = 400A¢

|

AC
slope of the straight line graph shown in
Figure 1.6. Since the graph is a straight
line, the slope is constant.

(¢) The value of  depends on the units
used for s and ¢. The student should verify
that, if s is in mi and ¢ in min, then
k = 62 mi/min,

(/) The mathematical symbol for
proportional to” is =, Here, § «< L

1-8 INTERPOLATION AND
EXTRAPOLATION

Consider the point marked I) on the
graph in Figure 1.6. From the coordinates
of this point we conclude that the air-
plane travelled 500 mi in 1.25 hrs. This
will indeed be the case if the speed of the
plane remained constant at 400 mi/hr,
that is, if we were correct in drawing the
graph as a straight line joining the cireled
points. The process of drawing conclusions
from the coordinates of points on a graph
intermediate between points whose co-
ordinates represent measured data is
called interpolation. Interpolation can
sometimes lead us astray. Suppose, for
example, that the only information that
we had on the plane’s flight was that
given by the circled points. The plane
might very well have changed speed in
the interval between ¢ = 1.00 hrs and

As
The ratio 5 183 "L is called the

His

s
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t = 1.50 hrs, in which case it might not
have covered the 500 miin 1.25 hrs. The
graph for this portion, then, would not
have been a straight line.

Consider also the point & on the graph.
TFFrom the coordinates of I we conclude
that the plane would travel 700 mi in
1.75 hrs. The process of drawing con-
clusions from the coordinates of points on
a graph beyond poinls whose coordinates
represent measured data is called extra-
polation, Extrapolation involves the same
dangers as interpolation, and for the same
reasons. However, extrapolation has its
uses, for it enables us to make predictions,
Sometimes these predictions turn out to
be correct; in other cases they may be
completely incorrect.

1-9 SPEED OF LIGHT IN MEDIA
OTHER THAN AIR

The experimental methods of Michel-
son, Fizeau, and others can be adapted
to the determination of the speed of light
in any transparent medium. Fouecault,
for example, introduced a long tube of
water into the path of the light. (See
Fig. 1.5, again.) He found that the time
of travel of the light was thereby in-
creased, and therefore that the speed of
light was less in water than in air. Similar
experiments indicate that the speed of
light in any transparent material is less
than in a vacuum. In air, the speed is
only slightly less than in a vacuum. How-
ever, the speed in water is 4 of the speed
in a vacuum, and the speed in glass is §
of that in a vacuum.

Because of the fact that the speed of
light varies from medium to medium, the
time required for light to travel a given
distance depends on the medium through
which it travels. The time increases as
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= 1.50 hrs, in which case it might not
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n, Fizeau, and others can be adapted
» the determination of the speed of light
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the speed decreases. Let us examine this

qort of relationship in greater detail.

1-10 INVERSE PROPORTION

Consider the case of several airplanes,
all of which have to malke a trip of 1000
miles. The time required for a plane to
make the trip depends on that plane’s
gpeed. Tive possibilities are listed in the
table below.

SPEED v TIME ¢

(mi/hr) (hrs)
500 2.0
400 2.5
250 4.0
200 5.0
125 8.0

The information given in the table is
plotted on the graph shown in Tigure 1.7.
The relationship between v and ¢ here is
typical of what is called inverse propor-
tion. The following facts concerning v and
{ should be noted; similar facts are true
for any case in which one quantity is
inversely proportional to another.

(a) As v increases, t decreases.

(b) If » is doubled, ¢ is halved; if v is
tripled, ¢ is reduced to § of its former
value.

(¢) The product obtained by multiply-
ing any value of v by the corresponding
value of ¢is equal to the product obtained
by multiplying any other value of » by
its corresponding value of {. This fact
may be stated mathematically in two
different ways:

(2) vty = oty
(#7) vt = k, where k is a constant.
Here, &£ = 1000 mi

1000
and »¢ = 1000 or v = —~

This equation is called the equation of
the graph in Figure 1.7.

(d) The graph for inverse proportion
i3 not a straight line, but a portion of an
hyperbola. Tts slope is not constant, i.e.,

Av
the value of Al depends on what two

points on the graph are chosen for the
measurements of the changes in speed
and time.
(e) Thevalue of the constant & depends
on the units used for » and ¢.
(f) In mathematical notation,
1

boo—
v

1-11 POWER OF A SOURCE
OF LIGHT

The power of a light source is the rate
at which that source emits light. A unit
commonly used in measuring the power
of a source is the candle power, defined
originally as the power of a candle manu-
factured according to definite specifica-
tions. The present standard of power is
the international standard candle, deter-

I 500 i—
£ 40 \
E
> 300 ,
O
2 200 B
(V7]
o
® -
100
0 2 4 6 a8 10
TIME  t (hf) —

Fig. 1.7. Graph showing the time required for
several aircraft to travel 1000 mi at different speeds.




Canadian General Electric Company, Limited

Fig. 1.8. A light meter.

mined in Canada from a set of incandes-
cent lamps maintained by the National
Research Council at Ottawa.

The power of a light source, A, may be
compared with the power of another
source, B, with the aid of a photographic
type exposure mefer (Iig. 1.8) having a
pointer and scale attached. Care should
be taken in using the meter to exclude
extraneous light and reflected light. If
exposure meter readings arve taken for
each of the two light sources separately,
and if the distance from the source to
the meter is the same in both cases, the
ratio of the meter readings is equal to
the ratio of the powers of the two sources.
Then, if the candle power of one of the
sourees is known, the candle power of the
other can be calculated.
> Suppose that, using this method, we
find two light bulbs whose powers are
equal. If we now use the two sources
simultaneously and close together, and
if the distance from the sources to the
meter in this case is equal to the distance
used for each of the sources separately,

WAVES AND PARTICLEy

the meter reading is double what it wag
for either of the sources separately. Tha
is, the combined power P is equal to the
sum of the individual powers P; and P,

1-12 INTENSITY OF
ILLUMINATION

If we alter the distance between the
exposure meter and the light source, the
meter reading changes, becoming less as
the distance increases. Thus, the meter
takes into account both the power of the
source and the distance from the source
to the meter; it measures intensity of
illumination.

The intensity of illumination of a sur-
face at a point, B, is the rate at which
light is received by unit area of that sur-
face in the vicinity of B, when the light
is incident perpendicular to the surface,
If the source, A, is small compared to the
distance A B, and if the medium absorbs
none of the light, the relationship between
the intensity at B and the distance 4B
can be developed mathematically.

Consider a source, A, radiating light
in all directions in three dimensions (Fig.
1.9), at a rate P. At a distance d; from 4,
this energy is distributed over the surface

Fig. 1.9. A diagram to assist in deriving the law
of inverse squares.
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the meter reading is double what it wasg
‘or either of the sources separately. That
s, the combined power P is equal to the!
sum of the individual powers P, and P,
| —12 INTENSITY OF
ILLUMINATION

If we alter the distance between the
xposure meter and the light source, the
neter reading changes, becoming less as
he distance increases. Thus, the meter
akes into account both the power of the
ource and the distance from the source
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lumination,

The intensity of illumination of a sur-
ace at a point, B, is the rate at which
ight is received by unit area of that sur-
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f inverse squares.
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of a sphere of radius dy, whose surface area
s 4wd’. Therefore, the intensity in the
yicinity of a point B on this sphere is

>

I = E —. Similarly at a point C on the
wdi
surface of a sphere with centre A and
. o P
radius dp, the intensity is [, = ZTFE;:
Hence,
P_
L_ 4ndt
L P
4wd;
I, d
or — = -
L

1
or I is proportional to — .
¢

That is, the intensity of the radiation
falling on a surface is inversely propor-
tional to the square of the distance from
the source to the surface.

1-13 THE INVERSE SQUARE LAW

In the above situation, and in many
others encountered in Physics, the value
of one variable is inversely proportional
to the square of another variable. The
equation expressing this relationship is

Id* = k,or I = Z—z A graph of this re-
lationship is shown in Figure 1.10. For
the units used in this graph, what is the
value of k, and what is the equation of
the graph?

The unit most commonly used in
measuring intensity of illumination on a
surface is the foot-candle, defined as the
intensity of illumination received from
one standard candle placed one foot from
the surface.

If I represents the intensity of illumi-
nation, if P represents the candle power

of a source, and if d represents the dis-
tance from the source to the surface,
I = P when d is constant

1 .
[ e P when P 18 constant.
¢
Hence T « —
?
kP
and [ = .
a:Q

From the definition of a foot-candle given
2
above, k = 1. Therefore I = g where P

is the candle power of the source, d is the
distance in feet from the source to the
surface, and I is the intensity of illumi-
nation in foot-candles.

The graph for the inverse square law
is not a straight line, nor was the graph
for inverse proportion (p. 7). Straight
line graphs are easy to interpret, and it
would be convenient if we could plot the
data used in drawing Figure 1.10 so as
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to produce a straight line graph. If in the
; . k 1

relationship I = L we replace — by y, we
d? d?

obtain the linear relationship I = ky.

. 1 .
Then, if we use values of g as abscissae
d

and values of [ as ordinates in drawing
the graph, we obtain a straight line (Fig.
1.11). What is the slope of this graph?
Compare the slope with the value of k
found from Figure 1.10.

1-14 DIFFRACTION OF LIGHT

Normally, if the source of light is small
compared to the distance between the
source and the object whose shadow we
examine, the edges of the shadow are
clearly defined (Fig. 1.12). If the source
is larger, the edges of the shadow are less
clearly defined (Fig. 1.13) because light
reaches parts of the shadow area from
some, but not all, of the points on the
source. However, even when the source
is small, close observation sometimes in-
dicates that the edges of the shadow are
fuzzy.

As we look at a long straight source of
light through the narrow opening between

Fig. 1.12. Shadow produced by a small source
of light.
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Fig. 1.11. Graph of / plotted against ;Tz

two fingers held parallel to the source
(I'ig. 1.14), we observe a pattern similar
to that shown in Figure 1.15. The edges
of this pattern are in effect the edges of
the shadows of the two fingers. Thesc
edges are poorly defined, and the whole

Fig. 1.13. Shadow produced by a large source
of light.
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wo fingers held parallel to the source
Fig. 1.14), we observe a pattern similar
o that shown in Figure 1.15. The edges
f this pattern are in effeet the edges of
he shadows of the two fingers. These
dges are poorly defined, and the whole

ig. 1.13. Shadow produced by a large source
f light.

1-15 PROBLEMS

11

Fig. 1.14. Diffraction of light becomes evident
when a narrow source of light is viewed through
a narrow opening between two fingers.

pattern is much wider than we have any
right to expect. Part of the explanation
of this effect is that light bends around
corners, thal is, it undergoes diffraction.
Normally the amount of diffraction is
negligible and diffraction may be ignored.
However, the existence of appreciable
diffraction under certain circumstances is
of great importance in determining how
light is transmitted.

Physics Department, Universily of Weslern Gnlario

Fig.1.15. Diffraction pattern which results when
the procedure in Figure 1.14 is followed.

. An airplane is often visible in the sky up to 30 minutes after sunset. Explain.

. A horizontal ray of light strikes a vertical plane mirror. The mirror then
rotates through 10° about a vertical axis through the point of incidence.
Through how large an angle does the reflected ray rotate?

. In Michelson’s experiment to determine the speed of light, the light ray was
reflected several times. Michelson’s calculations were based on the assump-
tion that the speed of light does not change when the light is reflected.
How might he have tested the validity of this assumption?

. Discuss the action of automobile headlights in illuminating the road in front

of the automobile.
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A light-year is the distance that light travels in a year. State the order of
magnitude of a light year (a) in miles, (b) in kilometres.

The distance from the edrth to the sun is 9.3 X 10 mi. State the order of
magnitude of this distance (a) in mi, (b) in light-years.

. A radar gignal, travelling at the speed of light, travels from the earth to the

moon and back in 2.7 sec. Caleulate the distance from the earth to the
moon, in metres.

Radio waves travel at the speed of light. Calculate the order of magnitude,
in sec, of the time required for radio waves to travel across Canada.

. What is the order of magnitude of the number 41787

(Note that 10} = /10 = 3.16.)
Simplify each of the following:

2.5 X 104 |

(@) 3 X 10° X 10° ) % ><X10—_2 (©) 3.9 X 10° X 5 X 103
4.2 X 10- 6 % 102 4% 102 X 3.2 X 108

@ 75 10— (@) 1.5 % 108 () - 8 % 10°

The speed of light in space is 3.0 X 10® m/sec. Draw up a table showing
the distances travelled by light in 0, 1, 2, 3, 4, and 5 sec. Plot a graph of
distance against time, similar to the graph in Figure 1.6. What is the relation-
ship between the distance and the time? What is the slope of the graph?

Draw a graph in which the perimeter P of a square, in inches, is plotted on
the vertical axis, against the length L of one side, in ft. What is the relation-
ship between P and L7 What is the slope of the graph ? What is the equation
of the graph?

For moderale loads, the extension of a spring is directly proportional to the
lIoad hanging from the spring. What sort of graph will result when extension
ig plotted against load ? Suppose that a load of 2 kg. causes an extension of
5 ¢m. (a) What extension will be produced by each of the following loads:
(9) 1 kg, (4) 0.4 kg, (¢42) 1.2 kg? (b) What load will be required to produce
each of the following extensions: () 2 em, (#4) 4 em, (744) 0.5 cm ?

Two quantities, ' and a, are related according to the set of values shown
below.

F 0 2 3 5 8
@ 0 08 1.2 20 32 N

What is the relationship between F and a? Check by plotting F' against a.
By interpolation or extrapolation, determine (¢) the values of a when F is
1,7, and 10; (#) the values of /¥ when ais 0.6, 1.8, 5.4.

Draw a graph in which the area A of a square, in ft?, is plotted on the vertical
axis, against the length L of one side, in yd. If the graph is not a straight
line, replot the information so as to obtain a straight line graph. What is the
slope of this second graph? What is its equation?

'R}
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The area of a circle is proportional to the square of its radius, 1.e., A = kr?,
What is the value of & if (@) 7 igin em and A4 in em?, (b) v is in cm and A

iravels in a year. State the order of
{b) in kilometres.

118 9.3 % 10% mi. Siate the order of
b} in light-years.

n similar triangles, corresponding gides are proportional, What does this
taternent mean?

of ight, travels from the earth to the
the distance from the earth to the

“he areas of similar triangles are proportional to the squares on corre-
ponding sides. What does this statement mean?

1. Caleulate the order of magnitude,
aves Lo travel across Canada.

number 41787

“(a) A beam of light passes from point 4 to point B in air in a certain time.
~(aleulate the change in time if a plate of glass, 10 em thick, is inserted
between A and B, at right angles to the beam, given that the speed of light
n air is 3.00 X 109 ¢m/sec and in glass ig 2.00 X 109 em/sec. (b} Repeat
he calculation for the following materials inserted in the beam: (¢) 10 em of
rater in which the speed of light is 2.25 > 10" em/sec, (¢¢) 10 em of alcohol

0 (¢) 3.9 X 108 X 5 X 103 n which the speed of light is 2.20 X 10" cm/sec, (¢4¢) 10 cm of carbon
-t “disulphide in which the speed of light is 1.88 X 10' ¢cm/sec, {(iv) 10 em of
- 4 X 107 X 3.2 X 10° ‘diamond in which the speed of Light is 1.22 X 10 cm/sec. (¢) Plot a graph
0 &) 8 x 10¢ “of the time required for light {o travel through 10 em of the medium against

“the speed of light in that medium. (See Fig. 1.7.) (d) Replot the information
"m0 as to obtain a straight line graph. What is the relationghip between the
“time and the speed?

10° m/sec. Draw up a table showing
, 2, 3, 4, and 5 sec. Plot a graph of
ph in Figure 1.6. What is the relation-
2 ? What is the slope of the graph?

2> of a square, in inches, is plotted on
f one side, in ft. What is the relation-
e of the graph ¥ What is the equation

“ Two quantities, m and @, are related according to the set of values shown
- below:

m. 1 2 4 10 20
@ 10 5 25 1 05

- What is the relationship between m and a? Check by plotting one or more
“graphs. By interpolation or extrapolation, determine (7) the values of a
when m is 0.5, 5, and 40; (47) the values of m when a is 20, 2, and 0.1.

“Consgider the relationship ¥ = $me® (2) What is the effect on E of (¢) dou-
“bling m, (#) doubling v, (#2¢) tripling m and halving »? (b) By what factor
“must (2} m, {47) v, be changed in order for ¥ to double?
: mM
2"
m by a factor of 2, (42) changing M by a factor of 8, (4¢7) changing r by a factor
“of 4, (40) making all of the changes indicated in (2), (¢2) and (427) ? (D) By what
factor must (¢} m, (42) M, (i¢) r, be changed in order to change F by a
actor of 37

spring is directly proportional to the
't of graph will result when extension
, load of 2 kg. causes an extension of
uced by each of the following loads:
Vhat load will be required to produce
em, (4¢) 4 em, (44) 0.5 cm ?

wecording to the set of values shown

. Consider the relationship F e {a) What is the effect on I of (7) changing

d a? Check by plotting F' against «.
srmine (¢) the values of ¢ when F is
ais 0.6, 1.8, 5.4,

quare, in £t%, is plotted on the vertical
in yd. If the graph is not a straight
ain a straight line graph. What is the
. equation?

¥ Two angles, ¢+ and R, are related according to the set of values shown below:

i 20°  30°  40°  50°  60° T0°
R 13°  20°  25°  30°  85°  38°

What is the relationship between ¢ and E?
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24. Tf the intensity of illumination one foot from a light source is 900 ft-candles,
what is the intensity of illumination at a distance of 5 ft from the same source?

25. A 100-watt lamp placed 2 feet from a newspaper provides suitable illumi-
nation for reading. How far from a 250-watt bulb should the newspaper be
placed in order to receive the same illumination ?

26. Describe briefly why an eclipse (a) of the sun, (b) of the moon, occurs.

27. Does the fact that light undergoes diffraction contradict the statement that

light travels in straight lines?

1-16 SUMMARY

Light travels in straight lines (rays)
through many materials and through
space. A small amount of diffraction
occurs when obstacles are encountered.
Most objects reflect at least some of the
light which is incident on them; the ob-
jects become visible because of this
reflected light. There are two laws of re-
flection: (1) The incident ray, the normal,
and the reflected ray lie in the same
plane. (2) The angle of reflection is equal
to the angle of incidence.

The speed of light in space1s 3.0 X 108
m/sec, and is less in any other medium
than in space. Positive exponents of the
base 10 may be used, as they are here,

to simplify the writing of large numbers;
negative exponents may be used for smal|
numbers.

If @ « gy, then & = ky, and the grapl
of = plotted against y is a straight line

1

If # « —, then xy = k, the graph of ¢
Y

plotted against y is an hyperbola, and the

o ;
graph of x plotted against — is a straight
y

line.

TFor a point source of light, the inten-
sity of illumination on a surface is directly
proportional to the power of the source
and inversely proportional to the square
of the distance from the source to the
surface.
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it from a light source is 900 fi-candles,
y distance of 5 It from the same source ?

a newspaper provides suitable illumi-
0-watt bulb should the newspaper be
umination ?

the sun, (b) of the moon, cceurs.

raction contradict the statement that

efraction and Dispersion

to simplify the writing of large numbers
negative exponents may be used for smal
numbers.

If 2 « y, then x = ky, and the graph
of @ plotted against y i a straight line

1
If & a, then zy = k&, the graph of 3
plotted against ¥ is an hyperbola, and th

graph of x plotted against L is a straigh
line. Y '

For a point source of light, the inten:
gity of illumination on a surface is directly
proportional to the power of the sou
and inversely proportional to the squar
of the distance from the source to the
surface.

NTRODUCTION
ehavealready noted thatlight fravels

is contained in a rectangular plastic ves-
sel, and the ray is incident obliquely from

ught lineg in any homogeneous me-
m where no obstacles are encountered.
have noted, too, that if an obstacle
poﬁntered, the direction in which light
avels may be altered by diffraction or
ion. There is a third phenomenon
aga result of which the direction of a ray
be changed. It occurs when light
es. from one transparent medium to
ther, and is called refraction.

REFRACTION, AIR TO WATER
AND WATER TO AIR

he photograph (Fig. 2.1), and the
awing (Tig. 2.2) show the path of a ray
ght as it passes from air to water,
en from water to air again. The water

the lower left of IMigure 2.1. The path of
the ray may be made visible by chalk
dust in the air and by a small amount of
fluorescein in the water. SBome of the in-
cident light is reflected at the surface of

Fig. 2.1. Refraction of light as it passes from air
to water, and then from water to air.
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AIR WATER AIR

Fig. 2.2. Ray diagram for light passing obliquely
from air to water to air.

the water, but some of it enters the water
and undergoes a distinct change in direc-
tion:. This change in direction is called
refraction. The path of the light after
refraction is called the refracted ray. The
angle between the refracted ray and the
normal is called the angle of refraction
and is given the symbol E.

The refraction at the left surface shows
that, when light passes from air to water,
it is refracted toward the normal, i.e., the
angle of refraction is less than the angle
of incidence. When the light passes from
waler to air (at the right surface), re-
fraction again takes place. In this case
the refraction is away from the normal,
i.e., the angle of refraction is greater than
the angle of incidence.

2—-3 REFRACTION, AIR TO GLASS
AND GLASS TO AIR

In order to investigate the refraction
which takes place from air to glass or
glass to air we may mount a rectangular
piece of glass on an optical dise. If the
angle of incidence is zero, no refraction
occurs at either surface. However, if the
angle of incidence is not zero, refraction
oceurs at both surfaces as shown in
Iigure 2.3. The directions of refraction

-
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are the same as for water, but the amountg
may differ.
2—4 SNELL'S LAW

So far our discussion of refraction hag
been qualitative, i.c., it has not involveq
measurement. We may investigate re
fraction quantitatively by mounting g
thick semi-circular piece of glass on an
oplical dise as in Figure 2.4. A ray of
light incident on the glass at A4 is re-
fracted, but no refraction occurs at B
since the ray is normal to the eircum-
ference at this point. When we rotate the
dise, the angle of incidence changes and
the angle of refraction changes too. A
typical set of corresponding values of ¢
and I follows:

i 20°  30° 40° b50° 60 T0°
B 13° 20° 25° 30° 35° 38°

What relationship, if any, exists be-
tween ¢ and R? The answer to this
question eluded investigators for centu-
ries, and it may well have eluded you, for

Fig. 2.3. Refraction of light as it passes from air
to glass, and then from glass to air. Note the partial
reflection at both surfaces.
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This constant, frequently given the sym-
bol N, is called the relative index of re-
fractionfor air and glass. Its value appears
to be about 1.5.

2-5 TWO LABORATORY
EXERCISES: REFRACTION

Two relatively simple methods for de-
termining indices of refraction are out-
yplical dise as in Figure 2.4. A ray of lined below. You should try both of them.

ight incident on the glass at A is re. (@) Place a semi-civcular plastic dish
racted, but no refraction occurs at (Fig. 2.5), half-filled with water, on a
ince the ray is normal to the circumn sheet of paper, and ouiline it in pencil,
erence at this point. When we rotate the Place a pin B at the centre of the semi-
lise, the angle of incidence changes an circle, and a second pin 4 on the same
he angle of refraction changes too. A side of the diameter as B. Place a third
ypical set of corresponding values of pin € on the other gside of the diameter,
wind R follows: ; . . . and apparently in line with A and 5 as
. . - - - hese are ’shervalues slven i question 23 you look through the water. Remove the
1 20 30° 40 50 60°  70° e 13. The relationship was ﬁ_nz}lly plastic dish, mark the positions of the
R 18° 20° 25° 30° 35° 48° covered by a German physicist, pins before removing them, draw the in-
' licbrord Snell (1591-1676), la,nd 1008 ident and refracted rays and the normal,
n as Snell's law. Snell discovered ;14 neasure 7 and R. Repeat for different
LIS proportional to sin £; 1€, alyeg of 4 by aliering the position of
gin i

wre the same as for water, but the amou
nay differ.

2—4 SNELL'S LAW

So far our discussion of refraction hag
been qualitative, 1.e., it has not involved
neasurement. We may investigate re
raction quantitatively by mounting _
hick semi-circular piece of glass on ax

Refraction from air to glass, demon-
with the optical disc.

What relationship, if any, exists be
ween ¢ and R? The answer to thi
juestion eluded investigators for centu
ies, and it may well have eluded you, foi

: 18 a constant.

t us check this relationship for the
f observed values given above. {If
are not familiar with the trigono-
ic ratios of angles, see page 83 in
 appendix. The appendix also contains
gonometric tables).

i 0.342 0.500 0.643 0.766 0.866 0.940
1.0.225 0.342 (.423 0.500 0.574 0.616

1.53 151 1.53

82 146

1.52

Within the limits of experimental error,
Fig. 2.3. Refraction of light as it passes from a
0 glass, and then from glass to air. Note the partia
reffection at both surfaces,

Fig. 2.5. Determination of the index of refraction

- sint
s value of —— appears to be constant. : t "
stn B for light passing from air to water,
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pin A. Evaluate sin ¢ and sin B in each
cage. Is sin ¢ proportional to sin &7 Check
by drawing a graph of sin 7 versus sin K.
What is the slope of the graph? What is
the index of refraction for light passing
from air to water ? Estimate the number
of decimal places to which your result is
valid, keeping in mind the sources of error
in this exercise, and your precision in
measuring ¢ and R. Did you check the
case in which 7 = 0? What is the value
of zero divided by zero in this case (refer
to your graph)?

(b) Lay a rectangular block of plate
glass on a sheet of paper and outline it
in pencil. Place two pins M and N on
one side of the glass (Fig. 2.6). Place two
more pins P and @ on the other side of
the glass, and apparently in line with 3
and N as you look through the glass.

N M
Q
N\,
N
\E\N
\\‘\m i.|
AIR \[1]
GLASS \
Rq\
iz
GLASS ul
AIR N
R, ‘P
)
Ny

——

WAVES AND PARTICLI

Remove the block of glass, marl thy
positions of the pins, and draw in th
incident and refracted rays at both sur
faces. Draw the normal at each surface
and measure 7 and R in each case. Com.
pute two indices of refraction: the indey
for light passing from air to glass, and
that for light passing fromi glass to air,
What is true of these two indices? Check
your answer by repeating the exercise
several times.

2-6 THE LAWS OF REFRACTION

The results of our observations so far
may be summarized in two laws of re.
fraction:

(1) The incident ray, the normal, and
the refracted ray lie in the same plane.
(This law is not necessarily true for some
crystalline substances, such as calcite
which may have two refracted rays, one
of which is not in the same plane as the
incident ray and the normal.)

(2) Snell’'s Law:

sin
This law implies several facts which we
have observed, and which are worth sum-
marizing here.

(a) If 5 = 0, then R = 0; that is, no
refraction occurs when the incident ray
is perpendicular to the surface between
the two media.

(b) If the speed of light is less in the
second medium than in the first, the re-
fraction is toward the normal. I is then
less than 4, sin R is less than sin 4, and
the index of refraction is greater than 1.

(c) If the speed of light is greater in
the second medium than in the first, the

is a constant.

Fig. 2.6. Measurement of indices of refraction,
air to glass and glass to air.
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n is away from the normal. In
. R is greater than ¢, sin R is
han sin ¢, and the index of re-
11 is less than 1.

For light passing from one medium
wcond medium, the index of re-
the reciprocal of the index of
{ion for light passing from the
~medium to the first,

Remove the block of glass, mark t
positions of the ping, and draw in t
incident and refracted rays at both s
faces. Draw the normal at each surfa
and measgure ¢ and R in each case. Co
pute two indices of refraction: the ind
for light passing from air to glass, a
that for light passing frond glass to a
What is true of these two indices? Che
your answer by repeating the exerc

several times. NDICES OF REFRACTION

“value of an index of refraction
‘on the two media involved, and
“order in which these two media
he value also depends to a small
“as we will find later in this chapter,
sn-the colour of the light. Usually the
tces of refraction, which are tabulated,
are those that apply when light passes
vacuurm to the material listed.
are called absolute indices of re-
n, They do not differ significantly
ose tabulated below for air, since
eed of light in a vacuum ig only
tly greater than the speed of light

2—-6 THE LAWS OF REFRACTION

The results of our observations so fai
may be summarized in two laws of
fraction:

(1) The incident ray, the normal, angd
the refracted ray lie in the same pla
(This Iaw is not necessarily true for go
erystalline substances, such as cale
which may have two refracted rays, o
of which is not in the same plane as t
incident ray and the normal.)

(2) Snell’s Law:

stn ¢

is a constant.

8N
This law implies several facts which we

-ES OF REFRACTION OF YELLOW LIGHT

have observed, and which are worth su FROM AIR TO:

marizing here. B620°C. 1.33
(@) If £ = 0, then B = 0; that is, ab90° CL. o 1.32

refraction occurs when the incident ray, Aleghol............................ 1.36

is perpendicular to the surface betwe rbon disulphide..............oo 1.62

the two media. mglass. . ... ... L igg
(b) If the speed of light is less in t o 247

second medium than in the first, the res. Tarpentine. ... .. ... 0 0ororr 1.47

fraction is toward the normal. R is then

less than 4, sin R ig less than s 4, and ratio 8in 1

the index of refraction is greater than stn R

(¢) If the speed of light is greater in
the second medium than in the first, the

ny two material media is called the
e index of refraction for those two
dia. Tts value is the quotient obtained
dividing the absolute index of refrac-

Fig. 2.6. Measurement of indices of refraction ;
- of the second medium by that of the

air to glass and glass to air.
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firat. A partial proof of this fact is given
in Question 6 on page 26; you should
complete the proof. For example, the
relative index of refraction for light pass-
ing from water at 20° C to crown glass,
using the indices listed in the table above,
is calculated as follows:

N glass

N water

1.52

1.33
= 1,14

Water N glass =

2-8 PARTIAL AND TOTAL
REFLECTION

When lght passes from glass to air, its
speed increases and the light is refracted
away from the normal. Let us investigate
this situation in greater detail with the
semi-circular glass block mounted on the
optical dise. The arrangement is as shown
in Figure 2.7. A ray of light entering the
block at 4 is not refracted, since ¢ = 0.
However, when the ray reaches B, hoth
reflection and transmission occur. For the
reflected portion, the angle of reflection
is equal to the angle of incidence. For the
trangmitted portion, refraction away from
the normal takes place. If we rofate the
disc so as to increase ¢, the intensity of
the reflected portion increases and the
intengity of the refracted portion de-
creases, When ¢ = 41° B = 90° and
cannot increase further. For angles of in-
cidence greater than 41° no light is trans-
mitted ; total reflection occurs. Hence, 41°
is the critieal angle for this type of glass.

The occurrence of total reflection and
the size of the critical angle can be pre-
dicted. Total reflection can occur only
when light is attempting to-pass from one
medium to a medium in which its speed
is greater. In this case R is always greater
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Fig. 2.7. Internal reflection in glass, accompanied by refraction from glass to air (/eft). Total

internal reflection in glass (right).

than 7 and therefore R reaches its maxi-
mum value of 90° when < is still con-
siderably less than 90°.

If the index of refraction from air to
glass is 1.52, then the index of refraction

from glass to air is - or 0.66. That is,

1.52"
sin v

- = 0.66
sin I

When R attaingits maximum value of 90°,
sin R =1
ST _ G 66
1
7 = 41.3°

This is the value of the critical angle for
this type of glass.

2—-9 REFRACTION BY A PRISM
The triangle 4 BC in Figure 2.8 repre-
sents the cross-section of an equilateral
glass prism. The path of a ray of light
through such a prism is as shown in the
diagram. Refraction toward the normal
oceurs at the first surface; refraction away
from the normal occurs at the second
surface. The combined effect of these two
refractions is to produce considerable

change in the direction of the light. Angle
DEF measures this change in direction;
it is called the angle of deviation.
Images of objects viewed through i
prism are frequently multi-coloured. The
great IEnglish scientist, mathematician
and philosopher, Bir Isaac Newton (1642-
1727), made an extensive investigation
of the production of these coloured images
Earlier philosophers had attempted to
explain the production of the colours by
assuming that the colours originated
within the prism. Beginning in 1668

Fig. 2.8. Deviation in a prism.
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d by refraction from glass to air (/eft). Total

change in the direction of the light. Angle
DIEF measures this change in direction;
it 18 called the angle of deviation.
Images of objects viewed through a
prism are frequently multi-coloured. The
great KEnglish scientist, mathematician
and philosopher, Sir Isaac Newton (1642-
1727), made an extensive investigation
of the production of these coloured images.
Farlier philosophers had attempted to
explain the production of the colours by
assuming that the colours originated
within the prism. Beginning in 1668,

Fig. 2.8. Deviation in a prism.
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Newton performed a series of experiments
;\-’l'li('ll showed that such was not the case.

2-10 DISPERSION IN A PRISM
Newlon permitted a parallel beam of
sunlight to fall on a narrow slit, and
allowed the narrow beam (ray) emerging
from the slit to fall obliquely on the sur-
face AB of a glass prism (I'ig. 2.9). The
light emerging from the prism fell on a
sereen, forming an image which consisted
of brilliant colours ranging from red at
one end through orange, yellow, green
and blue to violet at the other end. This
multi-coloured imageis called a spectrum;
the spreading of the rays to form a spec-
trum is called dispersion. In the spectrum
produced by a prism when the incident
light is “white”, the colour change is
gradual ; there is no sharp dividing line
between one colour and the next. Such a
spectrum is called a continuous spectrum.
Newton found that, if the incident light
was of one colour only, the spectrum con-
tained only that colour, Hence it seemed
unlikely that the prism was the source
of the colour. Newton suspected that the
colours had been present in the incident
white light and that the prism had sepa-
rated them. He confirmed this suspicion
by placing a second prism B (I'ig. 2.10),
identical to the first prism A, in the posi-

Prism B

Prism A Screen

IFig. 2.10. Dispersion and recomposition of white
ight,

21
Screen
A
Red
Viojey
B C

Fig. 2.9. Dispersion of white light by a prism.

tion shown. The beam of light emerging
from B was almost white in colour.

Newton concluded that white light is
composite in nature, being composed of
many colours. When white light is inci-
dent on a prism, the components undergo
different amounts of deviation, red the
least and violet the most. The dispersion
or spreading of the colours begins at the
first surface, and continues at the second
surface. At each surface the red com-
ponent undergoes a smaller amount of
refraction than does the violet component.
It follows, then, that the index of re-
fraction for red light is less than that for
violet light. For this reason, tables of
indices of refraction (see page 19) should
specify the colour of the light.

2-11 THE DIFFRACTION GRATING

Instruments designed for the viewing
of spectra are called spectroscopes. In
many spectroscopes, prisms are used to
disperse the light. Equally good instru-
ments ean be constructed considerably
more cheaply by replacing the prism by
a diffraction grating. Good gratings con-
sist of a large number of parallel lines (as
many as 20,000 lines per inch) ruled with
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a diamond point on the surface of glass.
Inexpensive gratings are copies or replicas
of ruled gratings. Gelatin or some similar
material is poured over a ruled grating
and allowed to solidify. The gelatin film,
when removed, retains an impression of
the ruled grating and forms a replica
grating good enough for many uses.

The theory of diffraction gratings is
complex and need not concern us here.
Figure 2.11 is a photograph of a grating
spectroscope in use. The end of the spec-
troscope away from the eye contains a
narrow vertical slit. The end of the tube
nearest the eye containg the grating; the
lines on the grating should also be vertical.
If the observer looks through the spectro-

Fig. 2.11. A grating spectroscope in use.

|
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"a—i [ 1 s

Fig. 2.12. A gas discharge tube.

scope: directly at the source of light, I
sees an image of the glit, and on eithe
side he sees at least one continuous spee
trum, similar to that produced by a prism,

2-12 LABORATORY EXERCISE:
SPECTRA

A diffraction grating spectroscope cay
be used to examine the spectra of light
from various sources. A continuous spee
trum is observed if the source is an in
candescent solid—for example, the
glowing carbon in the flame of a coal ol
lamp or the glowing tungsten filament
an incandescent lamp. Incandescent gases
and vapours, on the other hand, usually
produce an altogether different type d
spectrum.

(a) Thelow pressure gas (neon, hydro
gen, or argon, for example), in a gas dis
charge tube (Tig. 2.12) may be mad
incandescent by connecting the electrodes
in the tube to an induction coil. Observt
the spectra produced by several sucl
tubes.

(b) An incandescent vapour may b
produced by heating a sall (usually
chloride) of an element such as sodium
potassium, lithium, or strontium, in the
flame of a bunsen burner (Fig. 2.13). The
salt may be introduced into the flame by
dipping a platinum wire into a concel
trated solution of the salt and then holding
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Fig. 2.12. A gas discharge tube.

scope- directly at the source of light, he
sees an image of the slit, and on either
side he sees at least one continuous spec.
trum, similar to that produced by a prism,

2—-12 LABORATORY EXERCISE:
SPECTRA

A diffraction grating spectroscope can
be used to examine the spectra of light
from various sources. A continuous spec
trum is observed if the source is an in
candescent solid —for example, the
glowing carbon in the flame of a coal oil
lamp or the glowing tungsten filament in
anincandescentlamp. Incandescent gases
and vapours, on the other hand, usually
produce an altogether different type of

spectrum.

(a) The low pressure gas (neon, hydro-
gen, or argon, for example), in a gas dis-
charge tube (IYig. 2.12) may be made
incandescent by connecting the electrodes
in the tube to an induction coil. Observe
the spectra produced by several such
tubes.

(b) An incandescent vapour may be
produced by heating a salt (usually &
chloride) of an element such as sodium,
potagsium, lithium, or strontium, in the}
flame of a bunsen burner (Fig. 2.13). The‘
salt may be introduced into the flame by
dipping a platinum wire into a concen-
trated solution of the salt and then holding
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Different types of spectra. From top to bottom: a continuous spec-
trum; the spectrum of sunlight; the absorption spectrum of a solution
of potassium permanganate in water; and discharge tube bright line
spectra for iron, sodium, hydrogen, neon, and mercury. The numbers
at the top are the wave lengths in Angstrom units.
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Fig. 2.13. Heating a salt on a platinum wire.

the wire (suitably insulated) in the flame.
Special burner attachments, such as that
shown in Figure 2.14, may be used. A
gmall piece of asbestos is soaked in a
solution of sodium chloride, for example,
then placed on the holder which is then
rotated into the flame. Observe the flame
spectra of several materials. The spectrum
which you observe is characteristic of the
metal (sodium, potassium ete.) whose salt
you used.

2-13 BRIGHT LINE EMISSION
SPECTRA

In general, an incandescent gas or
vapour has a bright line spectrum. Such
a spectrum is not continuous but consists
of bright lines of various colours scattered
apparently at random through the area
where the continuous spectrum would
oceur if the source were an incandescent
solid. The spectrum of sodium vapour
(see the colour plate opposite page 22)
consists of only two yellow lines very
close together—so close in fact that they
appear ag one in many spectroscopes. A
neon spectrum containg many brilliant
lines at the red end of the spectrum, and

23

the mercury spectrum shows at least four
clearly defined lines. In all cases the spec-
trum of a gas is unique to that gas; no
two gases produce the same sets of lines
in the same positions.

2-14 DARK LINE ABSORPTION
SPECTRA

A carbon are, like an incandescent light
bulb, produces a continuous spectrum,
whereas incandescent sodium vapour pro-
duces a bright line spectrum. If the light
from a carbon arc is passed through in-
candescent sodium vapour, a third type
of spectrum results. This demonstration
is rather difficult to perform in the labo-
ratory, but the following procedure is
usually satisfactory.

Heat some powdered sodium nitrite
(NaNQ;) in a shallow metal dish until
the nitrite melts and is vaporizing rapidly.
Now drop pieces of blotting paper into
the liquid; they will catch fire and burn
with a brilliant yellow flame. Shine light
from a carbon arc lamp through this flame

Fig. 2.14. A special burner attachment.
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Sodium Vapour

e

r o

To Spectroscope

Carbon Arc

Fig. 2.15. A dark line absorption spectrum is produced when light from a carbon arc passes

through incandescent sodium vapour.

to thespectroscope (Fig. 2.15). Youshould
gee dark lines in the continuous spectrum
in the positions normally occupied by the
bright lines in the spectrum of sodium.

In general, when light from a hot source
passes through a cooler vapour, the va-
pour selectively absorbs from the white
light those colours which the vapour is
capable of emitting. This principle may
be used to identify the incandescent gases
or vapours through which white light has
passed. I'or example, a good spectroscope
reveals that the spectrum of sunlight con-
tains many dark lines. Among these dark
lines is a set of lines at the positions nor-
mally occupied by the bright lines in the
gspectrum of hydrogen. Thus hydrogen
must be one of the constituents of the
sun’s atmosphere.

2-15 INFRARED AND
ULTRAVIOLET

If a sengitive thermometer is placed
anywhere in the visible spectrum pro-
duced by an incandescent solid (Fig. 2.16)
and is then moved to a position beyond
the red end of the spectrum, the tempera-
ture, indicated by the thermometer, rises.

Evidently radiation is incident on the
portion of the screen beyond the red,
This radiation is sometimes called ther.
mal radiant energy but more often if i
called infrared radiation or simply infra
red. Infrared radiation accompanies the
light radiated by the sun and is radiated
by any object which is warmer than its
surroundings.

If zine sulphide is placed on the screen
beyond the violet end of the visible spec-
trum produced with a quartz prism (Iig
2.16) it glows with a greenish white visible
light. Evidently radiation not visible fo
the human eye is incident on this portion
of the sereen. The term ultraviolet ligh
or simply ultraviolet is applied to the
region of the spectrum lying just beyond
visible violet light.

The sun is the most important source
of ultraviolet. A naked carbon arc lamp
or a mercury vapour lamp with a quartz
window are used as artificial sources of
ultraviolet.

Continued exposure to ultraviolet may
cause a destruction of the surface cells of
the body (sunburn). Intermittent expo-
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e
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Fig. 2
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causes a protective pigment to be  phide, paraffin oils, calcium tungstate and |
ed in the skin, ie., the skin is  a solution of quinine, give off visible light
Exposure to ultraviolet radiation  when exposed to ultraviolet. They are

T

e in damage to the structure of bac- said to fluoresee, and the emission of such
To Spectroscope Tany substances, such as zine sul- light ig called fluorescence.
My
Thermometer
|
b
Black Bulb
ced when light from a carbon arc passe .
Infrared
idently radiation iz incident on Fo R
réion of the screen beyond the r .
Visible

is radiation is sometimes called th
1 radiant energy but more often i
led infrared radiation or simply inf
i. Infrared radiation accompanies th
ht radiated by the sun and is radia
any object which is warmer than it
rroundings.
If zinc sulphide is placed on the scr
yond the violet end of the visible sp
im produced with & quartz prism (F
6) it glows with a greenish white vi
ht. Hvidently radiation not visible
e human eye ig incident on this porties
the sereen, The term ultraviolet ligh
simply ultraviolet iz applied to
xjon of the spectrum lying just beyon
sible violet light. '
The sun is the most important sourc
ultraviolet. A naked carbon arc lam
a mercury vapour lamp with a quar}
ndow are used as artificial sources @
traviolet.
Continued exposure to ultraviolet ma
use a destruction of the surface cells’
e body (sunburn). Intermittent expt

Quartz Prism

Layer of Zinc Sulphide

16. Detection of infraved and ultraviolet radiation.

White Screen—

6 PROBLEMS

The light from the setting sun follows a curved path as it traverses the
~earth’s atmosphere. Explain.

“Use the trigonomelric tables in the appendix to determine the sine of each
-of the following angles; (@) 30.0°, (b) 19.7° (¢) 42.6°, (d) 79.1°, (e) 89.4°,
(N 0.27

:What angles have the following sines: (o) 0.6347, (B) 0.7071, (¢) 0.0785,
S(d) 0.7570, (e) 0.8572, (f) 0.9342, (g) 0.9629, (k) 0.32967

Draw a graph using x as abstissa and sin x as ordinate, for values of z from
0° to 90° Take values of z at 5° intervals. Check the accuracy of your
‘graph by interpolating at 37° and 62° and comparing your results with
‘the table of sines in the appendix.
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5. Complete the following table.

N 1 R
1.50 30.0°
1.50 41.0°
1.30 27.0°
1.30 17.0°
45.0° 30.0°
70.0° 87.0°

6. In Section 2-7, we stated thal the relative index of refraction for two media

T P—
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is obtained by dividing the absolute index of refraction of the second medium
by that of the first. Prove this statement, using Figure 2.17. You have to

sin a sinc  sinb

show that —— =

sind  sind ~ sina

Medium #1

face
the ¢
[rom
the

Lows
Lhe

The
relrs

ralic

Vacuum

the i
R

tion.

Medium #2

Fig. 2.17.

For problem 6.
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The ahsolute index of refraction of carbon disulphide 18 1.62 and the
absolute index of refraction of diamond is 2.47. Calculate the relative index

B of refraction of carbon disulphide and diamond.

. Show how two isosceles, right-angled glass prisms may be used in a periscope.
4.0 Using the table of indices of refraction in Section 2-7, caloulate the eritieal
17.0° angles for (a) alcohol, (b) flint glass, and (¢) diamond.
30.0° ray of light is incident on one surface of an equilateral glass prism. If the

87.0°
calculate the angle of deviation.
ive index of refraction for two media

ex of refraction of the second medium
ent, using Figure 2.17. You have to

action of light occurs at the sur-
ween transparent media, because
peed of light in one medium differs
he speed in the other medium. If
peed decreases, the refraction is
il the normal; if the speed increases,
ction is away from the normal.
dent ray, the normal, and the
ed ray lie in the same plane. The
sin ¢ to sin R is a constant, N,
dex of refraction.

fraction is accompanied by reflec-

angle of incidence is 60°% and the index of refraction of the glass is 1.5,

Describe three types of spectra, indicating the source of cach.

“slow” medium to a “fast” medium,
and if the angle of incidence exceeds the
critical angle, total reflection occurs.

Both the amount, of refraction and the
amount of diffraction depend to a small
extent on the colour of the light. As a
result, dispersion oceurs and spectra are

produeed by prisms and gratings. Con-
tinuous spectra are produced by incan-

~desecent_solids, and line spectra.are
produced by incandescent gases. Absorp-
tion spectra oceur when white light from
a hot source passes through a cooler in-
candescent gas.
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Particles of Light

3-1 INTRODUCTION

In Chapters 1 and 2 we have assembled
many of the important facts about the
behaviour of light. This assembling of
facts is a necessary first step in any scien-
tific investigation. We could continue to
accumulate facts indefinitely, of course,
but sooner or later we should pause to
correlate the facts, to fit them into an
orderly pattern, and to try to explain
them.

How is light transmitted ;i.e., how does
it travel from a source to a receiver?
Obviously we cannot make a direct ob-
servation of the mode of transmission.
We are forced, therefore, to attempt an
explanation by analogy to other visible
events or processes. There is always the
possibility, of course, that the invisible
processes associated with the transmis-
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sion of light are in no way analogous g
anything that has ever been observel
directly. Nevertheless, such an analogy
or model or theory must be attempted.

Most of the facts of Chapters 1 and?
were known to Sir Isaac Newton. In 166
he proposed a theory, the basic assump:
tion of which was that light consisted of
a stream of particles—Newton callel
them ““corpuscles” —travelling from the:
source to the detector.

3-2 TRANSMISSION OF
PARTICLES

Newton’s corpuseular or particle theory
explaing very well the fact that light doet
not require a material medium for its

= . . Physic
transmission. Particles—bullets, for ex- |
ample—travel better and faster ina Fig. 3
vacuum than elsewhere, just as light does. a 'JEIHI
smoot

However, a bullet does not travel a
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tline path aslight does, but travels
ved path under the influence of
e of gravity. The cuwrvature of
path depends on the speed of the
t+ the greater the speed, the less
he path, We know that the speed
fin & vacuum is 3.0 X 10% m/sec;
‘speed we would expect the paths
articles of light o have very little
ature. It is possible, then, that a
& theory can explain rectilinear
ission.

light beams will cross without any
nt interaction (Fig. 3.1). In order
ain this fact, we must assume that
articles are so small that the chances
articles in one beam colliding with
1 another beam are negligible. Also,
rticles must be small enough not
de with the molecules of the media
h which they pass.

on of light are in no way analogou
wything that has ever been obser
rectly. Nevertheless, such an anal
-model or theory must be attempt
Most of the facts of Chapters 1 an
ere lenown o Sir Isaac Newton. In 166
» proposed a theory, the basic assu
n of which was that light consiste
stream of particles—Newton ca
em ‘‘corpuscles’”’ —travelling from
urce to the detector.

-2 TRANSMISSION OF
PARTICLES

Newton’s corpuscular or particle theor
plains very well the fact that light d
vt require a material medium for
ansmission. Particles—hbullets, for &
nple—travel better and faster
cuum than elsewhere, just aslightd
owever, a bullet does not trave

epariment, University of Western Onlario

. This time exposure shows the path of
iefare and after being reflected from a
surface.

Fig. 3.1. Two light beams cross without inter-
acting with one another.

A particle theory, then, accounts for
the transmission of light in a vacuum,
for the rectilinear propagation of light,
and for the fact that light beams can pass
through one another. Let us investigate
the behaviour of particles further, to see
how closely it parallels the behaviour of
light.

3—-3 REFLECTION OF PARTICLES

Experiments with balls which bounce
from smooth surfaces (Fig. 3.2) indicafe
that the laws of reflection are the same
for particles as for light. Indeed, baseball
players, tennis players, billiard players
and others intuitively base their judg-
ments of the path of the reflected ball on
two agsumptions: (1) that the angle of
incidence equals the angle of reflection,
and (2) that the incident path, the re-
flected path, and the normal lie in the
same plane.

34 OTHER TESTS OF THE
PARTICLE THEORY

Several phenomena associated with
light, provide further tests for the particle
theory.

(¢} The pressure of hight. A stream of
particles incident on a surface exerts a
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pressure on that surface. Our particle
model of light would lead us to expect
that light incident on a surface would
exert pressure—a small pressure to be
sure, since we have assumed that the
particles are very small. Near the begin-
ning of the twentieth century Hull and
Nichols in the United States and Lebedev
in Russia were able to detect and measure
the pressure of light. They found that,
for normal light intensities, this pressure
was indeed small, but that it did exist.
These findings are obviously in accord
with the particle model of light.

(b) Absorption of light. When light is
incident on the surface of an object, the
temperature of that object rises. This fact
presents nodifficulty to the particle model,
for the effect can be considered to be
analagous to the heating which occurs,
for example, when a piece of lead is ham-
mered with a large particle—a hammer.

We have already noted that a surface
may reflect, absorb, or transmit portions
of the incident light. Moreover, a dark,
dull, opaque surface absorbs most of the
incident radiation and reflects very little,
whereas the reverse is true for a bright
shiny surface. In order to explain this
selective absorption, reflection and trans-
mission, we may assume that any surface
containg three possible types of regions—
absorbing, reflecting, and transmitting—
and that the proportion of each type of
region variesfrom one material to another.
Do these agssumptlions seem reasonable?

(¢) The power of a source of light. The
fact that the power of a 100-watt bulb
is greater than that of a candle may be
explained by assuming that the bulb sends
out many more particles of light per
second. The particle theory predicts that

. I
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the power of two identical sources, place
side by side, is double that of either of th
sources. Each source sends out @ particlg
per second ; the two combined should seng
out 2a particles per second. Measur.
ments with an exposure meter show thy
source powers actually do add up, as th
particle model predicts.

(d) Theinverse square law. In Chapte
1 we developed the inverse square lay
for intensity of illumination: the intensity
was found to be inversely proportiong
to the square of the distance from the
source. We should note now that the de.
velopment of this relationship is inde
pendent of any assumptions concerning
the mode of transmission of light. The
particle theory then is consistent with
the inverse square law.

Up to this point we have not attempted
to explain refraction in terms of particles,
Let us make the attempt now.

3-5 LABORATORY EXERCISE:
REFRACTION OF PARTICLES
Light undergoes refraction when i
passes from one medium to another, ie,
when its speed changes. Moving particles,
too, may have their direction of motion
changed when their speed changes. To

Fig. 3.3. Apparatus for demonstrating refraction
of a ball.
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, power of two identical sources, plac
e by side, is double that of either of 1]
irees. Bach source sends out 2 particl
-second ; the two combined should se
t 22 particles per second. Meast
nts with an exposure meter show th
iree powers actually do add up, as

riicle model predicts. i

igate this phenomenon, set up the
aratus shown in Figure 3.3. Allow the
o voll down the small slide, across
pper horizontal surface and down
p to the lower horizontal surface.
he direction of the ball’s path on the
uwrface different from that on the
sp- surface? Before you attempt to
‘any measurements, place a piece
arbon paper over a plece of white
on each of the horizontal surfaces.
will then have a permanent tracing
 path of the ball on each of these
aces. Remove the carbon paper and
the normals at the points where the
nters and leaves the sloping ramp.
an then measure the angles of inci-
nd refraction, and determine the
SR 4

(d) Theinverse square law. In Chapt,
we developed the inverse square la
intensity of illumination: the intensi
s found to be inversely proportion
the square of the distance from ¢
irce. We should note now that the d
opment of this relationship is ind
ndent of any assumptions concerni
» mode of transmigsion of light. T
rticle theory then is consisient wi
» inverse square law. :
Up to this point we have not attemp
explain refraction in terms of particle
t us make the atternpt now, '

sin B

.epeat this procedure several times,
ring the position of the slide each
n order to change the angle of inei-
ce. However, you must release the
rom the same position on the slide

5 LABORATORY EXERCISE:

REFRACTION OF PARTICLES
Light undergoes refraction when
sses from one medium to another, 1.
en its speed changes. Moving particl
», may have their direction of moti
anged when their speed changes.

constant?

h time. Is the value of sin ¢
S

uld you attribute any variation in the
sin 1

of i R to experimental error, or
possible that Snell’s law does not

{)-piy to particles?

6 ANALYSIS OF PARTICLE
EFRACTION

igure 3.4 shows stroboscopic pictures
ball for two angles of incidence.
ball was released from the same
flon on the slide in both cases. The
ance intervals between successive
itions of the ball on the upper level
auniform and equal in both photo-

3. 3.3. Apparatus for demonstrating refract:.
' phe. Therefore the speed #, on the

a ball.

angles of incidence.
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Physics Depariment, University of Western Ontario

Fig. 3.4. Refraction of a ball for two different
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upper level is the same in both cases.
Similarly, the speed #, on the lower level
is found to be the same in both cases, but
s 18 greater than vy,

In Figure 3.5, AB represents the ramp,
and C'D represents the normal to the ramp
at 0. O and OG@ represent the speeds v,
and v, drawn to scale and in the correct
directions. EF is perpendicular to AB,
and GD is perpendicular to CD. Then
O =y sintand GD = vy sin B. Meas-
urements on the diagram show that
OF = GD.

Therefore v, sin it = ve stn K
and s.ini =
sin IR on
But », and »; do not vary from one case
to the next.

K
Therefore

sin
Snell’s law, then, seems to apply for
particles.

18 a constant.

3-7 PARTICLE REFRACTION
AND LIGHT

Let us now see whether we can apply
this particle model of refraction to light.
The path of the ball on the upper level
represents the incident ray; the path on
the lower level represents the refracted
ray; and v and v, represent the speeds of
light in the two media. The ramp between
the two levels represents the boundary
between the two media.

As the ball rolls down the ramp it is
given a shove by the force of gravity and
its speed increases. It is reasonable to
assume that particles of light (if they
exist) are given a shove as they pass from
one medium to another. In either of the
media, the particles of light are attracted
equally from all sides by the molecules
of that medium. But near the boundary,

WAVES AND PARTICLRy

C
E
v i
i
A [ B
ofl v,sini F
R
Va
G vgsinR‘D

Fig. 3.5. Analysis of particle refraction.

they may very well be attracted to a
greater extent by the molecules of the
second medium than by the molecules of
the first medium. The resulting shove
causes them to speed up, and refraction
toward the normal results. It is particu-
larly important to notice that our particle
model predicts refraction toward the nor-
mal when the particle speed increases.
This prediction causes difficulty when we
compare particle refraction with refrac-
tion of light.

Congider the refraction which takes
place when light passes from air to glass.
The relative index of refraction for air
and glass is about 1.5, i.e., S,m 1B

sin IR
Then, according to the particle theory,
Vg

— = 1.5. The speed of light in glass,
Uy
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£ re, should be about 1.5 times the
diof light in air. Unfortunately,
rements of the speed of light in air
in glass indicate that the speed of
1 air is 1.5 times the speed of light
.58, just the reverse of the prediction
particle model. The particle model

sin 1 Vp

st B %

2

st @ 0

sin R g

Vi

O ABANDON OR TC
‘MODIFY?

swion argued in favour of the particle
'y all his life, and many of his con-
oraries and successors did too. The
re. of this theory to predict the cor-
direction of refraction in terms of
peeds of light in the two media was

G D

v; sin R

'ig. 3.5. Analysis of particle refraction.

may very well be attracted to
er extent by the molecules of
1d medium than by the molecules g
first medium., The resulting shov 9 PROBLEMS
s them to speed up, and refractiol
important to notice that our partick
el predicts refraction toward the nor
when the particle speed increases
prediction causes difficulty when w
sare particle refraction with refrae
of light. :
msider the refraction which take
» when light passes from air to glass
relative index of refraction for ai

Justify your answer in each case.

radiation ? Justify your answer,

olags is about 1.5, l.e, —— = 1
sin B :
1, according to the particle theory

1.5. The speed of light in glass
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not obvious to them, for these speeds
were not known at the time.

The particle theory of refraction pre-
dicted that the speed of light in water
was greater than in air. Later experiments
showed that such was not the case. This
chain of events occurs frequently in
Science. A theory is developed to explain
the facts known at the time. This theory
is then used to make further predictions.
If later experiments disprove these pre-
dictions, then the theory must be modified
or discarded in favour of a new theory.

We find ourselves in the position of
having to modify the particle theory or
abandon it. [tis conceivable that we could
modify the theory by making new and
complicated assumptions about particles
of light, The questions that we must ask
ourselvesare: “Would these modifications
be worth the effort? Would the particle
theory then become unnecessarily
complicated ?”’

Perhaps there is a better—and less
complicated—theory.

A 60-watt light bulb is weighed, used for two months, and then weighed
again. No change in weight is detected. Discuss the implications of this
observation with respect to the particle theory,

. The speed of a ball is usually reduced when the ball is reflected. Does the
- speed of light change when the light 18 reflected ¥ Justify your answer.

. Can yvou explain the production of (a) a continuous spectrum, (b) a bright
line spectrum, (¢) a dark line absorption spectrum, in terms of particles?

Can a particle theory explain the existence of infrared and ultraviolet

. How could the apparatus which you used to investigate particle refraction
(Fig. 3.3) be used to demonstrate total reflection of particles? Could the
same apparatus be used to demonstrate partial reflection and refraction?
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6. The relative index of refraction of air and flint glass is 1.65. Calculate the
speed of light in flint glass. According to the particle theory, what should be Cl
the speed of light in flint glass?
7. The relative index of refraction for air and water is 1.33. Calculate the
speed of light in water. If the predictions of the particle theory were correct,
what would be the speed of light in water? H!
8. The relative index of refraction for air and water is 1.33, and the relative Tk
index of refraction for air and glass is 1.52. By calculating the speed of
light in water and in glass, determine the relative index of refraction for N
water and glass. %ﬁ
9. Is it possible that sound is transmitted by means of particles? Justify your
answer.
10. A block of wood floats on the surface of a swimming pool, 9 ft from the
edge of the pool. Discuss three ways in which a man, standing on the edge
of the pool, can cause the block to move. Which of these three ways is a
possible mode of transmission for light?

3-10 SUMMARY is constant. However, for particles,

The analogies used in Science to sum- SN 1
marize and explain observed facts are
called theories or models. If a particle
model is set up to explain the transmis-

:
_ = 2 The particle model also fails
sin R "

to account for partial {ransmission and
reflection of light, and for the differing a-

sion of light, it must be assumed that
the particles are very small and travel
very fast.

A particle theory accounts quite well
for reflection, pressure of light, absorption
and heating, and the inverse square law.
Particles undergo refraction; as for light,
the value of the ratio of sin ¢ to sin R

absorbing and reflecting properties of dif-
ferent surfaces.

It is conceivable that a more sophisti-
cated particle theory might be developed,
one which might not have the defects of
the simple theory presented here. This
will be done if there is no simple

Lo
Li¢
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alternative. Hi
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flint glass is 1.65, Calculate the;
e particle theory, what should be

nd water is 1.33. Calculate the
the particle theory were correct,
)
| water is 1.33, and the relative
52. By caleulating the speed of
» relative index of refraction for

means of particles? Justify your

a swimming pool, 9 ft from the
ich a man, standing on the edge
Which of these three ways is a

nstant, However, for particl

= EE The particle model alzo fa
, 1

count for partial transmission a
tion of light, and for the differi
bing and reflecting properties of d
t surfaces.

1s conceivable that a more sophis
| particle theory might be develop
vhich might not have the defects
imple theory presented here, T
be done if there is no simp
native,

: AN ALTERNATIVE TO
"NEWTON’'S THEORY

Ithough the failure of a particle theory
redict the correct direction of refrac-
tion was not evident, Newton’s corpus-
cular theory was opposed by a few of
ton’s contemporaries. One of these
‘s, Dutch physicist, Hans Christiaan
iygens (1629-1695). In 1678 Huygens
oposed a wave theory for light, and,
igh few people agreed with him at the
, support for a wave theory grew
‘ly but steadily for the next two
nburies.

uygens reasoned that light may be
idered asadisturbance travelling out-
d from its source. He pointed out that
one dropped into a pool of water
es a disturbance or vibration which
avels outward from the point at which
stone enters the water. The trand-

mission of the vibration is called a wave
motion. It was natural, then, for Huygens
to attempt to explain the behaviour of
light in terms of waves. Before we attempt
to evaluate Huygens' theory, we must
become familiar with waves and with the
vibrations whieh cause and accompany
them.

4-2 VIBRATIONS

A vibration is a repeated to-and-fro
motion. Congider for example the motion
of a weight suspended by means of a
short spring (Fig. 4.1) or rubber band.
If the weight, originally at rest at 4, is
pulled down to B and released, it vibrates
about its rest position, A, and between
the limits, B and €. The repeated motion
—from B to ¢ to B—is called one cycle.
The frequency, f, of vibration is the num-
ber of cycles per second and the period,
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Fig. 4.1. Vibration of a weight attached to a
spiral spring.

T, of vibration is the time taken for one
cycle. The maximum displacement of the
vibrating particle from its rest position,
AB or AC in Figure 4.1, is called the
amplitude of vibration.

Vibratory motion may also be illus-
trated by means of a simple pendulum—
a weight suspended from a wire or string.
Two identical pendulums (Fig. 4.2) may
be used to demonstrate what is meant
by the word phase in connection with
vibrations. If A is pulled aside to @ and
B to 8, and both are released at the same

/ \ / \
/
/ \ \
{ Voo
P * Q R '

A B

\
s

Fig. 4.2. Two identical pendulums illustrate
phases of vibration.

e
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ingtant, A will reach P at the same tiy, al 1l
that B reaches R. Subsequently, A ;) o'clo
reach @ at the same time that B reacl an h
S. A and B are said to be in phag i
throughout the cycles of movement, sinc, geen
at any instant they are about to move j, appe
the same direction from corresponding i 60
points in the eycles. If 4 is drawn asid, (o b
to P, when B is moved to .S, and if bat), mint
are released simultaneously, then at any if th
instant A and B are in opposite phases 20 p
of vibration. hiane
ot
We

ol tl
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Fig. 4.3. A disc stroboscope. N

min

4-3 LABORATORY EXERCISE: "
THE STROBOSCOPE i
Several methods are available for de- '.”'Q".
termining the frequency of a vibration. Hlﬁ(
If the frequency is low, the number of : \1
vibrations in a measured time may be :]:If
counted. Suppose, for example, that a ihe
pendulum executes 20 vibrations in 25 -
sec. Its frequency is obviously 0.8 cycles vien
per second. _ Did
If the frequency is higher, counting e
may be impossible. In this case, a disc ol
stroboscope (Ifig. 4.3) may be used. To e
understand the principle of its aclion, il

let us consider the motion of the sweep
second hand of a watch. Suppose we look

ure
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fe hand when if iz poinfing at 12
lock, and ence a minute thereafter for
sur. Each time we observe the hand
gints to 12 o’clock and the watch
s to have stopped. That is, the watch
pears stopped if the viewing frequency
0 per hour. But the watch will appear
‘stopped if we view it every second
ute, or every third minute, ete.; i.e,
Hhe viewing frequency is 30 per hour,
er hour, ete. If we view the second
and more frequently than 60 times per
r, the watch will not appear stopped.
know that the frequency of rotation
e second hand is 60 per hour; there-
e come to tiﬁé“fcllowing coneclugions:

wnt, A will reach P at the same ti
B reaches R. Subsequently, 4 v
h ¢ at the same time that B reacl
| and B are said to be in pha
ughout the eycles of movement, sin
ny instant they are about to move
same direction from correspondin
ts in the cycles, If A is drawn agi
, when B is moved to 8, and if bo
releaged simultaneously, then at an:
wnt A and B are in opposite pha;
bration.

;) Thefrequency of the viewed object
qial to the maximum viewing fre-
ency for “stopped” motion.

(b) Tor viewing frequencies other than
e maximum, for stopped motion, all we
nsay is that the frequency of the viewed
ject is some integral multiple of the
wing frequency.
ow, apply these principles to deter-
pe the frequencies of several vibrating
ts, starting with one whose frequency
w enough to be determined by count-
.g., & pendulum or a loaded strip of
el clamped in a vise (Fig. 4.4). Cover
1l of the slits in the stroboscope except
ne, Rotate the stroboscope between your
and the vibrating object, and vary
speed of rotation until the motion
ppears “stopped.’”’ Is this the maximum
wing frequency for “stopped motion’ ?
‘you stop the motion at the limit of
he-vibration, or at the centre?- Where
uld you stop the motion? Determine
he viewing frequency by counting the
ber of rotations of the disc in a meas-
time interval. Compare this result

Fig. 4.3. A disc stroboscope.

 LABORATORY EXERCISE:
THE STROBOSCOPE

veral methods are available for de
ining the frequeney of a vibration
e frequency ig low, the number &
afions in a measured time may
ted. Suppose, for example, that :
ulum executes 20 vibrations in 2!
[ts frequency is obviously 0.8 cycle
econd. )

the frequency is higher, counting
be impossible. In this case, a dis
oscope (Fig. 4.3) may be used. T
ratand the principle of its action
s consider the motion of the sweep
1d hand of a watch. Suppose we look

Fig. 4.4. A disc stroboscope in use.

with the frequency of vibration as deter-
mined by counting.

Now repeat this procedure for a vi-
bration of higher frequency, the vibration
of the clapper of a bell (I'ig. 4.5) for
example. You will likely have to use more
than one of the slits of the stroboscope.
Should the slits used be equally spaced ?
Note that you have to take into account
the number of slits used when you cal-
cudate the viewing frequency. Since count-
ing is impossible, how can you check your
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Fig. 4.5. A recording timer.

result ? Try the method suggested in Fig.
4.6, i.e., count the number of dots made
in 10 sec by the clapper on the strip of
paper which you pull underneath the
clapper. Does the speed of the paper have
to be uniform?

4—-4 CHARACTERISTICS OF A
WAVE MOTION

Waves, as we normally think of them,
require a medium; water waves are 1im-
possible without water. Waves are initi-
ated by a disturbance or vibration of
some sort; this vibration ig transferred to
the particles of the medium adjacent to

Fig. 4.7. A wave machine,

-
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Fig. 4.6. The clapper of the timer strikes the car-
bon paper on top of the white paper tape. As g
result, dots are recorded on the tape as it is pulled
through the timer.

the source, then to the next particles of
the medium, ete. Yet close observation of
water waves indicates thal the medium
itsell (the water in this case), is not
transferred.

The behaviour of the particles of the
medium through which the wave travels
is difficult to observe with waler waves,
but may be observed quite readily wilh
the aid of a wave machine (Tig. 1.7)
which has been developed by the DBell
Telephone Laboratories Ine. It consists
basically of a set of transverse rods at-
tached Lo a central steel “spine”. When
the rod at one end is caused to vibrale,
a wave motion, consisting of a series of
crests and troughs (Fig. 4.8), is set up.
The effect of such a wave on any one rod
is to cause that rod to vibrate up and
down, but the rod is not transferred
horizontally. Tn short, the disturbance
travels but the medium does not.

If we observe the motion of a single
pulse (crest or trough), we note that the
shape of the pulse does not change as il

WAV 55
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Fig. 4.8. A seties of crests and troughs on the wave machine.

els, and that the pulse travels at con-
1t speed.

‘5 REFLECTION OF PULSES
When a pulse reaches the end of the
ve machine, it is reflected back toward
cend from which it came. Let us gener-
‘s pulse at one end of the machine and
sorve in detail the reflection which takes
lace al. the other end. Two cases are

6. The clapper of the timer strikes the ca
per on top of the white paper tape. As:
dots are recorded on the tape as it is pulla
h the timer,

wree, then to the next particles ¢
edium, ete. Yet close observation o
- waves indicales that the mediun
(the water in this case), is no
erred. :
o behaviour of the particles of th :
un through which the wave travel cclamped in position (Fig. 4.9); that
icult to observe with water wave
1y be observed quite readily wit
id of a wave machine (Ifig. 4.7
 has been developed by the Be
hone Laboratories Ine. It consist
ly of a set of transverse rods at
d to a central steel “spine”. Whe
d at one end 13 caused to vibrat
re motion, consisting of a series o
~and troughs (Fig. 4.8), is set y
ffect of such a wave on any one ro
cause that rod to vibrate up an
, but the rod is not transferre
mtally. In short, the disturbanc
s but the medium does not.
we observe the motion of a singl
(crest or trough), we note that th
- of the pulse does 1ot change as i

Fig.4.9. The rod at one end of the wave machine,
clamped in place.

end is then said to be fixed. In this case
the pulse is reflected without change of
shape, but it is reflected upside down
(I'ig. 4.10), i.e., a crest is reflected as a
trough. The fixed end of the machine,
of course, remaing stationary while the
reflection is taking place.

(b) If the reflecting end of the machine
is free to vibrate, an incident pulse is
reflected without a change of shape but
this time it is reflected right side up. A
crest is reflected as a crest (Fig. 4.11),
The free end vibrates while the pulse is
being reflected.

410, Reflection from a fixed end. A crest
velling from left to right (upper photo) is re-
ted as a trough (lower photo).
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Fig. 4.11. Reflection from a free end. A crest travelling from left to right (upper photo) is reflected

as a crest (lower photo).

4-6 LABORATORY EXERCISE:
TRANSMISSION AND
REFLECTION OF PULSES

You may investigale the production,
propagation, transmission and reflection
of pulses by using a slinky and a coil
spring (Iig. 4.12). Working with your
partner, stretch the glinky to a length of
about 8 or 10 metres on a smooth floor.

Practice generating pulses, crests or

troughs, and observe their transmission.

What happens to the shape, speed, and

amplitude of the pulse as it travels? Does

the speed depend on the amplitude? To
observe reflection at a fixed end, simply
have your partner hold his end of the
spring fixed, and generate a pulse at your
end. To observe reflection at an end that
is essentially free, lie a long thread to the

Fig. 4.12. Two springs: a “slinky” (upper) and a
coil spring (lower). The coil spring is heavier than
the slinky, and of smaller diameter.
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='4,13. When a long thread
ad to one end of the slinky,
end of the slinky is essen-

ig.4.14. Theslinky and the coil
ting, hooked together.

nd coil of the slinky (Tig. 4.13) and
hserve pulse reflection at this junction.
‘6 observe reflection at a junction that
either fixed nor completely free, hook
i slinky and the coil spring together as
wn in IMigure 4.14. Observe the effect
he junction on pulses generated (a) on
slinky, and (b) on the coil spring. Is
partial reflection that takes place
itar to that at a fixed end or at a free
? Summarize all of your observations.

7 LABORATORY EXERCISE:
THE EFFECT OF PULSES
ON ONE ANOTHER

ow use the slinky to observe the effect
wo pulses which affect the same portion
he spring at the same time. Generate
multaneous pulses at opposite ends of
;’_e slinky. Do the pulses pass through
tie another, or do they meet and bounce
ack, as two billiard balls do? How do
ou know ? Generate a crest at each end
he spring, and observe the effect at
1e point where the two crests meet. Re-
eat for a crest generated at one end and
trough generated at the other end. How
oes the displacement of the spring at
e point where the pulses meet seem to
ompare with the displacements produced
¥ the individual pulses?

 left to right (upper photo) is reflecte

2. Two springs: a “slinky” (upper) and i
g (lower). The coil spring is heavier tha
y, and of smaller diameter.

4-8 THE PRINCIPLE OF
SUPERPOSITION

In our particle model of light, we had
{0 assume that the particles were so small
that there was little likelihood of their
colliding. This agsumption was necessary
because of the fact that light beams cross
without evidence of anything resembling
a collision. The Laboratory Exercise
(Sect. 4.7) provides some qualitative in-
formation about what happens when two
pulses meet. Figures 4.15 and 4.16 pro-
vide greater detail. In the upper photo-
graph in Figure 4.15, the crest on the left
is travelling from left to right, and the
crest on the right is travelling from right
to left. The lower photograph shows the
large crest produced when the two crests
coincide, The amplitude of this crest, that
is, the displacement of the rod from its
rest pogition at this point, seems to be
the sum of the amplitudes or displace-
ments of the two separate crests.

The effect of the crossing of a crest and
a trough is shown in Iigure 4.16. In the
upper photograph, the trough on the left
(moving from left to right), and the crest
on the right (moving from right to left)
are just about to meet. The middle photo-
graph indicates that, when the erest and
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the trough are at the same position on
the machine, they cancel one another.
The lower photograph shows the positions
and shapes of the pulses a moment later.
They are travelling in their separate (and
original) directions, unchanged in shape.
This last photograph makes it obvious
that pulses do not collide head on and
bounce back as particles do.

We may deseribe the interaction of
two pulses by the following Principle of
Superposition: The displacement of the
medium at the point where two pulses
cross is the algebraic sum of the displace-
ments due to the individual pulses. Thus
two crests reinforce one another to form
a large crest, two troughs reinforce one
another to form a deep trough, and a
trough and a crest cancel one another,
| partially or completely. (Whether the
1 cancellation is partial or complete de-

pends on the relative amplitudes of the
erest and the trough.) The interaction of

two pulses is called interference. If the
two pulses cause displacements in the

42
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Fig. 4.15. The upper photo shows two crests approaching one another on the wave machine;
the lower photo shows the combined effect of the two crests as they cross.

same direction (as do two crests or two
troughs), the reinforeing effect 1 called
constructive interference. On the other
hand, if the (two pulses cause displace-
ments in opposite directions (as do a crest
and a trough), the cancelling effect is
called destructive interference.

4-9 TRAVELLING WAVES

A travelling wave is simply a series of
pulses—a succession of crests and Lroughs
(Inig. 4.17). Such a wave may be gener-
ated on a spring by causing one end of
the spring to vibrate. If the frequency of
vibration of the end of the spring is con-
stant, the resulting wave 1s said fo he
periodic. The wave pattern is regular and
symmelrical. The constant length of this
recurring pattern—from crest to crest or
from trough to trough —1is called the wave
length. We shall use the Greek letter, A,
ag the symbol for the wave length.

The vibration which originates at the
end of the spring is transferred [rom par-
ticle to particle along the spring, each
particle vibrating with frequency [. Asd
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ring to vibrate. If the frequency ¢
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F_ig. 4.16. The upper photo shows a crest and a trough about to meet; the middle photo shows
heir combined effect as they cross; the lower photo shows each continuing after they cross.

Direction of Wave Motion

A B c

+——One Wave Length——

NN

Direction of vibration
of a particle

Fig. 4.17. The length of the recurring pattern of a periodic wave is called the wave length,




result, the number of crests or troughs
- complete wave patterns passing any
on the spring in unit time is also f.
Thus the disturbance travels f wa
lengths per unit time, that is, the speed,
v, of the wave is f wave lengths per unit
time. Hence,
v =fA 1
If fis 10 cycles/sec, then the period, T,

WAVES AND PARTICLpy

1
is iy sec. In general, f = T and equatioy,

(1) may be written

(2)

(1) is 3
It may be applied to per1
waves of any type.

Physics Department, University of Western Onlario

Fig. 4.18. Standing wave patterns produced by the interference of incident and reflected waves

on a string.
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10 STANDING WAVES

bservation of travelling waves, pro-
¢ed at one end of a spring, is compli-
ed by the fact that the waves are
. . . ted from the other end, The reflected
Led the wivereal wave oquat ests s troughs are superimposed upon
. - dent crests and troughs. The incident
be applied to periodic travellin sreflected waves interfere with one
fany type. ther; under certain circumstances the
ect of this interference is to produce
terns called standing waves.

i
. In general, f = T and eqguatis

- be written

tanding waves differ from travelling
es in that the wave patterns appear
emain stationary. The production of
ding waves requires two identical
g moving in oppoesite directions—a
dition which is fulfiled by the arrange-
ment shown in Figure 4.18. For a certain
tively low frequency of vibration of
 vibrator, the pattern shown in the
per photograph results; the succeeding
patterns result from frequencies which
‘respectively, 2, 3, and 4 times as
eat. Forotherfrequencies, superposition
he incident and reflected waves takes
g, but the interference pattern is not
ationary one.

Department, University of Western Ontari

ence of incident and reflected waves

or the lower photo 0.1 sec.
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A standing wave pattern is composed
of one or more segments; the stationary
points at the ends of the segments are
called nodes. The distance between nodes
in a standing wave pattern is one-half of
the wave length of either of the waves
which interfere to produce that pattern,
At the nodes the sum of the displacements
due. to the incident and reflected waves
is zero at all times, The mid points of the
segments are called loops. At the loops
the sum of the displacements due to the
incident and reflected waves varies from
amaximumin onedirection to a maximum
in the other direction. The particles of
the string at the loops vibrate rapidly
and vigorously. We must realize that the
blurred patterns on the string in Figure
4.18 is due to this rapid vibration. Figure
4.19 shows a three segment pattern and
the position of the string at a particular
ingtant,

4-11 WATER WAVES

If light waves exist, they are not likely
t0 be confined to one dimension as are
waves on a string, but are likely to bear
some resemblance to waves on water,

Fig. 4.19. Photographs of standing waves. The exposure time for the upper photo was 0.001 sec;
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Fig. 4.20. A ripple tank.

Water waves are best studied in the labo-
ratory with the help of a ripple tank
(IMig. 4.20). The tank consists essentially
of a shallow rectangular frame with a
transparent bottom. Waves are produced
on a shallow layer of water in the tank.
Tmages of the waves are projected on a
sereen below the tank by means of a light
source placed above the water. The crests
of the wafer waves act as converging
lenses to form bright areas on the sereen;
the troughs act as diverging lenses to
form dark areas. IFor best results, some
experimentation is necessary to de-
termine the proper combination of water
depth, wave amplitude, screen distance
and light intensity.

If a finger or some other object is caused
to vibrate up and down in the water al
the centre of the ripple tank, a pattern
is produced on the screen which at any
given moment would resemble the one
shown in Figure 4.21. The circular crests
and troughs on the water are called wave
fronts. A study of these wave fronts and

D

WAVES AND PARTICLIg

Fig. 4.21. Circular wave fronts.

Fig. 4.22. Straight wave fronts.
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heir motions reveals the following facts:

‘(a) As the wave fronts advance, the
thration associated with them is trans-
arred horizontally in all directions away
yom the source. However, the water itself
gnot transferred. A particle of cork float-
ng on the water vibrates mainly vertical-
these waves are essentially transverse.
(b) Allpointsonaparticular wavefront
re in the same phase of motion.

{¢) The direction in which the wave
vels is always perpendicular to the
rave front.

(d) A small section of one of these cir-
lar wave fronts at a great distance from
he source is, for practical purposes,
raight.

Straight wave fronts (Fig. 4.22) may
e produced more readily by rocking a
ylindrical rod back and forth in the water
1 one end of the tank. Many inexpensive
nechanical vibrators are available to pro-
uce either straight or circular wave
ronts, :

ig. 4.21. Circular wave fronts.

12 LABORATORY EXERC!ISE:
REFLECTION AND
REFRACTION OF
WATER WAVES

{a) Set up the ripple tank as shown in

igure 4.23. Generate straight or circular

_é;ve fronts and observe the patterns they

roduce on the sereen. Vary the frequency

‘the vibrator, and note the effect on

he waves, Could you have predicted this

esult ?

{0) Generste straight waves and at-

empt to calculate their speed from the

ime required to travel a measured dis-

ance on the sereen. If this proves im-

ossible, try using a stroboscope to

measure their frequency and their wave

ength on the screen, Then caleulate their
‘ig. 4.22. Straight wave fronts. i

speed uging the relationship » = fA. Is
thig the actual speed of the waves on
the water?

(¢) Allow straight waves to strike a
barrier and be reflected from it. Remem-
bering that rays are perpendicular to the
wave front, lay rulers on the screen fo
represent incident and reflected rays.
Measure the angles of incidence and re-
flection. Repeat for various angles of inei-
dence. Do water waves obey the same laws
of reflection aslight does? (See Fig. 4.24.)

{d) To observe refraction in a ripple
tank, adjust the water depth to about

Fig. 4.23. Ripple tank with wave generator in
the tank, and light source above the tank.
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Fig. 4.24. Reflection of straight wave fronts.

1 em. Place a sheet of transparent ma-
terial in the tank as shown in Figure 4.25;
the upper surface of this material should
be no more than 2 mm below the surface
of the water. Generate a series of straight
wave fronts and allow them to be incident
obliquely on the houndary between the

Blocks

Wave Generator

Fig. 4.25. Ripple tank arrangement for illustrat-
ing refraction.

WAVES AND PARTICLEY

deep water and the shallow water. Hoy
does the wave length in shallow watep
compare with that in deep water? Whyy,
significance has this comparison as fy,
as the speeds in deep and shallow watey
are concerned ? (Since the vibration of
particle in the deep portion adjacent tg
the boundary causes a nearby particle iy
theshallow waler to vibrate, thefrequency
of the waves in the shallow water is the
same as that in the deep water.) Is the
observed direction of refraction of water
waves (Fig. 4.26) the same as for light?

Vary the frequency of the waves. Do
you find that the amount of refraction
depends on frequency; i.e., do your ob-
gervationg agree with those shown in
Figure 4.277 (Recall that for light the
amount of refraction depends upon the
colour of the light, that is, dispersion
tales place).

Fig. 4.26. Low frequency straight waves are re-
fracted as they pass from deep water (bottom)
to shallow water (top). The black marker is parallel
to the refracted waves.
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ater and the shallow water. How
e wave length in shallow watep
e with that in deep water? What
wnee has this comparison as fap
speeds 1n deep and shallow water
cerned ? (Since the vibration of g
» in the deep portion adjacent tg
ndary causes a nearby particle in
low water to vibrate, the frequency
vaves in the shallow water is the
5 that in the deep water.) Is the
d direction of refraction of water
Fig. 4.26) the same as for light?
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lace).

5. Low frequency straight waves are re-
s they pass from deep water (bottom)
v water (top). The black marker is parallel
fracted waves.

WAVES OF LIGHT

It is unlikely that you will be able to
malke sufficiently accurate measurements
to determine an Index of refraction for
water waves. We discuss such a relation-
ship in the next section.

4-13 SNELL'S LAW FOR WAVES
Since the frequency of the wave does
not change as the wave passes from deep
water to shallow water, the relationship
v = A applies for the deep water and

ve = fAs applies for the shallow water.
Thus

o A

Ug Ao

Now consider IMigure 4.28 which shows
two successive incident wave fronts and
the corresponding refracted wave fronts.
(The angles marked 7 and R arc not the
angles of incidence and refraction, but

Incident Wave Fronts

Refracted Wave Fronts

Fig. 4.28. When waves are refracted, the wave
length changes. The ratio \; : \; is constant.
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Fig. 4.27. For waves of higher frequency, the
amount of refraction is less. The refracted waves
are not parallel to the black marker in this case.

are equal Lo these angles.) From the
diagram

A A
JLB’ and sin 2 = /TEB

sl o=

Sin 1 A v

simnR N
Since Ay, Ag, 11, and v, are independent of
the values of 7 and R,

SN 1

- = a consgtant,
sin R

and Snell’s law applies.

4-14 LIGHT: A WAVE MOTION?

We will now summarize the wave
phenomena deseribed in this chapter and
{ry to decide whether a wave model is
suitable for light.

() A wave motion is initiated by a
vibration and this vibrationis transmitted
from particle to particle in the medium.
If light is a wave motion, what vibrates
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in a luminous object to cause the wave?
And, sincelight doesnotrequirea medium,
if light is transmitted by means of waves,
what is it that “waves” ?

(b) When a wave motion takes place,
matter is not transferred. Apparently this
is true for light too.

(¢) Waves may undergo reflection, or
partial reflection and transmission, and
refraction. Exactly similar phenomena are
observed in connection with light.

(d) Snell’s law applies for waves in the
same way as it does for light. Recall that
for particles,

SN 1 Vs

sin R - U1
but that for waves and for light,
st n

sin R Vo

(¢) The wave theory of light can he
used quite successfully to explain disper-
sion. lixperiments with water waves in a

ripple tank show that the amount of re-

fraction of a water wave depends on the
frequency of the wave. This fact, coupled
with the fact that different colours under-
go different amounts of refraction, sug-
gegts that, with each colour of light, there
is associated a definite frequency. These
frequencies are not measured directly.
Instead, wave lengths are caleulated from
observations in diffraction and interfer-
ence experiments (Chapter 5), and the
formula » = fA is then used to calculate
the frequencies. The frequencies thus
computed have been found to range from
about 3.8 » 10" cps for red light to
about 7.5 X 10 ¢ps for violet light.

7 ‘

WAVES AND PARTICLy

The speed of red light in glass diffe,
from that of violet light. Let
v = gpeed of light in air
v = speed of red light in glags
vy = speed of violet light in glag

N, = index of refraction for req
light
N, = index of refraction for viplgt
light
v v
Then Ny = —and Ny = —
0 Ug
. N,y Vs
Hence — =i—
Nz o

Therefore, in glags, the speed of red light
is greater than the speed of violet light,

In describing light of a particular colour
it is usunal to state the wave length rather
than thefrequency, even though the wave
lengths depend on the medium through
which the light is travelling. When light
changes from one medium to another itg
speed changes, but its frequency does not
change. Therefore, since v = [\, the wave
length must change. The wave lengths in
a vacuum, where the speed is independent
of the frequency, range from ahout
0.000078 em for red light to 0.00004 ¢m
for the shortest violet. Wave lengths are
usually stated in Angstrom units (A), one
Angstrom unit being equal to 10~ cm.
Thus 0.00004 cm = 4000A.

With the exceptions noted in (a) above,
a wave model for light seems possible.
However, our investigation is not yet
complete. Do waves undergo diffraction
as light does? And do interference
phenomena, such as we have noted briefly
for waves, occur for light? ITn Chapter 5,
we will make a detailed study of diffrac-
tion and interference of waves and of light.

WA
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1-15 PROBLEMS

21, Calculate the period of vibration for each of the following frequencies of
" vibration: {a) 200 cycles per second; (b) 7 eps; (¢) 30 ¢/g; (d) 0.1 ¢/s; () 500

kilocyeles per second ; (f) 200 megacycles per second.

. Caleulate the frequency of vibration for each of the following periods of

vibration: (a} % sec; () 0.4 sec; (¢} 8 sec; (d) 4.0 X L0t gec; (¢) 5.0 X 1078
gsec.

. What is the relationship between the period of a vibration and its frequency ?

If you were to plot a graph of period against frequency, what sort of graph
would you obtain? What function of the period would you have to plot
against frequency in order that the graph would be a straight line?

. A point on a rotating shaft is viewed through an eight-glit stroboscope. The

maximum frequency of rotation of the strobe, for which the motion of the
spot appears stopped, is 5 revs/sec. Calculate () the frequency of rotation
of the shaft, (b) the period of rotation of the shaft.

. A vibrating metal sirip appears motionless at the limit of i$s vibration when

viewed through a 2-slit stroboscope rotating 45 times per minute. If this
viewing frequency is the maximum for stopped motion, calculate the fre-
quency of vibration of the strip.

. The motion of the air valve of a rotating bicycle wheel appears stopped

when the wheel is viewed through a 12-slit stroboscope. The stroboscope
rotates 10 times in 4 seconds. What are the possible frequencies of rotation
of the wheel?

One blade of a rotating fan iz coloured differently from the other blades.
It appears motionless when viewed through a 4-slit stroboscopic dise rotating
at 8 revolutions per sec. Calculate the possible frequencies of rotation of
the fan,

Suppose that the fan in Question 7 had 4 blades, and that the blades were
all alike. Caleulate the possible frequencies of rotation of the fan in this case.

Suppose that, in an experiment with springs of the type shown in Figure
4,12, you hook 2 coil springs to the slinky, one at each end. You then
generate a pulse on one of the coll springs. Describe the transmission and
reflection which tale place when the pulse reaches (¢) the junction between
the first coil spring and the slinky, and (b) the junction between the slinky
and the second coil spring,

. Draw the resultant of the black pulse and the coloured pulse in each of the

4 cages shown 1 IFigure 4.29.

. Draw the resultant of the black pulse and the coloured pulse in each of the 2

cases shown in Itigure 4.30.

. The speed of 1 wave disturbance iz 1120 feet per second and the frequency

is 256 eps. Calculate the wave length in inches.
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13.

14,

16.

17.

18.

|

WAVES AND PARTICLRy

(a) (b)

(c) (d)

Fig. 4.29. For problem 10.

The speed of a wave disturbance is 3 x 10! ¢m per sce, and the wave
length is 300 metres. Calculate the frequency.

One end of a rope is being vibrated transversely. If the frequency is 20 ¢ps
and waves 15 em long are produced, calculate the speed of the digturbance.

A source making 400 cps sends out waves of wave length 20 em. How long
will it take the disturbance to travel from the source to an object 160
metres distant?

Standing waves are set up in a string by a source making 120 vibrations per
second. Seven nodes are counted in a distance of 60 cm, beginning and ending
at a node. Caleulate the wave length and the speed.

Standing waves are set up in a stretched gtring by meang of a tuning fork
which makes 128 vibrations per sec. Six nodes are counted in a length of
80.0 cm, one node being at each end of the measured length. Calculate the
speed of the wave in the string.

The vibrator in a ripple tank produces one erest and one trough every 0.1
sec. The wave length is found to be 2.0 cm. What is the speed of the wave?

149,
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(a)

(b)

19.

20.

21.

22.

24,

Fig. 4.30. For problem 11.

Circular waves having a speed of 30 cm/sec are set up in a ripple tank.
Each wave front has a radius 3 cm less than the preceding one. Calculate
the frequency of the source. '

What will be the length of the waves produced by a source of frequency 15
cps if the speed of propagation of the waves is 0.9 ft/sec?

Straight waves in the deep portion of the water in a ripple tank have a speed
of 24 em/sec and a frequency of 4.0 ¢/s. They strike the boundary between
deep and shallow water, the angle between a wave front and the boundary
being 40°. If the speed in the shallow portion is 15 em/sec, what angle does
a refracted wave front make with the boundary ?

A wave whose speed in a gpring is 4.4 m/sec enters a second spring. The
wave length changes from 2.0 m to 3.0 m. Calculate the speed of the wave
in the second spring.

. A certain kind of light has a wave length in air of 0.000055 cm. Find its

wave length in water, given that the index of refraction from air to water is
1.32. State your answer in ¢m and in Angstroms.

A certain colour of red light has a wave length in air of 7.8 X 10~ em.
Calculate its wave length in turpentine, given that the index of refraction
from air to turpentine is 1.47.




25. The speed of light is 3 X 10" ¢m per sec. Caleulate the frequency of vibration
for the hydrogen red line (wave length 6563 A).

26. The speed of sound in air is 3.4 X 107 m/sec, and frequencies ranging from
about 17 to 17000 cycles per second are audible to human beings. Calculate
the audible range of wave lengths.

4-16 SUMMARY

A periodic wave is initiated by a vi-
bration; this vibration is transferred
through the medium from particle to
particle. The particles of the medium
vibrate but arenot transferred. Thelength
of the recurring pattern in the medium
is called the wavelength. The wavelength,
frequency of vibration, and speed of pro-
pagation of the wave are related by the
equation » = fA.

Waves may be reflected. At a free end
a pulse is reflected right side up; at a
fixed end it is reflected upside down.
Partial transmission and reflection may
occur at the junction of two media.

When two pulses are superimposed, the
resultant displacement is the algebraje
sum of the individual displacementg’
Standing waves may be produced by tws.
equal waves travelling in opposite direc-
tions. The distance from node to node
I

Tor waves, the ratio of sin ¢ to sin R
is a congtant, and the value of this cou-

v .
stant is —, as for light, The wave model
Uz

may be used to explain reflection and
refraction of light, partial transmission
and reflection, and dispersion. But waves
seem to require a medium, and hight
does not.
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 require a medium, and lig 5_1 INTRODUCTION

A particle theory for light gives us, at
best, awkward explanations for partial
transmission and reflection, for disper-
sion, and for the different reflecting and
absorbing properties of different surfaces.
In spite of these shortcomings of the
particle theory, the wave theory which
Huygens proposed in 1678 gained little
immediate support, mainly because waves
seem to require a medium and light does
not. The most convincing evidence for
the wave theory was discovered in the
vears between 1860 and 1890, when
measurements of the speed of light in
various media made it apparent that the
particle theory predicted the wrong
change of speed during refraction. Buf
even hefore 1860, support for Huygen’s
theory had been increasing. Diffraction
and interference of light had been dis-
covered early in the nineteenth century.

o
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Diffraction and Interference

Fig. b.t. Diffraction of water waves around an
obstacle.




Fig. 5.2. Ripple tank arrangement for illustrating
diffraction from an aperture.

These phenomensa are wave phenomena.
Let us study them first in connection
with water waves.

5—-2 DHFFRACTION OF
WATER WAVES

If an obstacle is placed in the path of
a wave front, the disturbance spreads

Fig. 5.3. Pattern produced when water waves
are diffracted from an aperture.

DLFE

into the region behind the obstacle (Fig,
5.1). This “spreading around corners”,
called diffraction, also takes place whey
a wave is incident on a barrier in whigl
there ig an aperture (Fig, 5.2). The 14
sulting diffraction pattern is shown iy
Figure 5.3. The amount of diffraction de.
pends both on the wave Iength A'and oy
the width d of the opening (Fig. 5.4); the:
amount of diffraction decreases as the

LA
ratio ] decreases. If the wave length jg

very small compared to the width of the
opening, there is very little diffraction
and an almost geometric shadow is pro.
duced. What significance has this result
in connection with light?

5-3 INTERFERENCE OF
WATER WAVES

If two point sources, each producing
circular wave fronts, are used in the ripple
tank, the effects of the two wave traing’
onone another may be studied. In general,
the superposition principles discussed in:
Section 4-8 seem to apply, for, at some
points in the area affected by the two
wave trains, crests or troughs higher or -
deeper than usual can be seen for short
periods of time, whereas other points are ;
momentarily calm under the action of
the two wave trains. (Hereafter these high
crests and low troughs are called double
crests and double-troughs.)

The interaction of two wave fronts fo -
reinforce one another is called construe-
tive interference and results in either a
double-crest or a double-trough. The in
teraction of two wave fronts to cancel
one another is called destructive inter-
ference and results in a calm area.

Perhaps the easiest interference pattern
to attain, and the most instructive, is the

grea
of di
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Fig. 5.4. Two cases of diffraction from an aper-
ture, In the lower photograph, A is less and o is
greater than in the upper photograph. The amount
of diffraction is less in the lower photograph.

Fig. 5.5. The interference pattern produced by
the waves from two point sources in phase. The
nodal lines are clearly visible.

pattern which is an extensgion, into the
whole horizontal plane, of the standing
wave pattern on a string. Two vibrating
sources, A and B, having the same fre-
gqueney and vibrating in phase, are used
in the ripple tank. A standing water wave
pattern (Fig. 5.5} is produced. The “lines”
visible in this photograph are nodal lines
—hyperbolae having 4 and B ag foci. At
any point on these lines there is continu-
ous destructive interference. At points in
between these lines, there are aliernating
double-crests and double-troughs, i.e.,
loops occur.

Figure 5.6 shows the arrangement of
crests and troughs from the two sources
at a particular moment. The crests are
drawn as solid lines; the troughs as broken
lines. Several conclusions may be drawn:




} (a) The two waves reach any point P
in the water by two paths P4 and PB.
The interference effect produced depends
on|PA — PB|, the absolute value of the
path difference. If the path difference is
A, ¥\, 87, ete., corresponding to the
nodal lines Ny, Ny, N3, ete., the two inter-
fering waves are at all times in opposite
phase and destructiveinterference occurs.
Conversely, the path difference for any

-

WAVES AND PARTICLES

Fig. 5.6. This diagram shows how the interference of two wave trains produces nodal lines.

point on the n* nodal line, where n may
have the values 1, 2, 3, 4, etc., is (n — $)\.
If the path difference is zero, A, 2\, 3A,
ele., corresponding to the intermediate
regions Ly, Ls, Ly, Ly, ete., the two inter-
fering waves are continually in the same
phase and loops exist in those areas.
Double-crests and double-troughs oceur
in these regions.
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(b) Between adjacent nodal lines, or
hetween adjacent lines of maximum vi-
bration, the path difference changes by
one wave length.

(¢) As time goes on, the double-crests
and double-troughs follow one another
out in the directions Lj, L., Ls, etc.,

because the interfering crests and troughs
which produce them move out. This fact
may be verified readily by observing the
pattern on the ripple tank, or by re-
drawing I'igure 5.6 showing the patterns
one-half period later. At this time the
first cirele about each of A and B as
centre will be a broken line.

Fig. 5.7. If the two sources A and B are not in phase, the interference pattern is displaced to
one side.
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Fig. 5.8. Two interference patterns, produced by two point sources, The sources were in the same
phase for the left photagraph, and in opposite phase for the right photograph. The marker, which
was in the same position for the two photographs, shows how the nodal lines shifted.

(d) The wave length of these water
waves in the ripple tank may be found
by measuring the paths P4 and PB for
any point on the n*® nodal line and equat-
ing |[PA — PB| to (n — %)\ Suppose,

Fig. 5.9. A single small bartier in a ripple tank.

for example, that for a point on the third
nodalline P4 = 50 cm and PB = 45 em,
Then X = 5 cm, and A = 2 cm.

‘We must be sure to remember that the
patterns and mathematical relationships
which we have been discussing in this
section apply only when the two sources,
A and B, are in phase. If the two sources
are not in phase, the crests and troughs
originate from one of the sources a little
later than they would if the sources were
in phase (Fig. 5.7). This diagram would

lead us to predict that the resulting inter-
ference pattern would be exactly the same-:

as before, except that the whole pattern

has been displaced to one side. This pre-
diction is verified by the photographs in

IMgure 5.8.
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Fig. 5.10. Three bariers forming
two apertures in a ripple tank.

54 LABORATORY EXERCISE:
DIFFRACTION AND
INTERFERENCE

You should now use the ripple tank to

verify the statements made in Sections

5-2 and 5-3, and to investigate several

other situations.

urces. The sources were in the sam

ght photograph. The marker, whic
/ the nodal lines shifted.

(a) Place two barriers (see Fig. 5.2)
geparated by a small aperture, in the
ripple tank. Generate straight waves, and
observe the diffraction at the aperture.

le, that for a point on the thii
 PA = 50 cm and PB = 45 cm
= 5Scm, and X = 2 em. E
st be sure to remember that th
and mathematical relationship
» have been discussing in th
sply only when the two soure
are in phase. If the two sources
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(Fig. 5.7). This diagram woul
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Fig.5.11. Diffraction from each of two apertures.
The diffracted wave trains interfere and produce
everal faint nodal lines.
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What is the effect of using (1) longer
waves, (2) shorter waves, (3) a wider
opening, (4) a narrower opening ?

(5) Remove the two barriers. Place a
single barrier (Fig. 5.9) in the path of a set
of straight waves. Observe the diffraction
which takes place at the corners of the
barrier. What is the effect of using (1)
longer waves, (2) shorter waves, {3) a
longer barrier, (4) a shorter barrier?

{¢) Use amotor-driven generator fitted
with two ripplers to generate two sets of
circular waves. Be sure that the two
ripplers are in phase. Observe the inter-
ference pattern, noting particularly the
number of nodal lines and the positions
of the nodal lines. What is the effect of
using (1) longer waves, (2) shorter waves,
{3) a greater distance between the sources,
{4} asmallerdistance between thesources ?

(4} Now place three barriers in the
ripple tank as shown in Ifigure 5.10.
Generate straight waves and observe the
two sets of waves produced as & result of
the diffraction at the two openings. Do
these two sets of waves interfere with one
another? Can you see any nodal lines?
Is the pattern the same as that produced
by the two point sources? Compare the
pattern you obtain with that shown in
Figure 5.11.




() Repeat part (a). Are there any
nodal lines in the diffraction pattern for
a single opening? Compare the pattern
you obtain with thatshown in Figure 5.12.

5-5 DIFFRACTION AND
INTERFERENCE COMBINED
Tigure 5.11 shows diffraction taking
place from each of two openings. Each
opening acts ag if it were a source of
waves. The two sels of waves, as you
might expect, interfere and produce an
interference patiern similar to that pro-
duced by two point sources {Fig. 5.5).
Figure 5.12 shows diffraction taking
place at a single opening, and here again,
nodal lines appear. The fact that diffrac-
tion at a single opening is accompanied
by interference is unexpected, for there
seems to be only one set of waves. In
order to explain this interference, we must
assume that each point across the open-
ing (that is, each particle of water in the
opening) acts as a source of waves. Thesc
many sets of waves interfere to produce
the interference pattern. We may test the
validity of thisassumption experimentally
by allowing plane waves to be incident on

WAVES AND PARTICLEg:

Fig. 5.12. Photograph of interference pattern ae-
companying diffraction from a single aperture.

a barrier (IMig. 5.13) in which there are
many openings close together. The re-
sulting interference pattern (Fig. 5.14)
resembles closely that produced by the
diffraction at a gingle opening.

Fig. 5.13. A barrier with several
apertures, in a ripple tank.
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ig. 5.14. Compare this multiple-aperture dif-
ction pattern with the single-aperture pattern
own in Figure 5.12.

. Photograph of interference pattern
ing diffraction from a single apertur

5—-6 CONDITIONS NECESSARY
FOR INTERFERENCE OF
LIGHT WAVES

- Diffraction and interference seem to be
phenomena which are unique to waves;
t is difficult to visualize their occurrence
connection with particles. The diffrac-
tion which we have already noted in con-
nection with light (Sect. 1-14) leads us
believe that light should exhibit inter-
ference phenomena as well.

Suppose that two small light sources

{Fig. 5.15) are arranged as were the two

point sources in the ripple tank, and that

a screen, on which to observe the inter-

rence pattern, is set up at some distance

om the sources. If light behaves like
ater waves do, a pattern such as that
own in Figure 5.5 should exist in the

Space surrounding the sources. At points

on the nodal lines the light waves should

cel one another, causing darkness, and

or (Fig. 5.13) in which there g
ypenings close together. The T
interference pattern (Fig. 5
es clogely that produced by i
ion at a single opening.

Fig. 5.13. A barrier with se
apertures, in a ripple tank.
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in the areas L), Ly, ete., they should re-
inforce one another and cause ‘““double-
brightness.” We should not expect to see
thig pattern in space, but it should be
visible on the screen. There should be
dark lines where the nodal lines cut the
screen, and bright areas in between.

With the arrangement shown in Figure
5.15, no interference pattern is ever oh-
served, However, we would be unwise to
conclude, as a result of this one experi-
ment, that light does not exhibit inter-
ference phenomena. Perhaps the sources
should be smaller, closer together, and
relatively further from the screen. We
already know that white light is com-
posed of many colours, and we suspect
that the colours are associated with dif-
ferent wave lengths. If the sources we use
emit white light, the interference pattern
for one eolour may overlap and obscure
the interference pattern for another
colour. Another pogsibility is that the
frequencies of the two sources are not
equal, or that, if they are equal, the
sources, even if they begin in phase, do
not remain in phase.

In 1801 Thomas Young, an English
physicist, deviged a method which showed

o
Two smell sources of light

<

Screen

Fig. 5.15. This arrangement of apparatus should
demonstrate interference of light, but it does not.
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that light waves do interfere with one
another. In Young’s method, a single
gource is uged. The light waves from this
source are divided into two parts. These
patts travel by two different paths before
being brought together again. Young ob-
tained interference patterns even with
white light, but the results are less com-
plex if monochromatie {single colour) light
is used.

5-7 YOUNG'S DOUBLE-SLIT
EXPERIMENT

The laboratory exercise outlined in
Section 5-10 describes how you may re-
peat Young’'s experiment using a modifi-
cation of his original method. You should
prepare the double-slit now and make
some preliminary qualitative observations.

Coat a microscope slide with graphite
paint, and draw two narrow, straight,
parallel slits in the paint using two razor
blades side by side. Use the long narrow
filament of a show-case light bulb as the

E

Narrow filamenf\

F
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light source. You can obtain approximate.
ly monochromatic light by wrapping the
bulb in a coloured cellophane filter. Holg
the double slit near the eye, with the
slits parallel to the filament, or allow thg
light passing through the slits to fall o
a screen (Fig. 5.16). The resulting intep
ference pattern is shown in Figure 5.17.
The bright lines shown in Figure 5,17'11'
and marked B, By, By, in Figure 5.16, ars
red if a red filter is used, blue if a blyg
filter is used, ete. The dark lines are dark
in all cases.

At the centre of the pattern is a bright
fringe B where the disturbances are i
phase because the distances FB and EE
are equal, On either side of B is a dark
fringe: D, where the disturbances are ig
opposite phase because FD; and ED, dif:
fer by one-half wave length. For the next
dark fringe D, the path difference is
wave lengths. Thus, successive dark
fringes oceur for path differences of. ¥,

- B,

Fig. 5.16. Light from a narrow filament passes through a double slit 1o form interference fringes.
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A568.

%}\, £, ete., and bright fringes occur for
path differences of 0, A, 23, 3\, ete. The
dark lines are further apart for red light
than for blue light. Apparently the wave
enhgths for red light are longer than those
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e phase because # D, and FL
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_Physics Department, University of Western Ontario

ig. 5.17. A photograph of interference fringes
roduced by a double slit.

8 SINGLE-SLIT DIFFRACTION
AND INTERFERENCE

Diffraction and interference effects are
roduced when light passes through a
ingle slit. Use the tip of a small screw-
ver to rule a single narrow slit on a
aicroscope slide coated with graphite
nt. (A razor blade produces foc narrow
it). Look at a narrow source of mono-
omatic light through the single slit
eld close to the eye.

typical single slit diffraction pattern
hown in Figure 5.18. There is a broad,

gics Department, University of Western Ontario

'6.18. A photograph of diffraction and inter-
nce effects produced by a single slit.

ouble slit to form interference fring
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cenfral, bright band flanked by alternate
dark and bright lines. The intensity of
the bright bands deereases rapidly as the
distance from the centre increases. You
should compare this pattern with the
similar water wave pattern shown in
TFrigure 5.12. '

5-9 ANALYSIS OF DOUBLE-SLIT
DIFFRACTION AND
iINTERFERENCE

Diffraction and interference effects
seem to indicate that light has wave
properties. If light has wave properties,
what are the wave lengths? We have
guessed already that the wave lengths
are very short, much too short to be
measured directly. However, they can be
calculated from measurements made in
connection with interference experiments.

It is not possible to calculate the wave
length by measuring the path difference
for a point on the n™ nodal line as we
did for water waves in the ripple tank.
The light sources are too close together
and the paths are very nearly equal.
However, A can be caleulated from other
measurements. Consider Figure 5.19. K
and F represent the slits in Young's ex-
periment. P is the point where the n'
nodal line cuts the sereen. A B is the right
bisector of EF, making EA = AF. PCis
perpendicular to EF produced and is equal
to AB. Also, BP = AC.

In AEPC, £C = 90°
PR = EC? 4+ PC?
(AC + EA? 4+ AB?
= AC? 4+ 24C - EA + EA*+ AR?
In AFPC, 20 = 90°
PI* = FC?  PCR
= (AC — AF)t -} AB?
= AC? — 2A4C +« AF + AF*+ AR
= AC? —2AC - EA + EA*+ AB?




Screen B

Fig. 5.19. Diagram for mathematical analysis of
double-siit interference.

Subtracting,
PE? — PF? =44C - EA
=4AC - ar
= 240 « EF
= 2BP » EF
Factoring, :
(PE — PF)(PE + PF) = 2BP « EF (1)
Now PI — PF is the path difference
and is equal to (n — A Also, if AB is
large, relative to PB, both PE and PF
are, for practical purposes, equal to AB.
Equation (1) then becomes
AMn — 3Y(AB + AB) = 2BP + EF
BP » EF
~ AB(n - })
Using the symbols shown in Higure 5.19,
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xz-® d "":r
L{n — 3
where z is Lhe distance from the centy
of the pattern to the n™ dark Tine, ¢
the slit gepar a,tlon and L is the distane
from the slits to the screen.

The distance I can be measured with
reasonable accuracy, and it may be pos
gible to measure z. If the slits are draw;
with two razor blades side by side, the;
d is the thickness of one blade and may
be meagured with a micrometer. The ordey
of magnitude, at least, of the wave length
can then be calculated. Suppose tha
d = 0.01 em, Lig 100 cm, and 2 = 2,
cm for the fifth dark band. Then
2.25 X 0.04
100{6 — 1)

=5 X 10°°
The wavelength is of the order of 5 X 10+
e, or, since 1 Angstrom unit = 10—%em
the wave length is approximately 5000A

The value of z is the distance from the
centre of the pattern to the n™ darlk line,
We may have difficulty in measuring &
because of the difficulty in locating the
centre of the interference pattern. How.
ever, further mathematical analysis re
veals a way of avoiding this difficulty.

Rearranging the formula,

A =

A =

ML .
is 244 X ’l and for the 24th dark linel

AL
23F X '

The difference between these two value

of x, which we shall call Az, is FE
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g- 5.20. The light source is
viewed through a double slit. The
‘spacing of the bright or dark lines
in the interference pattern can be
measured on the ruler.
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=10 LABORATORY EXERCISE:
MEASURING »

Continue Young's double-slit experi-
ment (Sect. 5-7). Place a ruler above the
onochromatic light source (Fig. 5.20)
o that you will be able to measure the
acing of the dark lines, and scratch a
indow’ in the paint, across the double
%0 that you are able to see the ruler

\ T d well ag the interference pattern. Meas-
L(n — ) e the distance, L, (about two or three
WAL res) from the double shit to the source.
ain z = (n — §)— unt the number of dark lines which
lue of z for the 25th dail u observe between two markers placed
}T ; ueore v the ruler, and calculate Az, Then cal-
—- and for the 24th dark B . Ax
d ate A from the relationship A = ———
L
2 11 COLOUR AND WAVE
rence between these two v. LENGTH

e have already noted that the dark
nd spacing varies for different colours.

AL
ch we shall call Az, is L

That is, if d and L are kept constant, the
value of Az is not the same for red light
as for blue, and therefore the wave lengths
differ. Experiments similar to the one
above indicate that the wave lengths
range from about 4000A for the violet
end of the visible cpectrum to about 7800 A
for the red end. (See the top photograph
in. the eolour plate opposite page 22.)

-12 THIN FILMS

The beautiful colours produced in soap
bubbles and in oil filmg on water are
familiar to everyone. If a wire frame is
dipped in a soap solution to which a little
glycerine has been added, a fairly durable
thin film is produced. This film consists
of water held in place by soap “mem-
branes”” on either side. If the wire frame
is held in a vertical position, the film is
wider at the bottom than at the top
because the force of gravity pulls many
particles of water towards the lower edge.
When viewed by reflected white light,
the surface of the film is seen to be covered
with a series of horizontal spectral bands
in brilliant colours. If a red glass filter is
placed in the path of the light, the spectral
bands are replaced by alternate dark and
red bands.
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Fig. 5.21. Reflection at the two surfaces of a
thin film produces intetference.

The same type of interference pattern
oceurs when there is a thin wedge-shaped
film of air between two glass plates (Fig.
5.21). We shall explain the interference
pattern with reference to this air wedge.
A ray of monochromatic light from a
source, A, enters the glass plate on the
right at B. On reaching ' part of the
light is reflected and part of it is refracted.
The reflected ray returns to the surface
of the glass following the path CHK fo
the eye. The part of the light which is
refracted at ' is both reflected and re-
fracted at D;the reflected portion returns
to the eye along the path DEFG. The
parallel rays HK and F@ are focused on
the retina. Thus, the conditions necessary
for interference are fulfilted. Light waves
coming from asinglesource, 4, aredivided
at €, they travel two different paths, CHK
and CDEF(, and they are brought to-
gether again on the retina. The path

WAVES AND PARTICLES

ete., the two #istiubances would be ex-
pected to réinforce each other on the .
retina. Similarly ift CDE is $x, &\, §),
ete., destruetive imterference would be
expected, Actually, the opposite is the
case. The I‘SHBCtiOil at C 18 at the surface
of a less dense medium, and the beam ig
reflected right side up. The reflection at
D is at the surface of a denser medium,
and the beam is reflected upside down,
In determining the nature of the inter-
ference, this difference between the re-
flections at € and D is equivalent to a
path difference of half a wave length.

In a wedge shaped film where the thick-
ness of the film Increases steadily, c¢an-
cellation and reinforcement will oceur af
a succession of positions and alternate
dark and bright bands will be seen. f the
path difference C'DF produces reinforce-
ment, so does CDE + A, and CDE -+ 2
ete, If the incident light is perpendicular
to the film, CDE equals twice the thick-
ness of the film, Therefore, for successive
dark fringes the film must increase in
thickness by one-half wave length.

The study of interference effects in thin
films provides another method of meas-
uring the wave length of light.

5-13 THE AIR-WEDGE
EXPERIMENT

A wedge-shaped air film may be formed
between two sheets of plane glass about
10 cm long, touching at one end and sepa-
rated by asheet of thin paper at the other.
If light from a monochromatic source is
reflected to the eye by the two surfaces
of this air film, alternate, parallel da
and bright fringes cover the whole area
of the glass (Fig. 5.22), and, if the glags
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is optically plane, the fringes are straight.
To facilitate measurement of the fringes,
a centimetre scale may be glued over a
portion of the glass surface which faces
the source of light.

In Figure 5.23, PF represents a beam
of light perpendicular to the surface of

lense medium, and the bear
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Fig. 5.22. A photograph of interference fringes
produced by a wedge-shaped air film.

Two Reflected Rays
F - P

e

G - - a

D
|
I
Z:
E ’}- g i
H
Incident Ray
B C
Thin Sheet of Paper
7

Fig. 5.23. If D and £ represent adjacent dark
{or bright) fringes, then EH = ),

the wedge-shaped air film. Since the film
is very thin, both the light reflected at F
and the light reflected at D will travel
back along, or very close to, the path of
incidence. The path difference 2DF de-
termines whether there will be can-
cellation or reinforcement. For a similar
ray @, the path difference 2EG deter-
mines the nature of the interference. If
D and E represent the apparent positions
of two adjacent dark fringes, 2EG — 2DF
equals one wave length, and
EG@ — DF = EH = %

Sinee the digtance EH is too small to
be measured directly, it must be com-
puted using the similar triangles ABC
and DEH. Measurements of B(, AB,
and DE are now taken as carefully as
possible. The distance BC, the thickness




of the paper used to separate the plates,
can be obtained by measuring with a
micrometer the thickness of several sheets
of the paper and dividing by the number
of sheets. Thelength A B can be measured

with a ruler. DE is the average distance.

between adjacent bright or dark fringes
and is obtained by measuring across
several fringes and dividing by the num-
ber of fringes. Suppose that BC = 0,002
em, AB = 10.0 cm, and DE = 0.14 cm.
. EH BC
In triangles A BC and DEH, DE - AB
A
2 0.002
10.0
0.002 x 0.14 X 2
B 10.0
5.6 x 1078
Thug, the wave length is 5.6 x 107® c¢m,
or approximately 5600 Angstrom units.

0.14
A

5-14 AN INVESTIGATION OF THE
RELATIVE SIZES OF LIGHT
WAVES AND MOLECULES

The wave lengths of light are obviously
very short. fTow do they compare with
the dimengions of molecules ? Undoubted-
ly the size of a molecule varies from sub-
stance to substance. However, if we knew
even the order of magnitude of molecular
dimensions, we could make a rough com-
parison of the sizes of light waves and
molecules.

One method, which may be used to
determine the size of a molecule, depends
on the fact that many liquids spread out
to form a thin film on the surface of
water. The liquid must be insoluble in
water; oil is an obvious example.

Suppose thatadrop of oil, whose volume
18 0.1 em?, spreads out on the surface of
water to form a circular film of radius

WAVES AND PARTICLLS

5 cm. How thick is the film? The film 5
in the form of a eylinder whose volume,
V, is given by the formula V = 4p,
where A is the surface area of the film
and k is its thickness. . '

Then & = v

A
Here, V = 0.1 c¢m?®
and A ar? = 3.14 X 5% cm?
= 79 cm?
Then k= 0791 cm
Thus the order of magnitude of the thick-
ness of the oil film i 1073 em,

If the liquid forming the film spreads
out sufficiently far, it will form a moleeu-
lar layer; that is, the thickness of the
film will be the thickness of one molecule,
Qleic acid will form a molecular layer if
you use a small quantity of it and provide
enough space for it to spread out. Dilute
5 cm? of oleic acid with 95 em?® of methyl
alecohol, and then dilute 10 em® of this
solution with 80 em?® of methyl alcohol.
Caleulate the volume of oleic acid in one
em?® of this second solution. Use an eye-
dropper to determine the number of drops
in one cm® of this solution. Then calculate
the volume of oleic acid in one drop.

Pour water to a depth of about one em
into a clean ripple tank tray. Dust a thin:
film of chalk dust or lycopodium powder
evenly over the surface of the water. Then
use the eyedropper to drop one drop of .
oleic acid solution at the middle of the
water surface. (The aleohol dissolves in -
the water; the film that is visible is due
to the oleic acid only. How could you
show that this is true?) Calculate the
area and hence the thickness of the film.
How does the thickness of this molecular
layer compare with the average wave-
length of vigible light?
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5-15 PROBLEMS

i0.

. A point source of light casts very “sharp” shadows of surrounding objects.

What information does this fact give concerning light ?

. Draw an interference pattern, similar to that shown in IFigure 5.6, for two

sources of the same frequency and in phase, the distance between the
sources being 33,

. For a point on the first nodal line N, (see ¥ig. 5.6) the path difference is

found to be 3.0 cm. What is the path difference for (a) a point on the line Ny,
(b) a poinf on the line Ny, () a point mid-way between N, and N 2, and (d) a
point mid-way befween Ny and N,? :

- If the common frequency of vibration of the two sources in Question 3 is

7 eps, what is the speed of the waves?

. A standing wave pattern is set up by two sources of the same frequency

and in phase. A point on the first nodal line is 10 inches from one source
and 8 inches from the other; the speed of the wavesis 0.75 ft/sec. Caleulate
the common frequency of the two sources.

. Continuing destructive interference is observed at a point for which the

path difference is 16 em. The sources have the same frequency and are in
phase. What are the two largest possible values of the wave length? What
are the two lowest possible values for the common frequency of the two
sources, if the speed of the waves is 20 cm/sec?

. In a ripple tank interference experiment, you measure the distances from

sources 4 and B to a point P on a nodal line. What further information
must you have in order to calculate the wave length ?

. In a ripple tank experiment to demonstrate interference, two point sources

having a common frequency of 6.0 ¢/s are used. The sources are 5.0 em apart
and vibrate in phase. A metre stick is placed in the water parallel to the line
joining the sources. The central axis of the pattern crosses the metre stick
at the 50 em mark. The first nodal lines cross the metre stick at the 40 em
and 60 ¢m marks. Each of these points is 50 em from the mid-peint of the
line joining the sources. (a) Calculate the wave length. (b) Calculate the
speed of the waves.

Counsider the relationship

d - A
L

(@) What is the effect on Az of doubling A? (b) If A changes by a factor of
1.5, by what factor does Az change? (¢) What is the effect on Az of changing
L by afactor of 37 (d) Interpret your answers to (a), (b) and (¢) in terms of
the laboratory exercise described in Section 5.10.

(@) For two slit sources 0.30 mm apart, emitting light of wave length
6000A, calculate the separation of adjacent dark bands observed at a dis-
tance of 2.0 metres. (b) State the change in band separation that would be
observed if blue light were used instead of yellow.

A =

71
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. A student stands 4.0 m from a monochromatic light source and observes the
light through a pair of narrow parallel slits 2.0 X 1072 e apart. He detex-
mines that the distance from the first node to the eighth node in the inter-
ference pattern is 8,0 em. Caleulate the wave length of the light.

. Two parallel slits 3.0 X 10~ m apart are illuminated by parallel rays of
monochromatic light of wave length 4.5 X 10=7 m. The interference fringes
are observed on a screen placed 90 em from the slits. Find the distance from
the mid-point of the central maximum $o the mid-point of the second
maximum to the right.

. If @ represents the angle BAP in Figure 5.19, prove that

An — %)

d

. Two point sources A and B, 4.5 em apart in a ripple tank, vibrate in phase
at a common frequency of 9.0 ¢/s. The angle between the right bisector of
AB and the second nodal line is 40°, Calculate (a) the wave length, (b) the
speed of the waves.

. Why is interference from two rows of fluorescent lights in a classroom not
noticeable?

. Calculate the frequency associated with light of each of the following wave
lengths: (a) 4000A, (b} 5000A, (c) 6000A.

. Two plane glass plates 10 em long are touching at one end and are separated
at the other end by a strip of paper 0.0015 em- thick, When the plates are
Hluminated by monochromatic light the average distance between consecu-
tive dark fringes is 0.2 cm. Calculate the wave length of the light in Angstrom
units.

. Two plane glass plates 12 em long, touching at one end and separated at
the other end by a strip of paper, are illuminated by light of wave length
0.000063 cm. A count of the fringes gives an average of 8 dark fringes
per cm. Calculate the thickness of the paper.

. An air-wedge is formed between two glass plates 15.6 em long by placing
them in contact at one end and separating them at the other end by a thin
strip of paper. The wedge ig illuminated by light of wave length 546 >} 107 Diffrac
cm and the interference pattern in the reflected light is observed. The average '
distance between two dark bands in the pattern is found to be 1.2 mm.
Calculate the thickness of the paper strip separating the plates at the large
end of the wedge.

. The diameter of a fine straight fibre is determined by an interference experi- property ¢
ment, as follows. The fibre is placed on the surface of a plane glass plate, A and B,
parallel to and very cloge to one edge of the plate. The plate is 10 em square. phase, co:
Another identical plate is placed on top of the first, and the plates are s
illuminated by sodium Hght (wave length 5890 Angstrom units) which falls it Pin
perpendicularly on them. It is observed that a series of bright and dark pom
lines cross the plates, and 12 bright and 12 dark lines are counted. Calculate IPA - _P‘
the diameter of the fibre, lationship

. Two strips of optically plane glass plate are held together at one end and 1arge re%ai
separated at the other end by a thin strip of metal foil 0.022 mm thick, lationship:

sin B =

amount o

proportiol

ence of th
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ence of the two wave trains oceurs at a
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" forming an air wedge 12 em long. When sodium yellow light illuminates the

plates, bright and dark fringes are observed with an average distance of
1.6 mm between consecutive dark fringes. () Calculate the wave length of
the light. (b} Indicate the frequency of this wave motion. (Speed of light =
3 X 10'% ¢m per sec.)

{a) If sound is transmitted by means of waves, what should be the effect of
(¢) destructive interference (#7) constructive interference, in sound? (b) Do
these phenomena oceur for sound ? {¢) What does your answer io (b) indicate
about how sound is transmitted ?

Two identical tuning forks are placed 10 metres apart. At a point on the line
joining them, 4 metres from one of the forks, constructive interference iz
obesrved. If the forks are in phase, calculate two possible values for their
common frequency, Assume that the speed of sound in air is 340 m/sec.

In order to make a comparison of the wave and particle theories, prepare
the fellowing lists. (a) List all of the phenomena associated with light which
can be explained in terms of waves. (b) List the phenomena which cannot
be explained in terms of waves. (¢) List the phenomena which can be ex-
plained in terms of particles. (d) List the phenomena which canmot be
explained in terms of particles.

Wheat flour contains 1%, oil by weight, and the oil has a density of 0.9
gm/cm?, Chalk dust is spread uniformly over the surface of water in a tray,
and 0.003 gm of flour is dropped into the centre of the chalk dust. The oil
spreads out on the surface of the water, pushing the chalk dust and flour
ahead of it, and forming a clear circular area of diameter 0.2 metres.
Calculate (@) the mass, (b) the volume, (¢) the thickness of the oil film.
Oleic acid is dissolved in alcohol, the oleic acid concentration being 0.5%,
by volume. One em?® of the sohition contains 30 drops. One drop of the
solution splea.ds out on water to form a molecular layer of average diameter
32 em, What is the thickness of the film?

5-16 SUMMARY zed
Diffraction is a property of waves; the A= Lin — &)
amount of diffraction at an aperture is d e+ Az
and A = 7

Diffraction and interference oceur for
light as they do for waves, If we assume
a wave model for light, we may then
calculate a wave length for each colour.
Two methods, double slit diffraction and
thin film interference, may be used. The

= (n — )N\ From this re-  two methods yield identical results. The

ationship, if PA and PB are both very
arge relative to AB, the following re-
ationships may be developed:

range of wave lengihs in the visible spec-
trum is from 4000A for vielet light to
7800A for red light.




92

Chapter 1—Section 1-15, page 11

14. () 0.4; 2.8; 4
15. 9 ft/yd?; A = 9L
19. {a) 1.67 x 1071? sec
() () 1.11 X 107" gec
(i24) 1.99 > 10-1° sec
20. (o) 20; 2; 0.25
21. (a) E changes by a factor of () 2
(b) () 2
22, (@) F changes by a factor of (7) 2

(6) @) 3
24. 36 foot-candles

Chapter 2—Section 2-16, page 25

2. () 0.5000 (b) 0.3371
{¢) 0.9999 () 0.0035

3. (a) 39.4° (b) 45.0°
(e) 59.0° () 69.1°

7. 1.52 9, (@) 47°

10. approximately 39°

Chapter 3—Section 3-9, page 33

6. 1.82
7. 2.26
8. 1.14

.

2. 20° 5. (a) 10

7. 4.0 X 108 8. 102

10, (a) 3 x 101 (b) 5 X 10°
(d) 6 X 10-° (e) 4 X 10~

12. 48 in/ft; P = 48L

13. (@) () 2.5 cem (i) 1 em
(b) (£) 0.8 kg (76) 1.6 kg

5. 19.5% 79.8°; 20.4°; 22.3°%, 1.41;

ANSWERS

(b) 104
9. 104

6.1(@) 107 () 10°%

(¢y 1.95 X 108

’ (fy 1.6

(itd) 3 em
(177} 0.2 kg

(i0) 1.5; 4.5; 13.5
16. x; 1007

(#7) 1.21 X 1079 sec
{(7v) 4.86 X 107" sec
(b) 0.5; 5; 100

(i) 4 (i7) &
(1) 2

(z7) 8 (i7) 16
.. L.k
(#7) 3 (#27) 7@

25. 3.2 fi approximately

{©) 0.6769

(c) 4.5°

{g) 74.3°
0.94

(b) 37°

% 108 m/sec; 4.95 ¢ 10% m/sec
x 108 m/see; 3.99 X 10 m/sec

(iv) 256

(d) 0.9820

(d) 49.2°
(h) 19.2°

(c) 24°

-

AN

Ch

Ch



ANSWERS

Chapter 4—Section 4-15, page 51
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1. (a) 0.005 sec (b) % sec (e) 45 sec
. (d) 10 sec (e} 2 X 107 sec (f) 5 X 10—° sec
2. (a) be/s {b) 2.5 ¢/s (e) Lefs
i = (d) 25 ke/s (e) 20 me/s
’ 6. () 107 (b) 10~ ) 4. (a) 40 revs/sec (D) &5 sec 5. 1.5 ¢/s
9. ) 10 6. 30 revs/sec or some integral multiple thereof
(¢) 1.95 X 10¢ 7. 32 revs/sec or some integral multiple thereof
(fH 1.6 8. 8 revs/sec or some integral multiple thereof
12, 52.5 13, 10% ¢ps 14. 300 em/sec
(s2i) 3 cm 15. 2 sec 16. 20 em; 2400 cm/see  17. 4096 cm/sec
(¢i7) 0.2 ke 18. 20 cm/sec 19. 10 cps 20. 0.72 in
- 4.5; 13.5 21. approximately 24° 22, 6.6 m/sec 23. 0.000042 em; 4200A
007 24, 5300A 25. 4.57 X 10 eps 26. 20m to 2 X 10~ m
L > 10710 gec
5 X 10710 gec
. 5; 100 Chapter 5—Section b-15, page 71
s g
g f/i i) 3. (@) 9.0 em (b) 15.0 em (¢) 6.0 cm (d) 12.0 cm
. 4. 42 cm/sec 5. 2% cps
) 8 (ét2) 1? (i) 256 6. 32 cm; 102 em; & cps; 1§ eps
) 3 (1) — 8. (¢) 2.0 cm (b) 12 cm/sec
. V3 9. (a) Ax is doubled
ft approximately (b) Az changes by a factor of 1.5
() Az changes by a factor of 3
10. (a) 0.40 cm 11, 5.7 X 10~ % em
12. 2.7 cm 14. (2) 1.9 em {b) 17 em/sec
j 16. (a) 7.5 x 10" ¢/g (b) 6.0 x 10% ¢/s () 5.0 x 10" ¢/s
(c) 0.6769 (d) 0.9820 . . 17. 6000 18. 0.003 em 19. 3.54 X 10% e¢m
o 20. 3.5 X 10* em 21. (o) HBOBTA (b} 5.1 X 10" ¢ps
{(c) 4.5° (d) 49.2° S 23. 170 ¢/s; 340 ¢/s
() 74.3° (B) 19.2° - 25. (@) 3 X 10%gm () 3.3 X 105 em? (¢) 107 ¢cm
St 26. 20A
() 37° (c) 24°
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